钢的热处理基础知识

合集下载

钢的热处理基础知识

钢的热处理基础知识

• (c)T8钢淬火工艺过程及组织转变
• T8
• (c)T8钢淬火工艺过程及组织转变
• T8
• (d)T12钢淬火工艺过程及组织转变
• T12
• (d)T12钢淬火工艺过程及组织转变
• T12
第五节 淬火钢的回火
• 一、回火:钢件淬硬后,再加热到Ac1点以下的某一温度, 保温一定时间,然后冷却到室温的热处理工艺。 • 二、回火目的:减小或消除淬火残余应力,稳定钢件的 组织和尺寸,并与淬火配合,使零件达到使用性能要求。 • 三、回火的分类: • 1.低温回火:淬火钢件在250℃以下回火一般得到回火 马氏体组织,即由ωc较低的马氏体与极细的碳化物(Fe2.4C) 组成的组织。目的是在保持淬火高硬度的前提下,适当 提高钢的韧性和减小淬火内应力。常用于各种工具及高 硬度零件。 • 2.中温回火:淬火钢件在250~500℃之间回火一般得到 回火托氏体组织,即针状特征的铁素体与细小粒状渗碳 体的混合物。目的是获得高的强度、弹性和较高的韧性。 主要用于弹性零件、锻模和要求淬硬的扳手、销钉和螺 钉等工件。
二、过冷奥氏体的连续冷却转变
• • • •
1.过冷奥氏体的连续冷却转变图 共析钢连续转变曲线和产物 亚共析钢连续转变曲线和产物 过共析钢连续转变曲线和产物
二、过冷奥氏体的连续冷却转变
• • • •
1.过冷奥氏体的连续冷却转变图 共析钢连续转变曲线和产物 亚共析钢连续转变曲线和产物 过共析钢连续转变曲线和产物
• 共析钢不同转变温度下的产物
第六节 钢的淬透性及淬硬性
• 一、淬透性的概念 • 淬透性:在规定条件下,决定钢材淬硬深度和硬度分 布的特性。在同一淬火条件下,获得淬硬层愈深的钢 淬透性愈好。
• 淬透性试验

金相知识-钢的热处理基础

金相知识-钢的热处理基础
射传热为主,炉温越高,工件升温速度越快,所需的 加热时间越短。
钢的热传递基本方式
热传递 方式
定义
传导传热
热量由零件(包括于其接 触的零件)的一处传到另 一处,物体的质点没有移动。 Nhomakorabea对流传热
流体中不同部分的质点发 生了相对位移、或混合, 或流体质点与固体表面
辐射传热
由物体表面直接向外界 发射可见的和不可见的 射线,在空间传递热量
高温回火 ( 》500℃) 称调质,获得回火索氏体组织,强 韧性恰当配合,广泛用于各种结构零件。
Fe Fe3C
零件淬火后产生的应力分类 热应力 零件在加热和冷却中不同部位温度有差异,
热胀冷缩不一致导致的应力;通常表面为压应力; 心部为拉应力。只占总应力的5-10%。 组织应力 零件冷却时不同部位组织转变不一样, 引起的内应力。一般表面为拉应力,心部为压应力。
第五节 钢的热处理基础
5.1 钢的热传递 1. 基本方式 传导 对流 辐射 2. 传热一般规则 a. 先决条件存在温差. b. 通常三种传热方式同时存在 工件通过辐射和对流从加热炉中获得热量,又
以传导方式传给心部。
c. 工件的传热方式取决于加热温度和加热设备 >600 ºc时,辐射传热过程最强烈,试验以辐
铁碳相图中,共有五种不同形态的渗碳体,请根据
形成温度的高低依次写出。
在Fe-Fe3C相图,五种形态渗碳体以温度从高到低
为:
Fe3C I
(A+Fe3C)共晶
Fe3C II
(F +Fe3C)共
5.2 钢在加热时的转变 奥氏体形核+长大过程;取决于加热温度、原始
组织和化学成分。 用晶粒度评定加热质量。
5.3 钢在冷却时的转变
过冷奥氏体的等温转变曲线 称为C-曲线,或 TTT图。

钢的热处理

钢的热处理

奥氏体化也是形核和长大
的过程,分为四步。现以
共析钢为例说明:
钢坯加热
第一步 奥氏体晶核形成:首先在与Fe3C相界形核。 第二步 奥氏体晶核长大: 晶核通过碳原子的扩散向
和Fe3C方向长大。
第三步 残余Fe3C溶解: 铁素体的成分、结构更接近于 奥氏体,因而先消失。残余的Fe3C随保温时间延长继 续溶解直至消失。
第四步 奥氏体成分均匀 共析钢奥氏体化曲线(875℃退火)
化:Fe3C溶解后,其所

