初三中考数学专题复习 投影与视图 专项练习题 含答案
初三数学投影与视图试题答案及解析

初三数学投影与视图试题答案及解析1.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()A.3B.4C.5D.6【答案】B【解析】根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有3+1=4个.故选B.【考点】三视图2.如图,该几何体的左视图是()A.B.C.D.【答案】D【解析】左视图有2列,从左往右依次有2,1个正方形,其左视图为:.【考点】简单组合体的三视图.3.如下左图是由五个小正方体搭成的几何体,它的左视图是()【答案】A.【解析】从左面可看到从左往右2列小正方形的个数为:2,1,故选A.【考点】简单组合体的三视图.4.如图是由四个小正方体叠成的一个立体图形,那么它的左视图是()【答案】D.【解析】从左面可看到第一列有2个正方形,第一列有一个正方形.故选D.【考点】简单组合体的三视图.5.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为()A.3,2B.2,2C.3,2D.2,3【答案】C【解析】设底面边长为x,则x2+x2=(2)2,解得x=2,即底面边长为2,根据图形,这个长方体的高是3,根据求出的底面边长是2.【考点】1.由三视图判断几何体;2.简单几何体的三视图.6.如图所示的几何体中,俯视图形状相同的是()A.①④B.②④C.①②④D.②③④【答案】B.【解析】找到从上面看所得到的图形比较即可:①的俯视图是圆加中间一点;②的俯视图是一个圆;③的俯视图是一个圆环;④的俯视图是一个圆. 因此,俯视图形状相同的是②④. 故选B.【考点】简单几何体的三视图.7.如图是由相同的小正方体组成的几何体,它的俯视图为()【答案】B【解析】根据几何体的三视图可知,主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,由图可得它的为俯视图第二个,故选B【考点】几何体的三视图.8.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()【答案】A【解析】从几何体上面看,是左边2个,右边1个正方形.故选A.【考点】简单组合体的三视图.9.一个几何体的三视图如图所示,则这个几何体是()【答案】D.【解析】如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选D.【考点】由三视图判断几何体.10.下列四个水平放置的几何体中,三视图如右图所示的是()【答案】D【解析】三视图是指分别从物体的前面、左面、上面看到的平面图形.故选D.11.一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱【答案】D【解析】根据主视图和左视图可以确定该物体是棱柱,根据俯视图可以确定该物体的底面是三角形,满足上述条件的只有三棱柱,故选D.12.如图所示零件的左视图是()A. B. C. D.【答案】D.【解析】:零件的左视图是两个竖叠的矩形.中间有2条横着的虚线.故选D.【考点】三视图.13.如图是由五个相同的小正方体组成的几何体,则下列说法正确的是( )A.左视图面积最大B.左视图面积和主视图面积相等C.俯视图面积最小D.俯视图面积和主视图面积相等【答案】D.【解析】观察图形可知,几何体的主视图由4个正方形组成,俯视图由4个正方形组成,左视图由3个正方形组成,所以左视图的面积最小,俯视图面积和正视图面积相等.故选D.考点: 简单组合体的三视图.14.某几何体的三视图如下图所示,则该几何体可能为()【答案】D.【解析】试题分析:由主视图和左视图可以得到该几何体是圆柱和小圆锥的复合体,由俯视图可以得到小圆锥位于圆柱的正中间.故选D.考点:三视图判断几何体.15.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.4个B.5个C.6个D.7个【答案】A.【解析】根据给出的几何体,通过动手操作,观察可得答案为4,也可以根据画三视图的方法,发挥空间想象能力,直接想象出每个位置正方体的数目,再加上来.故选A.【考点】三视图.16.如图所示是小红在某天四个时刻看到一个棒及其影子的情况,那么她看到的先后顺序是.【答案】④③①②.【解析】根据平行投影中影子的变化规律:就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.可知先后顺序是④③①②.故答案是④③①②.【考点】平行投影.17.如图下面几何体的左视图是A.B.C.D.【答案】B【解析】左视图即从物体左面看到的图形,从左面看易得三个竖直排列的长方形,且上下两个长方形的长大于高,比较小,中间的长方形的高大于长,比较大。
