2016_2017学年高一数学上学期期末考试试题

合集下载

山东省济南市2016-2017学年高一数学下学期期末考试试题(含解析)

山东省济南市2016-2017学年高一数学下学期期末考试试题(含解析)

2016—2017学年度第二学期期末考试高一数学试题第I卷(选择题,每题5分,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有.. 一项是符合题目要求的,请将正确选项填涂在答题卡上)1. -HI.: -:":1的值是()A. B. C. D.2 2【答案】A【解析】由题意可得:.ii、二、.iii —T-二'.in ri = ■. -i ='.本题选择A选项.2. 已知I.::. li ■:.H.I :■::',且丄-「一L;,则".的值分别为()A. - 7,—5B. 7 , - 5C. —7, 5D. 7 , 5【答案】C【解析】试题分析:沁:iQ,,」「■;.■<:, ,解得:—一‘,故选C.考点:向量相等3. 在区间上随机取一个数,「:的值介于0到之间的概率为()A. B. C. D.【答案】A【解析】在区间上随机取一个数x,即x€时,要使:左;的值介于0到之间,」I 7T TTX TI 卜TT TTX TI需使或:'■■■;2 2或:冬詔,区间长度为,TT¥由几何概型知:•「•一的值介于0到之间的概率为.本题选择A选项.4. 已知圆._ + ||r.[:上任意一点M关于直线• I . ■的对称点N也再圆上,则的值为()A. |B. 1C. :'D. 2【答案】D【解析】T圆x2+y2- 2x+my=0上任意一点M关于直线x+y=0的对称点N也在圆上,•••直线x+y=0经过圆心I ,故有[- ■,解得m=2,本题选择D选项•5. 下列函数中,周期为,且在 |上单调递增的奇函数是()A. -;|||;:;- - :B. _ I :;C. . - ;D. . -din --;【答案】C【解析】化简所给函数的解析式:A. --…凡,该函数周期为,函数为偶函数,不合题意;B. ■. |~ ■-,该函数周期为,在|上单调递减,不合题意;C. . - ' :: - ..ii ■■-,该函数周期为,在|上单调递增,函数是奇函数符合题意;D. ■■■ - siix::-:'一:汎汽喪,该函数周期为.':i,不合题意;本题选择C选项•6. 已知7血中,i",t;分别是角-F; <的对边,讥山,则=()A. L 辽B. I:.C. J.35 或£D.【答案】B【解析】由题意结合正弦定理可得,汕" ,a<b,则A<B=60°A=45°.本题选择B选项.点睛:1 •在解三角形的问题中,三角形内角和定理起着重要作用,在解题时要注意根据这个定理确定角的范围及三角函数值的符号,防止出现增解或漏解.2 •正、余弦定理在应用时,应注意灵活性,尤其是其变形应用时可相互转化•如a2= b2+ c2—2bccos A可以转化为sin2 A = sin2 B+ sin2 C —2sin Bsin CCos A 利用这些变形可进行等式的化简与证明.7. 将函数• -,「:.的图象向右平移个单位长度,再向上平移1个单位长度,则所得的图象对应的解析式为()•A. 二I wB. . - ' ■ iii ■C. . - I .:■!. -D. .-11 -【答案】B【解析】将函数• -的图象向右平移个单位长度,所得的图象对应的解析式为:=|'二in'-,再向上平移1个单位长度,所得的图象对应的解析式为.- I本题选择B选项.点睛:由y= sin x的图象,利用图象变换作函数y= Asin( w x +© )( A> 0, 3> 0)( x€ R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x轴的伸缩量的区别•先平移变换再周期变换(伸缩变换),平移的量是| 0 |个单位;而先周期变换(伸缩变换)再平移变换,平移的量是A个单位.8. 如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)•若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()甲组S62 516 1 ? yX 4?gA. 3 , 5B. 5 , 5C. 3 , 7D. 5 , 7【答案】C【解析】由已知中甲组数据的中位数为"h,故乙数据的中位数为即一二,,可得乙数据的平均数为'-,即甲数据的平均数为■-,故’「r-... ■=■■,故选.【方法点睛】本题主要考查茎叶图的应用、中位数、平均数的求法,属于难题•要解答本题首先要弄清中位数、平均数的定义,然后根据定义和公式求解,(1)中位数,如果样本容量是奇数中间的数既是中位数,如果样本容量为偶数中间两位数的平均数既是中位数;(2)众数是一组数据中出现次数最多的数据; (3)平均数既是样本数据的算数平均数「 .9. 在;中,点在上,且汕二j| ,点Q 是AC 的中点,若:-.二:丄工, 贝g"等于()•A. ( — 6,21)B. (6 , - 21)C. (2, - 7) D. (— 2,7)【答案】A【解析】由题意可得:I I 7「I 、: ,则:N 二,结合题意可得::」.,「: I-.,.:.本题选择A 选项.10. 从某高中随机选取 5名高一男生,其身高和体重的数据如下表所示: 身高x(cm)160165170175180身高y(kq)63 66 70 72 74根据上表可得回归直线方程 ,「:一....据此模型预报身高为172cm 的高一男生的体重为 A. 70.09 B. 70.12 C. 70.55 D. 71.05 【答案】B【解析】由表中数据可得样本中心点一定在回归直线方程上故'.■: 解得 W 1故「二门in当 x=172 时,:I! ::•「丨:工J 门|丄、, 本题选择B 选项.点睛: (1)正确理解计算;「•的公式和准确的计算是求线性回归方程的关键. ⑵ 回归直线方程 li-. - 1必过样本点中心■■- •63^ 55 + 70 + 72 + 7-15-〔-心,(3)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测. 11.函数匸-:1、|门 +- ■. I--: 的最大值为( )A. B. 1 C. D. 【答案】A【解析】整理函数的解析式:t(x) = |sin(x + 鲁)+ cosjx-^ = |sin(x + ^ + sin(x + ^ 6 . i lit 6 二評叫X+詁弓 本题选择A 选项•12. 已知是两个单位向量,且■■ I. ..I i| . ii.若点C 在一,1 •内,且—二二,则------------ »------------ K-------------- 1- mOC 二 mOA + nOBfrn.in 曲),则R 二()A. B. 3 C. D. :;因为I :-是两个单位向量,且■ '■■■ - ■: .'I ■.所以'' :'K ,故可建立直角坐标系如图所示。

2016-2017学年河南省天一大联考高三(上)期末数学试卷(文科)(解析版)

2016-2017学年河南省天一大联考高三(上)期末数学试卷(文科)(解析版)