温 度

在部位碳含量仍很高,
通过长时间保温使奥氏
体成分趋于均匀。
2 钢在冷却时的转变
冷却是热处理更重要的工序。 一、过冷奥氏体的转变产物及转变过程 处于临界点A1以下的奥氏体称过冷奥氏体。过冷奥
氏体是非稳定组织,迟早要发生转变。随过冷度不 同,过冷奥氏体将发生珠光体转变、贝氏体转变和 马氏体转变三种类型转变。 现以共析钢为例说明:
能的主要特点。
马氏体的硬度主要 取决于其含碳量。
含碳量增加,其硬 度增加。
C%
马氏体硬度、韧性与含碳量的关系
当含碳量大于0.6%时,其硬度趋于平缓。
合金元素对马氏体硬度的影响不大。
3 过冷奥氏体转变产物(共析钢)
转变 转变 形成温 转变 类型 产物 度, ℃ 机制
显微组织特征
获得 HRC 工艺
⑵ 对于过共析钢,用于消除网状二次渗碳体,为球 化退火作组织准备。
⑶ 普通件最终热处 理。
要改善切削性能, 低碳钢用正火,中 碳钢用退火或正火, 高碳钢用球化退火.
合适切削加工硬度
热处理与硬度关系
5 钢的淬火
淬火是将钢加热到临界点以上,保温后以大于Vk速 度冷却,使奥氏体转变 为马氏体的热处理工艺.

钢铁材料的热处理介绍

钢铁材料的热处理介绍
使钢件获得较高的弹性、一定的韧性和硬度
(1)高温回火
将淬火后的钢件加热到500~650ºC,经过保温以后冷却,主要用于要求高强度、高韧性的重要结构零件,如主轴、曲轴、凸轮、齿轮和连杆等
使钢件获得较好的综合力学性能,即较高的强度和韧性及足够的硬度,消除钢件因淬火而产生的内应力
5.调质
将淬火后的钢件进行高温(500~600ºC)回火多用于重要的结构零件,如轴类、齿轮、连杆等调质一般是在粗加工之后进行的
7.化学热处理
将钢件放到含有某些活性原子(如碳、氮、铬等)的化学介质中,通过加热、保温、冷却等方法,使介质中的某些原子渗入到钢件的表层,从而达到改变钢件表层的化学成分,使钢件表层具有某种特殊的性能





(1)钢渗的碳
将碳原子渗入钢件表层
常用于耐磨并受冲击的零件,如:轮、齿轮、轴、活塞销等
使表面具有高的硬度(HRC60~65)和耐磨性,而中心仍保持高的韧性
细化晶粒,均匀组织,降低硬度,充分消除内应力完全退火适用于含碳量(质量分数)在O.8%以下的锻件或铸钢件
(2)球化退火
将钢件加热到临界温度以上20~30ºC,经过保温以后,缓慢冷却至500℃以下再出炉空冷
降低钢的硬度,改善切削性能,并为以后淬火作好准备,以减少淬火后变形和开裂,球化退火适用于含碳量(质量分数)大于O.8%的碳素钢和合金工具钢
①改善组织结构和切削加工性能
②对机械性能要求不高的零件,常用正火作为最终热处理
③消除内应力
3.淬火
将钢件加热到淬火温度,保温一段时间,然后在水、盐水或油(个别材料在空气中)中急速冷却
①使钢件获得较高的硬度和耐磨性
②使钢件在回火以后得到某种特殊性能,如较高的强度、弹性和韧性等

钢的热处理基本知识,很实用

钢的热处理基本知识,很实用

钢的热处理基本知识,很实用钢的热处理是将固态金属或合金在一定介质中加热、保温和冷却,以改变其组织,从而获得所需性能的工艺方法。

热处理和其他加工工艺(锻压、铸造、焊接、切削加工)不同,它的目的不是改变钢件的外形和尺寸,而是改变其内部组织和性能。

在机械零件或工模具的制造过程中,往往要经过各种冷、热加工,同时在各加工工序之间还经常要穿插多次热处理工艺。

按其作用可分为预先热处理和最终热处理,它们在零件的加工工艺路线中所处的位置如下:铸造或锻造→预先热处理→机械(粗)加工→最终热处理→机械(精)加工为使工件满足使用条件下的性能要求的热处理称为最终热处理,如淬火+回火等工序;为了消除前道工序造成的某些缺陷,或为随后的切削加工和最终热处理作好组织准备的热处理,称为预先热处理,如退火、正火工序。