中考数学总复习《投影与视图》专项提升练习题(附答案)

中考数学总复习《投影与视图》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________知识点一:与投影有关的基本概念1.投影:用光线照射物体,在某个平面上得到的影子叫做物体的投影。
2.平行投影:由平行光线形成的投影是平行投影。
3.中心投影:由同一点发出的光线形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
知识点二:与视图有关的基本概念1.视图:从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图。
视图可以看作物体在某一方向光线下的正投影。
2.主视图、俯视图、左视图(1)对一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;(2)在水平面内得到的由上向下观察物体的视图,叫做俯视图;(3)在侧面内得到的由左向右观察物体的视图,叫做左视图。
主视图与俯视图的长对正;主视图与左视图的高平齐;左视图与俯视图的宽相等。
知识点三:视图知识的应用1.通过三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。
2.由三视图判断几何体形状主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.本章内容要求学生经历实践探索,了解投影、投影面、平行投影和中心投影的概念。
通过下面知识导图加深对本章内容的了解。
《投影与视图》单元检测试卷一、选择题(每小题3分,共36分)1.下列几何体中,主视图和左视图都为矩形的是( )2.如图所示,小明从左面观察一个圆柱体和一个正方体,看到的是( )3.如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为( )A.120°B.约156°C.180°D.约208°4.如图,是由棱长为1的正方体搭成的积木的三视图,则图中棱长为1的正方体的个数是( )A.4个B.5个C.6个D.7个5.有一个正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示.如果记6的对面的数字为a,2的对面的数字为b,那么a+b的值为( )A.3B.7C.8D.116.将一个圆形纸板放在太阳光下,它在地面上所形成的影子的形状不可能是( )A.圆B.三角形C.线段D.椭圆7.身高1.8米的人在阳光下的影长是1.2米,同一时刻一根旗杆的影长是6米,则它的高度是( )A.10米B.9米C.8米D.10.8米8.如图,A、D是电线杆AB上的两个瓷壶,AC和DE分别表示太阳光线,若某一时刻线段AD在地面上的影长CE=1m,BD在地面上的影长BE=3m,瓷壶D到地面的距离DB=20m,则电线杆AB的高为( )A.15mB.803m C.21m D.m9.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明和小强的影子一样长D.无法判断谁的影子长10.这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为( )A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米11.当太阳光线与地面成40°角时,在地面上的一棵树的影长为10m,树高h(单位:m)的范围是()A.3<h<5B.5<h<10C.10<h<15D.15<h<2012.如图是某几何体的三视图及相关数据,则判断正确的是( )A.a>cB.b>cC.4a2+b2=c2D.a2+b2=c2二、填空题(每空3分,共30分)13.如图,四个几何体中,它们各自的三个视图(主视图、左视图和俯视图)有两个相同,而另外一个不同的几何体是 .(填写序号)14.如图是一个三棱柱,它的正投影是下图中的________(填序号).15.如图所示,是一个圆锥在某平面上的正投影,则该圆锥的侧面积是.16.如图,为了测量学校旗杆的高度,小东用长为3.2 m的竹竿做测量工具.移动竹竿使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8 m,与旗杆相距22 m,则旗杆的高为________m.17.三棱柱的三视图如图所示,在△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为________cm.18.