2016-2017学年河南省天一大联考高三(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合A={0,2,4,6},B={x∈N|2n<33},则集合A∩B的子集个数为()A.8 B.7 C.6 D.42.设i为虚数单位,复数为纯虚数,则实数a的值为()A.﹣1 B.1 C.﹣2 D.23.“a2>b2”是“lna>lnb”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实,黄实,利用2×勾×股+(股﹣勾)2=4×朱实+黄实=弦实,化简,得勾2+股2=弦2,设勾股中勾股比为1:,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为()A.866 B.500 C.300 D.1345.已知圆(x﹣1)2+y2=的一条切线y=kx与双曲线C:﹣=1(a>0,b>0)有两个交点,则双曲线C的离心率的取值范围是()A.(1,)B.(1,2) C.(,+∞) D.(2,+∞)6.函数f(x)=的图象大致是()A.B.C.D.7.已知a>0且a≠1,如图所示的程序框图的输出值y∈[4,+∞),则实数a的取值范围是()A.(1,2]B.(,1)C.(1,2) D.[2,+∞)8.已知点M的坐标(x,y)满足不等式组,N为直线y=﹣2x+2上任一点,则|MN|的最小值是()A.B.C.1 D.9.如图,已知长方体ABCD﹣A1B1C1D1的体积为6,∠C1BC的正切值为,当AB+AD+AA1的值最小时,长方体ABCD﹣A1B1C1D1外接球的表面积()A.10πB.12πC.14πD.16π10.已知函数f(x)=Asin(2x+φ)﹣(A>0,0<φ<)的图象在y轴上的截距为1,且关于直线x=对称,若对于任意的x∈[0,],都有m2﹣3m≤f (x),则实数m的取值范围为()A.[1,]B.[1,2]C.[,2]D.[,]11.某几何体的三视图如图所示,则该几何体的体积为()A.8 B.10 C.12 D.1412.已知f′(x)是定义在(0,+∞)上的函数f(x)的导函数,若方程f′(x)=0无解,且∀x∈(0,+∞),f[f(x)﹣log2016x]=2017,设a=f(20.5),b=f(logπ3),c=f(log43),则a,b,c的大小关系是()A.b>c>a B.a>c>b C.c>b>a D.a>b>c二、填空题:本大题共4小题,每小题5分,共20分.13.已知平面向量=(1,2),=(﹣2,m),且|+|=|﹣|,则|+2|=.14.已知α∈(0,π),sinα=,则tan(α﹣)=.15.已知抛物线C1:y=ax2(a>0)的焦点F也是椭圆C2:+=1(b>0)的一个焦点,点M,P(,1)分别为曲线C1,C2上的点,则|MP|+|MF|的最小值为.16.如图,在圆内接四边形ABCD中,AB=2,AD=1,BC=BDcosα+CDsinβ,则四边形ABCD周长的取值范围为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)已知正项等比数列{b n}的前n项和为S n,b3=4,S3=7,数列{a n}满﹣a n=n+1(n∈N+),且a1=b1.足a n+1(1)求数列{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)如图,已知四边形ABCD和ABEG均为平行四边形,点E在平面ABCD 内的射影恰好为点A,以BD为直径的圆经过点A,C,AG的中点为F,CD的中点为P,且AD=AB=AE=2.(1)求证:平面EFP⊥平面BCE;(2)求几何体ADG﹣BCE,P﹣EF﹣B的体积.19.(12分)2016年是红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神,首先在甲、乙、丙、丁四个不同的公园进行支持签名活动.然后再各公园签名的人中按分层抽样的方式抽取10名幸运之星回答问题,从10个关于长征的问题中随机抽取4个问题让幸运之星回答,全部答对的幸运之星获得一份纪念品.(1)求此活动中各公园幸运之星的人数;(2)若乙公园中每位幸运之星中任选两人接受电视台记者的采访,求这两人均来自乙公园的概率;(3)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.临界值表:参考公式:K2=.20.(12分)已知椭圆C:+=1(a>b>0)的上下两个焦点分别为F1,F2,过点F1与y轴垂直的直线交椭圆C于M,N两点,△MNF2的面积为,椭圆C 的离心率为(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知O为坐标原点,直线l:y=kx+m与y轴交于点P,与椭圆C交于A,B两个不同的点,若存在实数λ,使得+λ=4,求m的取值范围.21.(12分)已知函数f(x)=x+alnx与g(x)=3﹣的图象在点(1,1)处有相同的切线.(1)若函数y=2(x+m)与y=f(x)的图象有两个交点,求实数m的取值范围;(2)设函数F(x)=3(x﹣)+g(x)﹣2f(x)有两个极值点x1,x2,且x1<x2,求证:F(x2)<x2﹣1.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分[选修4-4:参数方程与极坐标系](共1小题,满分10分)22.(10分)已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,圆C的直角坐标系方程为x2+y2+2x﹣2y=0,直线l的参数方程为(t为参数),射线OM的极坐标方程为θ=(Ⅰ)求圆C和直线l的极坐标方程(Ⅱ)已知射线OM与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.[选修4-5:不等式选讲](共1小题,满分0分)23.已知函数f(x)=|x+3|+|x﹣2|(Ⅰ)若∀x∈R,f(x)≥6a﹣a2恒成立,求实数a的取值范围(Ⅱ)求函数y=f(x)的图象与直线y=9围成的封闭图形的面积.2016-2017学年河南省天一大联考高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合A={0,2,4,6},B={x∈N|2n<33},则集合A∩B的子集个数为()A.8 B.7 C.6 D.4【分析】化简集合B,根据交集的运算写出A∩B,即可求出它的子集个数.【解答】解:集合A={0,2,4,6},B={x∈N|2n<33}={0,1,2,3,4,5},则A∩B={0,2,4},∴A∩B的子集个数为23=8.故选:A.【点评】本题考查了两个集合的交运算和指数不等式的解法以及运算求解能力.2.设i为虚数单位,复数为纯虚数,则实数a的值为()A.﹣1 B.1 C.﹣2 D.2【分析】利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0求解.【解答】解:∵=为纯虚数,∴,解得a=﹣2.故选:C.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.“a2>b2”是“lna>lnb”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】若lna>lnb,则a>b>0,可得a2>b2;反之,“a2>b2”a,b可能为负数,推不出lna>lnb.即可判断出结论.【解答】解:若lna>lnb,则a>b>0,可得a2>b2;反之,“a2>b2”a,b可能为负数,推不出lna>lnb.∴“a2>b2”是“lna>lnb”的必要不充分条件.故选:B.【点评】本题考查了函数的性质、不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.4.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实,黄实,利用2×勾×股+(股﹣勾)2=4×朱实+黄实=弦实,化简,得勾2+股2=弦2,设勾股中勾股比为1:,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为()A.866 B.500 C.300 D.134【分析】设勾为a,则股为,弦为2a,求出大的正方形的面积及小的正方形面积,再求出图钉落在黄色图形内的概率,乘以1000得答案.【解答】解:如图,设勾为a,则股为,∴弦为2a,则图中大四边形的面积为4a2,小四边形的面积为=()a2,则由测度比为面积比,可得图钉落在黄色图形内的概率为.∴落在黄色图形内的图钉数大约为1000≈134.故选:D.【点评】本题考查几何概型,考查几何概型概率公式的应用,是基础的计算题.5.已知圆(x﹣1)2+y2=的一条切线y=kx与双曲线C:﹣=1(a>0,b>0)有两个交点,则双曲线C的离心率的取值范围是()A.(1,)B.(1,2) C.(,+∞) D.(2,+∞)【分析】先求出切线的斜率,再利用圆(x﹣1)2+y2=的一条切线y=kx与双曲线C:﹣=1(a>0,b>0)有两个交点,可得>,即可求出双曲线C 的离心率的取值范围.【解答】解:由题意,圆心到直线的距离d==,∴k=±,∵圆(x﹣1)2+y2=的一条切线y=kx与双曲线C:﹣=1(a>0,b>0)有两个交点,∴>,∴1+>4,∴e>2,故选:D.【点评】本题考查直线与圆的位置关系,考查双曲线的方程与性质,考查学生的计算能力,属于中档题.6.函数f(x)=的图象大致是()A.B.C.D.【分析】判断函数的奇偶性,排除选项,然后利用函数的特殊值判断即可.【解答】解:函数f(x)=是奇函数,排除A,D.当x=时,f()=>0,函数的图象的对应点在第一象限,排除B.