钢的热处理的工艺过程包括加热、保温和冷却三个阶段,它可用温度—时间坐图形来表示,称为钢的热处理工艺曲线如图1所示。

图1 热处理工艺曲线一、热处理工艺的分类根据热处理的目的要求及加热和冷却方法的不同,一般可将钢的热处理工艺按如图2所示进行分类。

图2 钢的热处理分类二、常用热处理设备根据热处理的基本过程,热处理设备有加热设备、冷却设备和检验设备等。

(一)加热设备加热炉是热处理车间的主要设备,通常的分类方法为:按能源分为电阻炉、燃料炉;按工作温度分为高温炉(>1000℃)、中温炉(650~1000℃)、低温炉(<600℃);按工艺用途分为正火炉、退火炉、淬火炉、回火炉、渗碳炉等;按形状结构分为箱式炉、井式炉等。

常用的热处理加热炉有电阻炉和盐浴炉。

1.箱式电阻炉箱式电阻炉是由耐火砖砌成的炉膛及侧面和底面布置的电热元件组成通电后。

电能转化为热能,通过热传导、热对流、热辐射达到对工件的加热。

箱式电阻炉的选用,一般根据工件的大小和装炉量的多少。

中温箱式电阻炉应用最为广泛,常用于碳素钢、合金钢零件的退火、正火、淬火及渗碳等。

如图3所示为中温箱式电阻炉的结构示意图。

金属材料热处理基础知识

金属材料热处理基础知识

热处理定义:钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而获得所需要的物理、化学、机械和工艺性能的一种操作。

热处理目的:1、消除毛坯中的缺陷,改善工艺性能,为切削加工或热处理做组织和性能上的准备。

2、提高金属材料的力学性能,充分发挥材料的潜力,节约材料延长零件使用寿命。

加热温度、保温时间和冷却方式是热处理最重要的三个基本工艺因素。

退火1、定义:将组织偏离平衡状态的金属或合金加热到适当的温度,保持一定时间,然后缓慢冷却以达到接近平衡状态组织的热处理工艺。

2、目的:降低硬度,均匀化学成分、改善切削加工性能和冷塑性变形性能、消除或减少内应力、为零件最终热处理准备合适的内部组织。

3、分类球化退火:为使工件中的碳化物球状化而进行的退火。

去应力退火:为去除工件塑性变形加工、切削加工或焊接造成的内应力及铸件内存在的残余应力而进行退火。

正火1、定义:将钢材或钢件加热到一定温度,保温适当时间,使之完全奥氏体化,然后在空气中冷却,以得到珠光体组织的热处理工艺。

2、目的:改善切削性能,消除毛坯内应力,细化晶粒、提高硬度、获得比较均匀的组织和性能。

退火和正火的区别退火和正火属于预备热处理工艺,对于含碳量相同的工件,正火后的强度和硬度要高于的退火的。

例如:含碳量大于0.7%的碳钢和合金钢,为降低硬度便于切削加工采用退火处理;含碳量低于0.3%的低碳钢和低合金钢,为避免硬度过低切削时粘刀,而采用正火适当提高硬度。

一般用于锻件、铸件和焊接件。

退火一般安排在毛坯制造之后,粗加工之前进行。

渗碳1、定义:为提高工件表层的含碳量并在其中形成一定的碳含量梯度,在渗碳炉中将低碳钢在渗碳介质中加热、保温,使碳原子渗入工件表面,然后进行淬火的化学热处理工艺。

2、目的:使低碳钢的表面层含碳量增加到0.85~1.10%,然后再经淬火、低温回火处理以消除应力和稳定组织,使钢件表面层具有高硬度(HRc56~62),增加耐磨性及疲劳强度等。