故选:C.【点评】本题考查函数的图象的判断,函数的奇偶性以及函数的单调性,特殊点等等是解题的常用方法.7.已知a>0且a≠1,如图所示的程序框图的输出值y∈[4,+∞),则实数a的取值范围是()A.(1,2]B.(,1)C.(1,2) D.[2,+∞)【分析】根据已知中的程序框图可得,该程序的功能是计算并输出分段函数y=的值,根据程序框图的输出值y∈[4,+∞),分类讨论可得答案.【解答】解:根据已知中的程序框图可得,该程序的功能是计算并输出分段函数y=的值,当x≤2时,y=﹣x+6≥4恒成立,当x>2时,由y=3+log a2≥4得:log a2≥1,解得:a∈(1,2],故选:A.【点评】本题考查的知识点是分段函数的应用,程序框图,根据已知分析出程序的功能是解答的关键.8.已知点M的坐标(x,y)满足不等式组,N为直线y=﹣2x+2上任一点,则|MN|的最小值是()A.B.C.1 D.【分析】画出约束条件的可行域,利用已知条件,转化求解距离的最小值即可.【解答】解:点M的坐标(x,y)满足不等式组的可行域如图:点M的坐标(x,y)满足不等式组,N为直线y=﹣2x+2上任一点,则|MN|的最小值,就是两条平行线y=﹣2x+2与2x+y﹣4=0之间的距离:d==.故选:B.【点评】本题考查线性规划的应用,平行线之间的距离的求法,考查转化思想以及计算能力.9.如图,已知长方体ABCD﹣A1B1C1D1的体积为6,∠C1BC的正切值为,当AB+AD+AA1的值最小时,长方体ABCD﹣A1B1C1D1外接球的表面积()A.10πB.12πC.14πD.16π【分析】先根据条件求出长方体的三条棱长,再求出长方体ABCD﹣A1B1C1D1外接球的直径,即可得出结论.【解答】解:由题意设AA1=x,AD=y,则AB=3x,∵长方体ABCD﹣A1B1C1D1的体积为6,∴xy•3x=6,∴y=,∴长方体ABCD﹣A1B1C1D1的体积为4x+≥3=6,当且仅当2x=,即x=1时,取得最小值,∴长方体ABCD﹣A1B1C1D1外接球的直径为=,∴长方体ABCD﹣A1B1C1D1外接球的表面积=14π,故选C.【点评】本题考查长方体ABCD﹣A1B1C1D1外接球的表面积,考查体积的计算,考查基本不等式的运用,属于中档题.10.已知函数f(x)=Asin(2x+φ)﹣(A>0,0<φ<)的图象在y轴上的截距为1,且关于直线x=对称,若对于任意的x∈[0,],都有m2﹣3m≤f (x),则实数m的取值范围为()A.[1,]B.[1,2]C.[,2]D.[,]【分析】利用函数y=Asin(ωx+φ)的图象和性质,正弦函数的定义域和值域,求得实数m的取值范围.【解答】解:∵函数f(x)=Asin(2x+φ)﹣(A>0,0<φ<)的图象在y 轴上的截距为1,∴Asinφ﹣=1,即Asinφ=.∵函数f(x)=Asin(2x+φ)﹣的图象关于直线x=对称,∴2•+φ=kπ+,k∈Z,∴φ=,∴A•sin=,∴A=,∴f(x)=sin(2x+).对于任意的x∈[0,],都有m2﹣3m≤f(x),∵2x+∈[,],sin(2x+)∈[﹣,1],sin(2x+)∈[﹣,],∴m2﹣3m≤﹣,求得≤m≤,故选:D.【点评】本题主要考查函数y=Asin(ωx+φ)的图象和性质,正弦函数的定义域和值域,属于中档题.11.某几何体的三视图如图所示,则该几何体的体积为()A.8 B.10 C.12 D.14【分析】由已知中的三视图,画出几何体的直观图,数形结合可得几何体的体积.【解答】解:由已知中的三视图,可得该几何体的直观图如下所示:三棱锥A﹣BCD的体积为:××3×4×4=8,四棱锥C﹣AFED的体积为:××(2+4)×2×3=6,故组合体的体积V=6+8=14,故选:D【点评】本题考查的知识点是棱柱的体积和表面积,棱锥的体积和表面积,简单几何体的三视图,难度中档.12.已知f′(x)是定义在(0,+∞)上的函数f(x)的导函数,若方程f′(x)=0无解,且∀x∈(0,+∞),f[f(x)﹣log2016x]=2017,设a=f(20.5),b=f(logπ3),c=f(log43),则a,b,c的大小关系是()A.b>c>a B.a>c>b C.c>b>a D.a>b>c【分析】根据f(x)﹣log2016x是定值,设t=f(x)﹣log2016x,得到f(x)=t+log2016x,结合f(x)是增函数判断a,b,c的大小即可.【解答】解:∵方程f′(x)=0无解,∴f′(x)>0或f′(x)<0恒成立,∴f(x)是单调函数,由题意得∀x∈(0,+∞),f[f(x)﹣log2016x]=2017,又f(x)是定义在(0,+∞)的单调函数,则f(x)﹣log2016x是定值,设t=f(x)﹣log2016x,则f(x)=t+log2016x,∴f(x)是增函数,又0<log43<logπ3<1<20.5∴a>b>c,故选:D.【点评】本题考查了函数的单调性、对数函数的运算以及推理论证能力,是一道中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.已知平面向量=(1,2),=(﹣2,m),且|+|=|﹣|,则|+2|=5.【分析】利用平面向量坐标运算法则求出,,由|+|=|﹣|,求出m=1,由此能求出|+2|的值.【解答】解:∵平面向量=(1,2),=(﹣2,m),∴=(﹣1,2+m),=(3,2﹣m),∵|+|=|﹣|,∴1+(2+m)2=9+(2﹣m)2,解得m=1,∴=(﹣2,1),=(﹣3,4),|+2|==5.故答案为:5.【点评】本题考查向量的模的求法,是基础题,解题时要认真审题,注意平面向量坐标运算法则的合理运用.14.已知α∈(0,π),sinα=,则tan(α﹣)=﹣或﹣7.【分析】由已知,分类讨论,利用同角三角函数基本关系式可求cosα,tanα,进而利用两角差的正切函数公式即可计算求值得解.【解答】解:当α∈(0,)时,由sinα=,可得:cosα==,tan=,可得:tan(α﹣)==﹣;当α∈(,π)时,由sinα=,可得:cosα=﹣=﹣,tan=﹣,可得:tan(α﹣)==﹣7.故答案为:﹣或﹣7.(漏解或错解均不得分)【点评】本题主要考查三角函数恒等变换与求值问题,考查分类讨论的思想方法,属于基础题.15.已知抛物线C1:y=ax2(a>0)的焦点F也是椭圆C2:+=1(b>0)的一个焦点,点M,P(,1)分别为曲线C1,C2上的点,则|MP|+|MF|的最小值为2.【分析】先求出椭圆方程,可得焦点坐标,再设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|进而把问题转化为求|MP|+|MD|取得最小,进而可推断出当D,M,P三点共线时|MP|+|MD|最小,答案可得.【解答】解:P(,1)代入椭圆C2:+=1,可得=1,∴b=,∴焦点F(0,1),∴抛物线C1:x2=4y,准线方程为y=﹣1.设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|∴要求|MP|+|MF|取得最小值,即求|MP|+|MD|取得最小,当D,M,P三点共线时|MP|+|MD|最小,为1﹣(﹣1)=2.故答案为2.【点评】本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D,M,P三点共线时|PM|+|MD|最小,是解题的关键.16.如图,在圆内接四边形ABCD中,AB=2,AD=1,BC=BDcosα+CDsinβ,则四边形ABCD周长的取值范围为(3+,3+2).【分析】由正弦定理,三角形内角和定理,两角和的正弦函数公式化简已知等式可得cosβsinα=sinαsinβ,进而可求tan,结合范围β∈(0,π),可求,根据题意,∠BAD=,由余弦定理,基本不等式可求CB+CD≤2,利用两边之和大于第三边可求CB+CD>,即可得解四边形ABCD的周长的取值范围.【解答】解:∵BC=BDcosα+CDsinβ,∴sin∠BDC=sinβcosα+sinαsinβ,∴sin(α+β)=sinβcosα+sinαsinβ,∴(cosβsinα+cosαsinβ)=sinβcosα+sinαsinβ,∴cosβsinα=sinαsinβ,∴tan,又∵β∈(0,π),∴,根据题意,∠BAD=,由余弦定理,BD2=AB2+AD2﹣2AB•ADcos∠BAD=4+1﹣2×2×1×cos=7,又∵BD2=CB2+CD2﹣2CB•CDcosβ=(CB+CD)2﹣3CB•CD≥(CB+CD)2﹣=,∴CB+CD≤2,又∵CB+CD>,∴四边形ABCD的周长AB+CB+CD+DA的取值范围为:(3+,3+2).故答案为:(3+,3+2).【点评】本题主要考查了正弦定理,余弦定理的应用和解三角形的基本知识以及运算求解能力,属于中档题.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)已知正项等比数列{b n}的前n项和为S n,b3=4,S3=7,数列{a n}满足a n﹣a n=n+1(n∈N+),且a1=b1.+1(1)求数列{a n}的通项公式;(2)求数列{}的前n项和.【分析】(1)设等比数列{b n}的公比为q,由题意列式求得b1,得到a1,利用累加法求得数列{a n}的通项公式;(2)直接利用裂项相消法求得数列{}的前n项和.【解答】解:(1)由题意,设等比数列{b n}的公比为q,则,解得.又a n﹣a n=n+1,+1∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a3﹣a2)+(a2﹣a1)+a1=n+(n﹣1)+…+2+1=;(2)∵,∴=.【点评】本题考查数列递推式,训练了累加法求数列的通项公式,考查裂项相消法求数列的和,是中档题.18.(12分)如图,已知四边形ABCD和ABEG均为平行四边形,点E在平面ABCD 内的射影恰好为点A,以BD为直径的圆经过点A,C,AG的中点为F,CD的中点为P,且AD=AB=AE=2.(1)求证:平面EFP⊥平面BCE;(2)求几何体ADG﹣BCE,P﹣EF﹣B的体积.【分析】(1)由点E在平面ABCD内的射影恰为A,可得AE⊥平面ABCD,进一步得到平面ABCD⊥平面ABEG,又以BD为直径的圆经过A,C,AD=AB,可得BCD为正方形,再由线面垂直的性质可得BC⊥平面ABEG,从而得到EF⊥BC,结合AB=AE=GE,可得∠ABE=∠AEB=,从而得到∠AEF+∠AEB=,有EF⊥BE.再由线面垂直的判定可得EF⊥平面BCE,即平面EFP⊥平面BCE;(2)解:连接DE,由(Ⅰ)知,AE⊥平面ABCD,则AE⊥AD,又AB⊥AD,则AB⊥平面ADE,得到GE⊥平面ADE.然后利用等积法求几何体ADC﹣BCE的体积.【解答】(Ⅰ)证明:∵点E在平面ABCD内的射影恰为A,∴AE⊥平面ABCD,又AE⊂平面ABEG,∴平面ABCD⊥平面ABEG,又以BD为直径的圆经过A,C,AD=AB,∴ABCD为正方形,又平面ABCD∩平面ABEG=AB,∴BC⊥平面ABEG,∵EF⊂平面ABEG,∴EF⊥BC,又AB=AE=GE,∴∠ABE=∠AEB=,又AG的中点为F,∴∠AEF=.∵∠AEF+∠AEB=,∴EF⊥BE.又BE⊂平面BCE,BC⊂平面BCE,BC∩BE=B,∴EF⊥平面BCE,又EF⊂平面EFP,∴平面EFP⊥平面BCE;(Ⅱ)解:连接DE,由(Ⅰ)知,AE⊥平面ABCD,∴AE⊥AD,又AB⊥AD,AE∩AD=A,∴AB⊥平面ADE,又AB∥GE,∴GE⊥平面ADE.=∴V ADC﹣BCE=.∴几何体ADC﹣BCE的体积为4.【点评】本题主要考查点、线、面的位置关系以及体积的求法,考查运算求解能力及空间想象能力,是中档题.19.(12分)2016年是红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神,首先在甲、乙、丙、丁四个不同的公园进行支持签名活动.然后再各公园签名的人中按分层抽样的方式抽取10名幸运之星回答问题,从10个关于长征的问题中随机抽取4个问题让幸运之星回答,全部答对的幸运之星获得一份纪念品.(1)求此活动中各公园幸运之星的人数;(2)若乙公园中每位幸运之星中任选两人接受电视台记者的采访,求这两人均来自乙公园的概率;(3)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.临界值表:参考公式:K2=.【分析】(1)利用抽样比,求此活动中各公园幸运之星的人数;(2)求出基本事件的个数,利用古典概型概率公式求解;(3)求出K2,与临界值比较,即可得出结论.【解答】解:(1)各公园幸运之星的人数分别为=3,=4,=2,=1;(2)基本事件总数=15种,这两人均来自乙公园,有=6种,故所求概率为=;(3)K2==7.5>6.635,∴据此判断能在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.【点评】本题考查分层抽样,考查概率的计算,考查独立性检验知识的运用,知识综合性强.20.(12分)已知椭圆C:+=1(a>b>0)的上下两个焦点分别为F1,F2,过点F1与y轴垂直的直线交椭圆C于M,N两点,△MNF2的面积为,椭圆C 的离心率为(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知O为坐标原点,直线l:y=kx+m与y轴交于点P,与椭圆C交于A,B两个不同的点,若存在实数λ,使得+λ=4,求m的取值范围.【分析】(Ⅰ)根据已知设椭圆的焦距2c,当y=c时,|MN|=|x1﹣x2|=,由题意得,△MNF2的面积为|MN|×|F1F2|=c|MN|=,又∵,解得a、b即可.(Ⅱ)设A(x1,y1),B(x2,y2),P(0,y0),分类讨论:当m=0时,利用椭圆的对称性即可得出;m≠0时,直线AB的方程与椭圆的方程联立得到△>0及根与系数的关系,再利用向量相等,代入计算即可得出.【解答】解:(Ⅰ)根据已知设椭圆的焦距2c,当y=c时,|MN|=|x1﹣x2|=,由题意得,△MNF2的面积为|MN|×|F1F2|=c|MN|=,又∵,解得b2=1,a2=4,椭圆C的标准方程为:x2+.(Ⅱ)当m=0时,则P(0,0),由椭圆的对称性得,∴m=0时,存在实数λ,使得+λ=4,当m≠0时,由+λ=4,得,∵A、B、p三点共线,∴1+λ=4,⇒λ=3⇒设A(x1,y1),B(x2,y2)由,得(k2+4)x2+2mkx+m2﹣4=0,由已知得△=4m2k2﹣4(k2+4)(m2﹣4)>0,即k2﹣m2+4>0且x1+x2=,x1x2=.由得x1=﹣3x23(x1+x2)2+4x1x2=0,∴,⇒m2k2+m2﹣k2﹣4=0显然m2=1不成立,∴∵k2﹣m2+4>0,∴,即.解得﹣2<m<﹣1或1<m<2.综上所述,m的取值范围为(﹣2,﹣1)∪(1,2)∪{0}【点评】本题考查椭圆的标准方程的求法,考查了椭圆的简单性质、涉及直线与椭圆相交问题,常转化为关于x的一元二次方程,利用△>0及根与系数的关系、向量相等等基础知识与基本技能方法求解,考查了推理能力和计算能力,属于中档题.21.(12分)已知函数f(x)=x+alnx与g(x)=3﹣的图象在点(1,1)处有相同的切线.(1)若函数y=2(x+m)与y=f(x)的图象有两个交点,求实数m的取值范围;(2)设函数F(x)=3(x﹣)+g(x)﹣2f(x)有两个极值点x1,x2,且x1<x2,求证:F(x2)<x2﹣1.【分析】(1)求出函数的导数,得到关于a,b的方程组,求出f(x)的解析式,设T(x)=f(x)﹣2x﹣2m=lnx﹣x﹣2m,根据函数的单调性求出a的范围即可;(2)求出F(x)的导数,等价于方程x2﹣2x+m=0在(0,+∞)内有2个不等实根,根据函数的单调性证明结论即可.【解答】解:(1)∵f′(x)=1+,g′(x)=,根据题意得,解得:;∴f(x)=x+lnx,设T(x)=f(x)﹣2x﹣2m=lnx﹣x﹣2m,则T′(x)=﹣1,当x∈(0,1)时,T′(x)>0,当x∈(1,+∞)时,T′(x)<0,∴T(x)max=T(1)=﹣1﹣2m,∵x→0时,T(x)→﹣∞,x→+∞时,T(x)→﹣∞,故要使两图象有2个交点,只需﹣1﹣2a>0,解得:a<﹣,故实数a的范围是(﹣∞,﹣);(2)证明:由题意,函数F(x)=x﹣﹣2lnx,其定义域是(0,+∞),F′(x)=,令F′(x)=0,即x2﹣2x+m=0,其判别式△=4﹣4m,函数F(x)有2个极值点x1,x2,等价于方程x2﹣2x+m=0在(0,+∞)内有2个不等实根,又x1x2>0,故0<m<1,∴x2=1+且1<x2<2,m=﹣+2x2,F (x2)﹣x2+1=x2﹣2lnx2﹣1,令h(t)=t﹣2lnt﹣1,1<t<2,则h′(t)=,由于1<t<2,则h′(t)<0,故h(t)在(1,2)递减,故h(t)<h(1)=1﹣2ln1﹣1=0,∴F(x2)﹣x2+1=h(x2)<0,∴F(x2)<x2﹣1.【点评】本题考查导数的几何意义,利用导数研究函数的单调性、最值研究不等式恒成立问题,考查运算求解能力、函数与方程思想.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分[选修4-4:参数方程与极坐标系](共1小题,满分10分)22.(10分)已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,圆C的直角坐标系方程为x2+y2+2x﹣2y=0,直线l的参数方程为(t为参数),射线OM的极坐标方程为θ=(Ⅰ)求圆C和直线l的极坐标方程(Ⅱ)已知射线OM与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.【分析】(I)根据已知中圆C的直角坐标系方程,可得圆C的极坐标方程;先由直线l的参数方程消参得到直线l的普通方程,进而可得直线l的极坐标方程(Ⅱ)已知射线OM与圆C的交点为O,P,将θ=代和,可得P,Q点的极坐标,进而得到线段PQ的长.【解答】解:(I)∵圆C的直角坐标系方程为x2+y2+2x﹣2y=0,∴圆C的极坐标方程为:ρ2+2ρcosθ﹣2ρsinθ=0,即ρ+2cosθ﹣2sinθ=0,即,∵直线l的参数方程为(t为参数),消参得:x﹣y+1=0,∴直线l的极坐标方程为:ρcosθ﹣ρsinθ+1=0,即sinθ﹣cosθ=;(Ⅱ)当θ=时,|OP|==2,故点P的极坐标为(2,),|OQ|==,故点Q的极坐标为(,),故线段PQ的长为:.【点评】本题考查的知识点是参数方程和极坐标,熟练掌握参数方程与普通方程及极坐标方程之间的转化方式,是解答的关键.[选修4-5:不等式选讲](共1小题,满分0分)23.已知函数f(x)=|x+3|+|x﹣2|(Ⅰ)若∀x∈R,f(x)≥6a﹣a2恒成立,求实数a的取值范围(Ⅱ)求函数y=f(x)的图象与直线y=9围成的封闭图形的面积.【分析】(Ⅰ)由题意得,关于x的不等式|x+3|+|x﹣2|≥6a﹣a2在R恒成立,求出左边的最小值,即可求实数a的取值范围(Ⅱ)图象与直线y=9围成的封闭图形是等腰梯形,上底长为9,下底长为5,高为4,即可求函数y=f(x)的图象与直线y=9围成的封闭图形的面积.【解答】解:(Ⅰ)由题意得,关于x的不等式|x+3|+|x﹣2|≥6a﹣a2在R恒成立,因为|x+3|+|x﹣2|≥|(x+3)﹣(x﹣2)|=5,所以6a﹣a2≤5,解得a≤1或a≥5.(Ⅱ)f(x)=9,可得x=﹣5或x=4,如图所示,函数y=f(x)的图象与直线y=9围成的封闭图形是等腰梯形,上底长为9,下底长为5,高为4,面积为=28.【点评】本题主要考查绝对值函数,考查恒成立问题,体现了转化的数学思想,属于中档题.。