钢的热处理

钢的热处理

钢的热处理
钢是最常见的金属材料,由于其优越的物理性能和加工性能,钢广泛应用于各行各业,因而需要进行热处理来提高其性能。

热处理是一种处理方法,它将钢通过加热、冷却、调质等物理方法,在获得所需性能的同时,改变钢的组织结构。

热处理的方法有很多,其中包括正火处理和退火处理等。

正火处理是指在高温下,将钢的组织结构变得更加紧密,使其力学性能和强度提高。

正火处理通常可以用于提高钢的强度、耐腐蚀性和耐磨损性能。

退火处理指将加热后的钢放置在一定的温度,然后慢慢冷却,直至钢内部的组织结构发生变化,使其柔韧性和可塑性提高。

退火处理可以用于提高钢的塑性和韧性,以及防止它易于疲劳断裂。

此外,调质处理也是一种常见的热处理方法,它可以改变钢内部的组织结构,从而改变钢的物理性能和化学成分。

以上就是热处理的基本内容,不同的热处理方法可以满足不同的需求,根据钢材的需求和性能,采取适当的热处理技术来改善钢材的性能,是提高钢材质量的重要手段。

为了使钢材的热处理质量更好,应严格控制热处理过程的参数,选择合适的热处理工艺,并加以监控,以确保热处理的质量。

钢的热处理是一项技术活动,也是一个复杂的系统工程,未来,热处理技术将会有更大的发展,同时,热处理技术也将会面临更大的挑战,以满足不断变化的市场需求。

热处理的基本知识

热处理的基本知识

常用热处理的基本知识一. 退火目的及工艺退火是钢加热到适当的温度,经过一定时间保温后缓慢冷却,以达到改善组织、提高加工性能的一种热处理工艺。

其主要目的是减轻钢的化学成分及组织的不均匀性,细化晶粒,降低硬度,消除内应力,以及为淬火作好组织准备。

退火工艺种类很多,常用的有完全退火、等温退火、球化退火、扩散退火、去应力退火及再结晶退火等。

不同退火工艺的加热温度范围如图5.25所示,它们有的加热到临界点以上,有的加热到临界点以下。

对于加热温度在临界点以上的退火工艺,其质量主要取决于加热温度、保温时间、冷却速度及等温温度等。

对于加热温度在临界点以下的退火工艺,其质量主要取决于加热温度的均匀性。

1. 完全退火完全退火是将亚共析钢加热到A C3以上20~30℃,保温一定时间后随炉缓慢冷却至500℃左右出炉空冷,以获得接近平衡组织的一种热处理工艺。

它主要用于亚共析钢,其主要目的是细化晶粒、均匀组织、消除内应力、降低硬度和改善钢的切削加工性能。

低碳钢和过共析钢不宜采用完全退火。

低碳钢完全退火后硬度偏低,不利于切削加工。

过共析钢完全退火,加热温度在A cm以上,会有网状二次渗碳体沿奥氏体晶界析出,造成钢的脆化。

2. 等温退火完全退火所需时间很长,特别是对于某些奥氏体比较稳定的合金钢,往往需要几十小时,为了缩短退火时间,可采用等温退火。

等温退火的加热温度与完全退火时基本相同,钢件在加热温度保温一定时间后,快冷至A r1以下某一温度等温,使奥氏体转变成珠光体,然后出炉空冷。

图5.26为高速钢的完全退火与等温退火的比较,可见等温退火所需时间比完全退火缩短很多。

A r1以下的等温温度,根据要求的组织和性能而定;等温温度越高,则珠光体组织越粗大,钢的硬度越低。

3. 球化退火球化退火是使钢中渗碳体球化,获得球状(或粒状)珠光体的一种热处理工艺。

主要用于共析和过共析钢,其主要目的在于降低硬度,改善切削加工性能;同时为后续淬火作好组织准备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•奥氏体的形核示意图
1.球状珠光體:奥氏体优先在与晶界相连的α/Fe3C界面形核 2.片状珠光體:奥氏体优先在珠光体团的界面上形核
16
•奥氏体长大示意图(一)
在珠光体团交界处形成的核向基本上垂直于片 层和平行于片层的两个方向上长大
17
•奥氏体长大示意图(二)
1.平行于片层方向的长大速度要 比沿垂直方向的快些
29
•马氏体转变
3.马氏体转变的特点 1)表面具有浮凸效应和切变共格性 2)无扩散性 3)新相与母相间具有一定的晶体学取向关系
30
•马氏体转变
4.马氏体表面浮凸
31
•马氏体转变
5.马氏组织形态(板条状)
32
•马氏体转变
6.马氏体组织形态(片状)
33
•马氏体转变