湖北省宜昌市夷陵中学2016_2017学年高一数学上学期期末考试试题

湖北省宜昌市夷陵中学2016_2017学年高一数学上学期期末考试试题

x 4 2
B. g x sin D. g x sin
3 x 4 2 3 x 8 8
x 8 8
10. 如图,在直角梯形 ABCD 中, AB 2 AD 2 DC , E 为 BC 边上一点, BC 3EC , F 为 AE 的中点,则 BF ( A.
x x
(Ⅰ)如果 x (1,2) 时, f ( x ) 有意义,确定 a 的取值范围; (Ⅱ)当 a 0 ,若 f ( x ) 值域为 R ,求 a 的值;
f ( x) 1 对任意的 (Ⅲ)在(Ⅱ)条件下, g ( x) 为定义域为 R 的奇函数,且 x 0 时, g ( x) 10
x)
f (
1
x )
f (2 x) 成立,则称函数 (Ⅰ)若函数 f ( x ) 为理想函数, f ( x ) 为理想函数,
求 f (0) 的值; (Ⅱ)判断函数 g ( x) 2 x 1 ( x [0,1]) 是否为理想函数,并予以证明.
22. (本小题满分 12 分 )函数 f ( x) lg( a 4 2 1) ,
宜昌市夷陵中学 2016—2017 学年度第一学期期末考试
高一数学试卷
考试时间:120 分钟 满分:150 分
命题教师:杨郑国
是符合题目要求的 . 1. 已知集合 A x | x 2 x 2 0 , B x | A. A B B. B A
审题教师:杨明
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每个小题给出的四个选项中,只有一项
B. 4


A.
3
B. 3
C.

山东省潍坊市高一上学期期末考试数学试题(解析版)

山东省潍坊市高一上学期期末考试数学试题(解析版)

一、单选题1.已知集合,,则集合A ,B 的关系是( ) {}N A x y x =∈{}4,3,2,1B =A . B . C .D .B A ⊆A B =B A ∈A B ⊆【答案】A【分析】计算得到,据此得到集合的关系.{}0,1,2,3,4A =【详解】,,故错误; {}{N}0,1,2,3,4A xy x ==∈=∣{}4,3,2,1B =A B =集合中元素都是集合元素,故正确;B A B A ⊆是两个集合,不能用“”表示它们之间的关系,故错误;A B ,∈B A ∈集合中元素存在不属于集合的元素,故错误. A B A B ⊆故选:A2.函数的定义域为( )()()2ln 2f x x x =-A . B . (,0)(2,)-∞+∞ (,0][2,)-∞⋃+∞C . D .()0,2[]0,2【答案】C【分析】根据对数型函数的定义域运算求解. 【详解】令,解得,220x x ->02x <<故函数的定义域为.()()2ln 2f x x x =-()0,2故选:C.3.命题“,”的否定形式是( ) 2x ∀>240x -≠A ., B ., 2x ∃>240x -≠2x ∀≤240x -=C ., D .,2x ∃>240x -=2x ∃≤240x -=【答案】C【分析】根据全称命题的否定形式可直接得到结果.【详解】由全称命题的否定可知:原命题的否定为,. 2x ∃>240x -=故选:C.4.已知,,,则( ) 0.13a =30.3b =0.2log 3c =A . B .C .D .a b c <<c b a <<b a c <<c<a<b 【答案】B【分析】根据指数函数和对数函数单调性,结合临界值即可判断出结果.0,1【详解】,.3000.10.20.2log 3log 100.30.3133<=<<==< c b a ∴<<故选:B.5.某市四区夜市地摊的摊位数和食品摊位比例分别如图、图所示,为提升夜市消费品质,现用12分层抽样的方法抽取的摊位进行调查分析,则抽取的样本容量与区被抽取的食品摊位数分别6%A 为( )A .,B .,C .,D .,21024210272522425227【答案】D【分析】根据分层抽样原则,结合统计图表直接计算即可.【详解】根据分层抽样原则知:抽取的样本容量为;()1000800100014006%252+++⨯=区抽取的食品摊位数为.A 10006%0.4527⨯⨯=故选:D.6.小刚参与一种答题游戏,需要解答A ,B ,C 三道题.已知他答对这三道题的概率分别为a ,a ,,且各题答对与否互不影响,若他恰好能答对两道题的概率为,则他三道题都答错的概率为1214( ) A . B .C .D .12131415【答案】C【分析】记小刚解答A ,B ,C 三道题正确分别为事件D ,E ,F ,并利用D ,E ,F 构造相应的事件,根据概率加法公式与乘法公式求解相应事件的概率.【详解】记小刚解答A ,B ,C 三道题正确分别为事件D ,E ,F ,且D ,E ,F 相互独立, 且. ()()()1,2P D P E a P F ===恰好能答对两道题为事件,且两两互斥, DEF DEF DEF ++DEF DEF DEF ,,所以()()()()P DEF DEF DEF P DEF P DEF P DEF ++=++()()()()()()()()()P D P E P F P D P E P F P D P E P F =++,()()11111112224a a a a a a ⎛⎫=⨯⨯-+⨯-⨯+-⨯⨯= ⎪⎝⎭整理得,他三道题都答错为事件,()2112a -=DEF 故.()()()()()()22111111224P DEF P D P E P F a a ⎛⎫==--=-= ⎪⎝⎭故选:C.7.定义在上的奇函数满足:对任意的,,有,且R ()f x ()12,0,x x ∈+∞12x x <()()21f x f x >,则不等式的解集是( ) ()10f =()0f x >A . B . ()1,1-()()1,01,-⋃+∞C . D .()(),10,1-∞-⋃()(),11,-∞-⋃+∞【答案】B【分析】根据单调性定义和奇函数性质可确定的单调性,结合可得不等式()f x ()()110f f -=-=的解集.【详解】对任意的,,有, ()12,0,x x ∈+∞12x x <()()21f x f x >在上单调递增,又定义域为,, ()f x \()0,∞+()f x R ()10f =在上单调递增,且,;()f x \(),0∞-()()110f f -=-=()00f =则当或时,, 10x -<<1x >()0f x >即不等式的解集为. ()0f x >()()1,01,-⋃+∞故选:B.8.已知函数,若函数有七个不同的零点,()11,02ln ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩()()()()24433g x f x t f x t =-+⎤⎦+⎡⎣则实数t 的取值范围是( ) A .B .C .D .1,12⎡⎤⎢⎥⎣⎦10,2⎛⎫ ⎪⎝⎭1,2⎡⎫+∞⎪⎢⎣⎭{}10,12⎛⎫⋃ ⎪⎝⎭【答案】D【分析】先以为整体分析可得:和共有7个不同的根,再结合的图象()f x ()34f x =()f x t =()f x 分析求解.【详解】令,解得或, ()()()()244330g x f x t f x t =-+⎦+⎤⎣=⎡()34f x =()f x t =作出函数的图象,如图所示,()y f x =与有4个交点,即方程有4个不相等的实根,()y f x =34y =()34f x =由题意可得:方程有3个不相等的实根,即与有3个交点, ()f x t =()y f x =y t =故实数t 的取值范围是.{}10,12⎛⎫⋃ ⎪⎝⎭故选:D.【点睛】方法点睛:应用函数思想确定方程解的个数的两种方法(1)转化为两熟悉的函数图象的交点个数问题、数形结合、构建不等式(方程)求解. (2)分离参数、转化为求函数的值域问题求解.二、多选题9.下列说法正确的是( ) A .的最小值为 B .无最小值 ()4f x x x=+4()4f x x x=+C .的最大值为D .无最大值()()3f x x x =-94()()3f x x x =-【答案】BC【分析】结合基本不等式和二次函数性质依次判断各个选项即可.【详解】对于AB ,当时,(当且仅当时取等号); 0x >44x x +≥=2x =当时,(当且仅当时取等号), 0x <()444x x x x ⎡⎤⎛⎫+=--+-≤-=- ⎪⎢⎥⎝⎭⎣⎦2x =-的值域为,无最小值,A 错误,B 正确; ()4f x x x∴=+(][),44,-∞-⋃+∞对于CD ,,()()22393324f x x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭当时,取得最大值,最大值为,C 正确,D 错误. ∴32x =()f x 94故选:BC.10.下列函数中,既是偶函数,又在上单调递减的是( ) (0,)+∞A . B .C .D .y x =||e x y =-12log y x =13y x -=【答案】BC【分析】A 选项不满足单调性;D 不满足奇偶性,B 、C 选项均为偶函数且在上单调递减正(0,)+∞确.【详解】在上单调递增,A 选项错误;y x =()0,∞+,故为偶函数,当时为单调递减函数,B()e ,)()e (xxf x f x f x =--==-||e x y =-()0,x ∈+∞e x y =-选项正确;,故为偶函数,当时为单调递1122()()log ,log ()g g g x x x x x =-==12log y x =()0,x ∈+∞12log y x =减函数,C 选项正确;是奇函数,D 选项错误. 13y x -=故选:BC11.如图,已知正方体顶点处有一质点Q ,点Q 每次会随机地沿一条棱向相邻的1111ABCD A B C D -某个顶点移动,且向每个顶点移动的概率相同,从一个顶点沿一条棱移动到相邻顶点称为移动一次,若质点Q 的初始位置位于点A 处,记点Q 移动n 次后仍在底面ABCD 上的概率为,则下列n P 说法正确的是( )A .B . 123P =259P =C .D .点Q 移动4次后恰好位于点的概率为012133n n P P +=+1C 【答案】ABD【分析】根据题意找出在下或上底面时,随机移动一次仍在原底面及另一底面的概率即可逐步分Q 析计算确定各选项的正误.【详解】依题意,每一个顶点由3个相邻的点,其中两个在同一底面.所以当点在下底面时,随机移动一次仍在下底面的概率为:, Q 23在上底面时,随机移动一次回到下底面的概率为:,13所以,故A 选项正确; 123P =对于B :,故B 选项正确;22211533339P =⨯+⨯=对于C :,故C 选项错误; ()1211113333n n n n P P P P +=+-=+对于D :点由点移动到点处至少需要3次, Q A 1C 任意折返都需要2次移动,所以移动4次后不可能 到达点,所以点Q 移动4次后恰好位于点的概率为0. 1C 1C 故D 选项正确; 故选:ABD.12.已知实数a ,b 满足,,则( ) 22a a +=22log 1b b +=A . B . C . D .22a b +=102a <<122a b->5384b <<【答案】ACD【分析】构建,根据单调性结合零点存在性定理可得,再利用指对数互()22xf x x =+-13,24a ⎛⎫∈ ⎪⎝⎭化结合不等式性质、函数单调性分析判断. 【详解】对B :∵,则,22a a +=220a a +-=构建,则在上单调递增,且,()22xf x x =+-()f x R 3413350,202244f f ⎛⎫⎛⎫=<=-> ⎪ ⎪⎝⎭⎝⎭故在上有且仅有一个零点,B 错误;()f x R 13,24a ⎛⎫∈ ⎪⎝⎭对A :∵,则, 22log 1b b +=222log 20b b +-=令,则,即,22log t b =22t b =220t t +-=∴,即,故,A 正确; 2lo 2g a t b ==22a b =22a b +=对D :∵,则,D 正确; 22a b +=253,284a b -⎛⎫=∈ ⎪⎝⎭对C :∵,且在上单调递增, 23211224a a ab a ---=-=>->-2x y =R ∴,C 正确. 11222a b-->=故选:ACD.【点睛】方法点睛:判断函数零点个数的方法:(1)直接求零点:令f (x )=0,则方程解的个数即为零点的个数.(2)零点存在性定理:利用该定理不仅要求函数在[a ,b ]上是连续的曲线,且f (a )·f (b )<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合:对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.三、填空题13.已知一元二次方程的两根分别为和,则______. 22340x x +-=1x 2x 1211x x +=【答案】## 340.75【分析】利用韦达定理可直接求得结果.【详解】由韦达定理知:,,. 1232x x +=-122x x =-1212121134x x x x x x +∴+==故答案为:. 3414.已知函数(且)的图象恒过定点M ,则点M 的坐标为______.1log (2)3a y x =-+0a >1a ≠【答案】13,3⎛⎫⎪⎝⎭【分析】函数存在参数,当时所求出的横纵坐标即是定点坐标. log (2)0a x -=【详解】令,解得,此时,故定点坐标为. log (2)0a x -=3x =13y =13,3M ⎛⎫ ⎪⎝⎭故答案为:13,3⎛⎫⎪⎝⎭15.将一组正数,,,…,的平均数和方差分别记为与,若,1x 2x 3x 10x x 2s 10214500i i x ==∑250s =,则______. x =【答案】20【分析】列出方差公式,代入数据,即可求解.【详解】由题意得,()10221110i i s x x ==-∑, 102211105010i i x x =⎛⎫=-= ⎪⎝⎭∑代入数据得,, ()214500105010x -=解得.20x =故答案为:2016.已知两条直线:和:,直线,分别与函数的图象相交1l 1y m =+2l ()221y m m =+>-1l 2l 2x y =于点A ,B ,点A ,B 在x 轴上的投影分别为C ,D ,当m 变化时,的最小值为______. CD【答案】()2log 2-【分析】分别求出直线,与函数的图象交点的横坐标,再根据对数运算与基本不等式求1l 2l 2x y =最值.