7.马氏体组织形态(针状)
34
•退火—加热到Ac1温度以上,慢冷获得珠光
体类组织(炉冷)
•正火—加热到Ac3或Accm以上30~50℃保溫,
然后在室温的静止空气中自然冷却(空冷)
•淬火—将钢加热到临界温度(Ac3或Ac1以上)保温一
定时间使之奥氏体化后,以快速冷却以获得马 氏体或下贝氏体组织(水冷或油冷)
•回火—将淬火后的钢在A1以下的温度加热、保
2.在奥氏体形成过程中,珠光体中
的铁素体总是先消失,剩下的渗
碳体随后溶解
18
•珠光体转变
一、珠光体的机械性能 1. 片层间距越小,强度越高 2. 球状珠光体比片状珠光体的硬度低,但塑性好,
断裂强度高 3. 同一碳含量的钢: 1)马氏体的强度和硬度最高,塑性和韧性最低, 2)珠光体的强度和硬度最低,塑性和韧性最高 3)贝低体的性能在二者之间
35
•回火转变
1.过渡碳化物(ε/η或ε’ )的析出 回火第一阶段(100~200℃)
36
•回火转变
2.残余奥氏体的分解 回火第二阶段(200~300℃) 3.过渡碳化物(ε/η或ε’ )转变为Fe3C
回火第三阶段(200~350℃)
37
•回火转变
4.Fe3C的粗化和球化,以及等轴铁素体晶粒的形成 回火第四阶段(350℃以上)
19
•珠光体转变
一、碳含量对珠光体机械性能的影响
20
•珠光体转变之IT图
21
•珠光体转变之IT图形式
22
•珠光体转变之CT图
23
•珠光体转变图
24
•先共析转变相图
25
•先共析相的几种形态
26
•先共析相的几种形态
27
•马氏体转变
1.马氏体晶胞模型
28
•马氏体转变
2.马氏体切变晶胞模型
钢的热处理知识基础
1
内容简介:
•基本术语 •钢的加热转变 •珠光体转变 •马氏体转变 •回火转变
2
•基本术语(一) 1.面心立方结构 2.体心立方结构
图1.γ-Fe(奥氏体)
图2.α-Fe(铁素体)
3
•基本述语(二)
•奥氏體—碳在γ-Fe中的间隙固溶體,具有 面心立方结构
•铁素體—碳在α -Fe中的间隙固溶體,具有 体心立方结构
γ/α界面向铁素体一侧推移,以及γ/Fe3C界面向渗碳体一 侧推移,使铁素体和渗碳体逐渐消失
2.片状珠光體:在珠光体团交界处形成的核向基本上垂直于片层和平行于
片层的两个方向上长大
(三)残留碳化物的溶解和奥氏体成分的均匀化
随着奥氏体化保温时间的延長,残留碳化物会逐渐溶解,通过碳原子的
不断扩散而均匀化
15
•珠光體—由片层相间的铁素体和渗碳体组成的 混合组織,因其组织在普通光照射下 会产生珠母般的光澤,因而得名
•马氏體—碳在α -Fe中的过饱和固溶體,具有体 心正方点阵结構,由钢淬火后获得
4
•奥氏体组织
5
•铁素体组织(白块)
6
•珠光体组织(片层状)
7
•珠光体组织(球状)
8
•马氏体组织
9
•基本述语(三)
a “→ b” →c” 奥氏體(a”) →渗碳体+奥氏體(b”) →渗碳体+珠光体(c”)
14
•钢的加热转变
一、珠光体类组织向奥氏体的转变
(一)奥氏体的形核
1.球状珠光體:奥氏体优先在与晶界相连的α/Fe3C界面形核 2.片状珠光體:奥氏体优先在珠光体团的界面上形核
(二)奥氏体的长大
1.球状珠光體:奥氏体首先包围渗碳體,把渗碳体和铁素体隔開,然后通过
溫,并以适当速度冷却的工艺(低温空冷)
10
•退火正火工艺图
11
•Fe-Fe3C相图
12
•Fe-Fe3C相图(细部)
a
a’
a”
b”
b
b’
c”
cLeabharlann 13•不同成分点冷却组织
(一)a成分点 a → b →c
奥氏體(a) →铁素体+奥氏體(b) →铁素体+珠光体(c) (二)a’成分点
a’ → b’ 奥氏體(a’) →珠光體(b’) (三) )a”成分点
38
谢谢大家!
39
•马氏体的机械性能
1.马氏体的硬度和强度
马氏体具有高硬度,其硬度主要决定于碳含量,合金元素的影响较小 1)过饱和碳引起强烈的固溶强化 2)马氏体中亚结构引起的强化 a.位错b.孪晶 3)马氏体的时效强化
2.马氏体的塑性和韧性
马氏体的塑性和韧性随碳含量增高而急剧降低 1)位错型(板条状)马氏体具有相当高的强度、硬度和良好的塑性、韧 性。 2)孪晶型(片状)马氏体强度、硬度很高,塑性、韧性很低。
相关文档
最新文档