【详解】由与函数相交得,解得,所以,1y m =+2x y =21x m =+()2log 1x m =+()()2log 1,0C m +同理可得,()()22log 2,0D m +所以,()()222222log 2log 1log 1m CD m m m +=+-+=+令,()2231211m g m m m m +==++-++因为, 所以,当且仅当时取最小值. 1m >-()31221g m m m =++-≥-+1m =所以 ()()22min log 2log 2CD ==所以的最小值为. CD ()2log 2-故答案为:()2log 2【点睛】利用基本不等式求最值时要注意成立的条件,一正二定三相等,遇到非正可通过提取负号转化为正的;没有定值时可对式子变形得到积定或和定再用基本不等式;取不到等号时可借助于函数的单调性求最值.四、解答题17.设全集,已知集合,. U =R {}11A x a x a =-+≤≤+401x B xx -⎧⎫=>⎨⎬-⎩⎭(1)若,求;3a =A B ⋃(2)若,求实数a 的取值范围. A B ⋂=∅【答案】(1)或;{1x x <}2x ≥(2). 23a ≤≤【分析】(1)由已知解出集合A ,B ,根据并集的运算即可得出答案; (2)若,根据集合间关系列出不等式,即可求出实数a 的取值范围. A B ⋂=∅【详解】(1)当,, 3a ={}24A x x =≤≤由得,所以或, 401x x ->-(4)(1)0x x -->{1B x x =<}4x >或;{1A B x x ∴⋃=<}2x ≥(2)已知, {}11A x a x a =-+≤≤+由(1)知或, {1B x x =<}4x >因为,且, A B ⋂=∅B ≠∅∴且, 11a -+≥14a +≤解得,23a ≤≤所以实数a 的取值范围为.23a ≤≤18.已知函数.()22f x x ax a =-+(1)若的解集为,求实数的取值范围; ()0f x ≥R a (2)当时,解关于的不等式. 3a ≠-x ()()43f x a a x >-+【答案】(1) []0,1(2)答案见解析【分析】(1)由一元二次不等式在上恒成立可得,由此可解得结果;R 0∆≤(2)将所求不等式化为,分别在和的情况下解不等式即可. ()()30x x a +->3a >-3a <-【详解】(1)由题意知:在上恒成立,,解得:, 220x ax a -+≥R 2440a a ∴∆=-≤01a ≤≤即实数的取值范围为.a []0,1(2)由得:;()()43f x a a x >-+()()()23330x a x a x x a +--=+->当时,的解为或; 3a >-()()30x x a +->3x <-x a >当时,的解为或;3a <-()()30x x a +->x a <3x >-综上所述:当时,不等式的解集为;当时,不等式的解集为3a >-()(),3,a -∞-+∞ 3a <-.()(),3,a -∞-+∞ 19.受疫情影响年下半年多地又陆续开启“线上教学模式”.某机构经过调查发现学生的上课2022注意力指数与听课时间(单位:)之间满足如下关系:()f t t min ,其中,且.已知在区间上的最大()()224,016log 889,1645a mt mt n t f t t t ⎧-++≤<⎪=⎨-+≤≤⎪⎩0m >0a >1a ≠()y f t =[)0,16值为,最小值为,且的图象过点. 8870()y f t =()16,86(1)试求的函数关系式;()y f t =(2)若注意力指数大于等于时听课效果最佳,则教师在什么时间段内安排核心内容,能使学生听85课效果最佳?请说明理由.【答案】(1) ()()2121370,0168log 889,1645t t t f t t t ⎧-++≤<⎪=⎨-+≤≤⎪⎩(2)教师在内安排核心内容,能使学生听课效果最佳1224t ⎡⎤∈-⎣⎦【分析】(1)根据二次函数最值和函数所过点可构造不等式求得的值,由此可得; ,,m n a ()f x (2)分别在和的情况下,由可解不等式求得结果.016t ≤<1645t ≤≤()85f t ≥【详解】(1)当时,,[)0,16t ∈()()()222412144f t m t t n m t m n =--+=--++,解得:; ()()()()max min 1214488070f t f m n f t f n ⎧==+=⎪∴⎨===⎪⎩1870m n ⎧=⎪⎨⎪=⎩又,,解得:, ()16log 88986a f =+=log 83a ∴=-12a =.()()2121370,0168log 889,1645t t t f t t t ⎧-++≤<⎪∴=⎨-+≤≤⎪⎩(2)当时,令,解得:;16t ≤<21370858t t -++≥1216t -≤<当时,令,解得:;1645t ≤≤()12log 88985t -+≥1624t ≤≤教师在内安排核心内容,能使学生听课效果最佳.∴1224t ⎡⎤∈-⎣⎦20.已知函数,函数. ()()33log log 39x f x x =⋅()1425x x g x +=-+(1)求函数的最小值;()f x (2)若存在实数,使不等式成立,求实数x 的取值范围.[]1,2m Î-()()0f x g m -≥【答案】(1) 94-(2)或 109x <≤27x ≥【分析】(1)将化为关于的二次函数后求最小值;()f x 3log x (2)由题意知,求得后再解关于的二次不等式即可.min ()()f x g m ≥min ()g m 3log x 【详解】(1) ()()3333()log log (3)log 2log 19x f x x x x =⋅=-+ ()233log log 2x x =--, 2319log 24x ⎛⎫=-- ⎪⎝⎭∴显然当即, , 31log 2x =x =min 9()4f x =-∴的最小值为. ()f x 94-(2)因为存在实数,使不等式成立,[]1,2m Î-()()0f x g m -≥所以, 又,min ()()f x g m ≥()()21421524x x x g x +=-+-=+所以,()()2124m g m -=+又,显然当时,,[]1,2m Î-0m =()()02min 2414g m -=+=所以有,即,可得, ()4f x ≥()233log log 24x x --≥()()33log 2log 30x x +-≥所以或,解得 或. 3log 2x ≤-3log 3x ≥109x <≤27x ≥故实数x 的取值范围为或. 109x <≤27x ≥21.某中学为了解高一年级数学文化知识竞赛的得分情况,从参赛的1000名学生中随机抽取了50名学生的成绩进行分析.经统计,这50名学生的成绩全部介于55分和95分之间,将数据按照如下方式分成八组:第一组,第二组,…,第八组,下图是按上述分组方法得[)55,60[)60,65[]90,95到的频率分布直方图的一部分.已知第一组和第八组人数相同,第七组的人数为3人.(1)求第六组的频率;若比赛成绩由高到低的前15%为优秀等级,试估计该校参赛的高一年级1000名学生的成绩中优秀等级的最低分数(精确到0.1);(2)若从样本中成绩属于第六组和第八组的所有学生中随机抽取两名学生,记他们的成绩分别为x ,y ,从下面两个条件中选一个,求事件E 的概率.()P E ①事件E :;[]0,5x y -∈②事件E :.(]5,15x y -∈注:如果①②都做,只按第①个计分.【答案】(1)0.08;81.8(2)选①:;选②: 715815【分析】(1)根据频率之和为1计算第六组的频率;先判断优秀等级的最低分数所在区间,再根据不低于此分数所占的频率为0.12求得此分数.(2)分别求出第六组和第八组的人数,列举出随机抽取两名学生的所有情况,再求出事件E 所包含事件的个数的概率,根据古典概型求解.【详解】(1)第七组的频率为, 30.0650=所以第六组的频率为,()10.0650.00820.0160.0420.060.08--⨯++⨯+=第八组的频率为0.04,第七、八两组的频率之和为0.10,第六、七、八组的频率之和为0.18,设优秀等级的最低分数为,则,m 8085m <<由,解得, 850.040.060.080.155m -++⨯=81.8m ≈故估计该校参赛的高一年级1000名学生的成绩中优秀等级的最低分数.81.8(2)第六组的人数为4人,设为,,第八组的人数为2人,设为, [80,85),a b ,c d [90,95],A B 随机抽取两名学生,则有共15种情况,,,,,,,,,,,,,,,ab ac ad bc bd cd aA bA cA dA aB bB cB dB AB选①:因事件发生当且仅当随机抽取的两名学生在同一组,[]:0,5E x y -∈所以事件包含的基本事件为共7种情况,E ,,,,,,ab ac ad bc bd cd AB 故. 7()15P E =选②:因事件发生当且仅当随机抽取的两名学生不在同一组,(]:5,15E x y -∈所以事件包含的基本事件为共8种情况,E ,,,,,,,aA bA cA dA aB bB cB dB 故. 8()15P E =22.已知函数的定义域为D ,对于给定的正整数k ,若存在,使得函数满足:()f x [],a b D ⊆()f x 函数在上是单调函数且的最小值为ka ,最大值为kb ,则称函数是“倍缩函()f x [],a b ()f x ()f x 数”,区间是函数的“k 倍值区间”.[],a b ()f x (1)判断函数是否是“倍缩函数”?(只需直接写出结果)()3f x x =(2)证明:函数存在“2倍值区间”;()ln 3g x x =+(3)设函数,,若函数存在“k 倍值区间”,求k 的值. ()2841x h x x =+10,2x ⎡⎤∈⎢⎣⎦()h x 【答案】(1)是,理由见详解(2)证明见详解(3){}4,5,6,7k ∈【分析】(1)取,结合题意分析说明;1,1,1k a b ==-=(2)根据题意分析可得至少有两个不相等的实根,构建函数结合零点存在性定理分析ln 32x x +=证明;(3)先根据单调性的定义证明在上单调递增,根据题意分析可得在内()h x 10,2⎡⎤⎢⎥⎣⎦2841x kx x =+10,2⎡⎤⎢⎥⎣⎦至少有两个不相等的实根,根据函数零点分析运算即可得结果.【详解】(1)取,1,1,1k a b ==-=∵在上单调递增,()3f x x =[]1,1-∴在上的最小值为,最大值为,且, ()3f x x =[]1,1-()1f -()1f ()()()1111,1111f f -=-=⨯-==⨯故函数是“倍缩函数”.()3f x x =(2)取,2k =∵函数在上单调递增,()ln 3g x x =+[],a b 若函数存在“2倍值区间”,等价于存在,使得成立, ()ln 3g x x =+0a b <<ln 32ln 32a a b b+=⎧⎨+=⎩等价于至少有两个不相等的实根,ln 32x x +=等价于至少有两个零点,()ln 23G x x x =-+∵,且在定义内连续不断, ()()()332e 0,110,2ln 210e G G G -=-<=>=-<()G x ∴在区间内均存在零点,()G x ()()3e ,1,1,2-故函数存在“2倍值区间”.()ln 3g x x =+(3)对,且,则, 121,0,2x x ⎡⎤∀∈⎢⎥⎣⎦12x x <()()()()()()12121212222212128148841414141x x x x x x h x h x x x x x ---=-=++++∵,则, 12102x x ≤<≤221212120,140,410,410x x x x x x -<->+>+>∴,即,()()120h x h x -<()()12h x h x <故函数在上单调递增, ()h x 10,2⎡⎤⎢⎥⎣⎦若函数存在“k 倍值区间”,即存在,使得成立, ()h x *10,2a b k ≤<≤∈N 22841841a ka ab kb b ⎧=⎪⎪+⎨⎪=⎪+⎩即在内至少有两个不相等的实根, 2841x kx x =+10,2⎡⎤⎢⎥⎣⎦∵是方程的根,则在内有实根, 0x =2841x kx x =+2841k x =+10,2⎛⎤ ⎥⎝⎦若,则,即,且, 10,2x ⎛⎤∈ ⎥⎝⎦[)284,841x ∈+[)4,8k ∈*k ∈N ∴,即.4,5,6,7k ={}4,5,6,7k ∈【点睛】方法点睛:利用函数零点求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.。

新课标高一上学期期末考试数学试卷含答案

新课标高一上学期期末考试数学试卷含答案

高一数学第一学期期末考试试题卷选择题部分(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A {}24x x ==,B {}2280x x x =--=,则AB =( ▲ ) A .{}4B .{}2C .{}2- D. ∅ 2.函数2()log (2)f x x =++的定义域是( ▲ ) A .[2,1]-B .(2,1]-C .[2,1)-D .(2,1)- 3.函数()ln 2f x x x =+-的零点所在的一个区间是( ▲ )A .(0,1)B .(1,2)C .(2,3)D .(3,4)4.已知12log 5a =,0.314b ⎛⎫= ⎪⎝⎭,312=c ,则a ,b ,c 的大小关系是( ▲ ) A .c b a << B .c b a << C .c a b << D .b a c <<5.已知角α的终边过点(1,)P y ,若1cos 3=α,则y 的值是( ▲ )A B .± C . - D .6.下列函数中,周期为π的偶函数是( ▲ )A .tan y x =B .sin y x =C .cos 2x y = D .sin cos y x x =⋅ 7.已知扇形的周长为4,面积为1,则该扇形的圆心角是( ▲ )A .1B .2C .2π D .π 8. 函数2cos sin 1y x x =-+的值域是( ▲ ) A .[0,2] B .9[2,]4 C .[1,3] D .9[0,]49. 已知向量=a (,)12,=b (,)k 1,且a 与b 的夹角为锐角,则实数k 的取值范围是( ▲ )A .(2,)-+∞ B.11(2,)(,)22-+∞ C .(,2)-∞- D .(2,2)-10.函数ln ()x f x e =的图像大致是( ▲ )A. B. C. D.11. 已知函数()x x f x e e -=-,()x x g x e e -=+,则以下结论正确的是( ▲ )A .任意的12,x x ∈R 且12x x ≠,都有1212()()0f x f x x x -<- B .任意的12,x x ∈R 且12x x ≠,都有1212()()0g x g x x x -<- C .()f x 有最小值,无最大值D .()g x 有最小值,无最大值12.已知e 是单位向量,向量a 满足-⋅-=2230a a e ,则-4a e 的取值范围是( ▲ )A .[1,3]B .[3,5]C .[1,5]D .[1,25] 非选择题部分(共90分)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共34分.13.计算:33log 362log 2-= ▲;138π+= ▲ . 14.已知函数⎩⎨⎧≥+-<+=0),1(log 0,2)(22x x x x x x f ,则((3))f f = ▲ ;若()3f a =,则 实数a = ▲ .15.已知函数(),1f x x x a x =--∈R 有三个零点1x 、2x 、3x ,则实数a 的取值范围是 ▲ ;123x x x 的取值范围是 ▲ . 16.已知1cos()63πα-=-,则sin()3+=πα ▲ . 17.若函数()2sin()f x x m ωϕ=++,对任意实数t 都有()()44f t f t ππ+=-,且()34f π=-,则实数m =▲ .18.在Rt ABC ∆中,已知A ∠=60,斜边AB =4,D 是AB 的中点,M 是线段CD 上的动点,则AM AB ⋅的取值范围是 ▲ .19.已知函数2()2f x x bx =-,若(())f f x 的最小值与()f x 的最小值相等,则实数b 的取值范围是▲ .三、解答题:本大题共4小题,共56分.解答应写出文字说明,证明过程或演算步骤.20.(本题满分14分)已知向量a (sin ,1)=α,b (1,cos )=α. (Ⅰ)若34πα=,求+a b 的值; (Ⅱ)若⋅a b 1,(0,)5απ=-∈,求sin()2sin()2ππαα+++的值.21.(本题满分14分)已知函数2()ln(3)f x x ax =-+.(Ⅰ)若)(x f 在(,1]-∞上单调递减,求实数a 的取值范围;(Ⅱ)当3a =时,解不等式()x f e x ≥.22.(本题满分14分)已知函数()sin()(f x A x x =+∈ωϕR ,0,0,0)2A >><<πωϕ的部分图象如图所示,P 、Q 分别是图象的最高点与相邻的最低点,且1(1),OP =,4OP OQ +=,O 为坐标原点.(Ⅰ)求函数()y f x =的解析式;(Ⅱ)将函数()y f x =的图象向左平移1个单位后得到函数()y g x =的图象,求函数(),[y g x x =∈-23.(本题满分14分)已知函数2()1f x x x =-+,,m n 为实数.(Ⅰ)当[,1]x m m ∈+时,求()f x 的最小值()g m ;(Ⅱ)若存在实数t ,使得对任意实数[1,]x n ∈都有()f x t x +≤成立,求n 的取值范围.第一学期普通高中教学质量监控高一数学参考答案一、选择题(本题有12小题,每小题5分,共60分,每题所给的四个选项中,有且只有一个选项符合题目要求)1—5CDBAB 6—10ABDBC 11—12 DC二、填空题(本题有7个小题,多空题每小题6分,单空题每小题4分,共34分)13.214.0;3- 15.a <<104;(,322 16.13- 17.--51或 18.[,]48 19.b b ≤-≥10或三、解答题:(本题有4个小题,共56分)20.解:(Ⅰ) +=2222a b (1)+(1,-)=(1,1-),∴+=a b --------------------------------6分 (Ⅱ) ⋅a b 15=-, sin cos αα∴+=-15, 又sin cos 221αα+=,sin cos 3545αα⎧=⎪⎪∴⎨⎪=-⎪⎩或sin cos 4535αα⎧=-⎪⎪∴⎨⎪=⎪⎩ 又(0,)∈απ sin ,cos αα∴==-3455, 11sin()2sin()sin 2cos 25ππαααα∴+++=-+=-.-----------14分 21.解:(Ⅰ)()f x 在(,1]-∞上单调递减,a a ⎧≥⎪∴⎨⎪-+>⎩12130得a ≤<24. ---------------------------------7分 (Ⅱ)原不等式等价于2(e )430x x e -+≥,ln x x ∴≤≥03或,所以原不等式的解集为{}0ln3或x x x ≤≥. --------------------------------14分22.(Ⅰ) ()sin()33f x x ππ=+; --------------------------------7分 (Ⅱ) 2g()sin()33x x ππ=+, [1,2]x ∈-,243333x ππππ∴+∈[,],()[g x ∴∈. --------------------------------14分 23.解:(Ⅰ) (ⅰ)当12m ≤-时,2min ()(1)1f x f m m m =+=++, (ⅱ)当1122m -<≤时,min 13()()24f x f ==, (ⅲ)当12m >时,2min ()()1f x f m m m ==-+. 综上,2211,2311(),42211,2m m m g m m m m m ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩. --------------------------------7分(Ⅱ)由()f x t x +≤得22()(22)10h x x t x t t =+-+-+≤,(1)0()0h h n ≤⎧∴⎨≤⎩ ∴关于t 的不等式组2220(21)210t t t n t n n ⎧+≤⎨+-+-+≤⎩有解, 22(21)210t n t n n ∴+-+-+≤在t [1,0]∈-上有解,22112430n n n -⎧-≤-⎪∴⎨⎪-+≤⎩或2221102(2n 1)4(n 2n 1)0n -⎧-≤-≤⎪⎨⎪---+≥⎩, 解得3333242n n ≤≤≤<或, 即334n ≤≤ 又1n > , n ∴的取值范围是13n <≤. ------------------------------14分 (注:第(Ⅱ)小题,由数形结合得正确答案可给满分)。

高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题

高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题

某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。

高一上学期期末考试数学试题(原卷版)

高一上学期期末考试数学试题(原卷版)
11.若将函数 的图象先向右平移 个单位长度再将所得的图象上所有点的横坐标缩短为原来的 (纵坐标不变)得到函数 的图象则()
A. 的最小正周期为
B. 图象的一个对称中心为
C. 的值域为
D. 图象的一条对称轴方程为
12.定义:实数 满足 则称 比 远离 .已知函数 的定义域为 任取 等于 和 中远离0的那个值则()
高一数学试卷
试卷120分钟满分:150分
一选择题:本题共8小题每小题5分共40分.在每小题给出的四个选项中只有一项是符合题目要求的.
1.下列函数中周期为 的是()
A. B.
C. D.
2.函数 的单调递增区间为()
A. B.
C. D.
3.函数 的部分图象如图所示则 可能是()
A B.
C. D.
4.已知角 的终边在射线 上则 的值为()
17.已知复数 .
(1)若 是实数求 的值;
(2)若复数 在复平面内对应的点在第三象限且 求实数 的取值范围.
18 已知 .
(1)若 三点共线求 满足的等量关系;
(2)在(1)条件下求 的最小值.
19.问题:在 中内角A 所对的边分别为a .
(1)求A;
(2)若 的面积为 ________求 .
请在① ;② ;③ 这三个条件中选择一个补充在上面的横线上并完成解答.
20.某网红景区拟开辟一个平面示意图如图 五边形 观光步行道 为景点电瓶车专用道 .
(1)求 的长;
(2)请设计一个方案使得折线步行道 最长(即 最大).
21.如图所示在 中 与 相交于点 . 的延长线与边 交于点 .
(1)试用 表示 ;
(2)设 求 的值.
22.已知 的内角 所对的边分别为 向量 .

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若$\{1,2\}\subset A\subset\{1,2,3,4,5\}$,则满足条件的集合$A$的个数是()A。

6B。

8C。

7D。

92.设$a,b\in\mathbb{R}$,集合$A=\{1,a+b,a\},B=\{0,\frac{b}{a},b\}$,若$A=B$,则$b-a=$()A。

2B。

$-1$C。

1D。

$-2$3.下列各组函数中$f(x)$与$g(x)$的图象相同的是()A。

$f(x)=x,g(x)=|x|$B。

$f(x)=x^2,g(x)=\begin{cases}x,&(x\geq 0)\\-x,&(x<0)\end{cases}$C。

$f(x)=1,g(x)=x$D。

$f(x)=x,g(x)=\begin{cases}x,&(x\geq0)\\0,&(x<0)\end{cases}$4.下列函数中,既是偶函数又在$(-\infty,0)$内为增函数的是()A。

$y=-\frac{1}{2}$B。

$y=x^2$C。

$y=x+1$D。

$y=\log_3(-x)^2$5.三个数$a=0.32,b=\log_2 0.3,c=2^0.3$之间的大小关系为()A。

$a<c<b$B。

$a<b<c$C。

$b<a<c$D。

$b<c<a$6.下列叙述中错误的是()A。

若点$P\in\alpha,P\in\beta$且$\alpha\cap\beta=l$,则$P\in l$B。

三点$A,B,C$能确定一个平面C。

若直线$a\parallel b$,则直线$a$与$b$能够确定一个平面D。

若点$A\in l,B\in l$且$A\in\alpha,B\in\alpha$,则$l\subset\alpha$7.方程$\log_3 x+x=3$的解所在区间是()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省沧县风化店中学2016-2017学年高一数学上学期期末考试试题
一、选择题(60分)
1.化简0sin 600的值是()
A .0.5
B .0.5-C
.2.已知4sin 5
α=,并且α是第二象限的角,那么tan α的值等于() A.43- B.34
- C.43 D.34 3.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是()
A .0
B .4π C.2
π D.π 4.函数)652cos(
3π-=x y 的最小正周期是() A .52πB .2
5π C .π2 D .π5 5.cos13计算sin43cos 43-sin13的值等于() A.12
B.3
C.2
D. 2
6.将函数sin()3y x π
=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变), 再将所得的图象向左平移
3
π个单位,得到的图象对应的僻析式是() A .1sin 2y x =B .1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=- 7.化简向量AC -BD +CD -AB 得()
A .A
B B .
C .BC
D .
8.已知平面向量(3,1)a =,(,3)b x =-,且a b ⊥,则x =()
A .3-
B .1-
C .1
D .3
9.在△ABC 中,cos cos sin sin A B A B >,则△ABC 为()
A .锐角三角形
B .钝角三角形
C .直角三角形
D .无法判定
10.已知向量a ,b 满足1,4,a b ==且2a b ⋅=,则a 与b 的夹角为
A .6π
B . 3π
C .4π
D .2
π 11.若三点(2,3),(3,),(4,)A B a C b 共线,则有()
A .3,5a b ==-
B .10a b -+=
C .23a b -=
D .20a b -=
12.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值, 最小值分别是()
A .0,24
B .24,4
C .16,0
D .4,0
二、填空题
13.设θ是第二象限角,则点)cos ,(sin θθP 分别在第__ _象限.
14.若=)8,2(,=)2,7(-,则
31=_________
15.求值:0000tan 20tan 4020tan 40+=_____________。

16.若→a =)3,2(,→b =)7,4(-,则→a 在→b 上的投影为________________。

三、解答题(70分) 17.已知2tan =x ,求x
x x x sin cos sin cos -+的值。

18.已知向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,求向量a 的模。

相关文档
最新文档