一个由小立方块搭成的几何体,其左视图、主视图如图所示, 这个几何体最少由个小立方块搭成的 .三、解答题(7个小题,共66分)19.用7个大小相同的小正方体搭成的几何体如左图所示,请你在右边的方格中画出该几何体的三种视图(用较粗的实线进行描绘):20.如图所示,有甲、乙两根木杆,甲木杆的影子刚好落在乙杆与地面接触点处.(1)你能画出此时太阳光线及乙杆的影子吗?(不能画,说明理由;能画,用线段表示影子)(2)在所画的图形中有相似三角形吗?为什么?(3)从图中分析高杆与低杆的影子与它们的高度之间有什么关系?与同学进行交流.21.如图是某几何体的展开图.(1) 请根据展开图画出该几何体的主视图;(2) 若中间的矩形长为20πcm,宽为20cm,上面扇形的中心角为240°,试求该几何体的表面积.22.如图是一粮仓,其顶部是一圆锥,底部是一圆柱.(1)画出粮仓的三视图;(2)若圆柱的底面圆的半径为1 m,高为2 m,求圆柱的侧面积;(3)假设粮食最多只能装到与圆柱同样高,则最多可以存放多少立方米的粮食?23.如图所示是一个几何体的三视图,一只蚂蚁要从该几何体的顶点A处,沿着几何体的表面到和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长度是多少?24.如图,九年级(1)班的小明与小艳两位同学去操场测量旗杆DE 的高度,已知直立在地面上的竹竿AB 的长为3 m.某一时刻,测得竹竿AB 在阳光下的投影BC 的长为2 m.(1)请你在图中画出此时旗杆DE 在阳光下的投影,并写出画图步骤;(2)在测量竹竿AB 的影长时,同时测得旗杆DE 在阳光下的影长为6 m ,请你计算旗杆DE 的高度.25.如图,某居民小区有一朝向为正南方向的居民楼,该居民楼的一楼是高6 m 的小区超市,超市以上是居民住房.在该楼的前面15 m 处要盖一栋高20 m 的新楼,当冬季正午的阳光与水平线的夹角为32°时 (1)问:超市以上的居民住房的采光是否有影响?(2)若要使超市采光不受影响,两楼应至少相距多少米?(结果保留整数,参考数据:sin 32°≈0.53,cos 32°≈0.85,tan 32°≈58)答案1.B2.D3.C4.C.5.B6.B7.B.8.B.9.D10.B.11.B12.D.13.答案为:③④.14.答案为:②15.答案为:154π.16.答案为:12.17.答案为:618.答案为:519.解:如图所示:20.解:(1)乙杆的影子如图中BC.(2)图中存在相似三角形,即△ABC∽△DCE.因为两条太阳光线AB∥DC,两杆AC∥DE.(3)在同一时刻杆越高,它的影子就越长,反之则短,即影长与杆高成正比.21.解:(1)主视图如图(2)表面积为S 扇形+S 矩形+S 圆. ∵S 扇形=12lR ,而20π=n πR180∴R=20×180240=15(cm). S 扇形=12lR=12×20π×15=150π(cm 2).S 矩形=长×宽=20π×20=400π(cm 2),S 圆=π(20π2π)2=100π(cm 2).S 表=150π+400π+100π=650π(cm 2). 22.解:(1)粮仓的三视图如图所示: (2)S 圆柱侧=2π·1×2=4π m 2(3)V=π×12×2=2π(m 3),即最多可存放2π m 3的粮食 23.解:该几何体为如图所示的长方体.由图知,蚂蚁有三种方式从点A 爬向点B且通过展开该几何体可得到蚂蚁爬行的三种路径长度分别为 l 1=32+4+62=109(cm); l 2=42+3+62=97(cm); l 3=62+3+42=85(cm).通过比较,得最短路径长度是85 cm.24.解:(1)如图,线段EF 就是此时旗杆DE 在阳光下的投影.作法:连接AC ,过点D 作DF ∥AC ,交直线BE 于点F ,则线段EF 即为所求.(第22题) (2)∵AC ∥DF ∴∠ACB =∠DFE.又∠ABC =∠DEF =90°∴△ABC ∽△DEF.∴AB DE =BCEF.∵AB=3 m,BC=2 m,EF=6 m∴3DE =2 6.∴DE=9 m.∴旗杆DE的高度为9 m.25.解:(1)如图,设CE=x m,则AF=(20-x)m.∵tan 32°=AF:EF,即20-x=15·tan 32°∴x≈11.∵11>6∴超市以上的居民住房的采光有影响.(2)当tan 32°=AB:BC时,BC≈20×1.6=32(m) ∴若要使超市采光不受影响,两楼应至少相距32 m.。
初三数学中考复习投影与视图专题复习训练题及答案

2019 初三数学中考复习投影与视图专题复习训练题1.以下几何体中,主视图是圆的是( B )2.如图是由 8 个小正方体组合而成的几何体,它的俯视图是( D )3.如图是由七个棱长为 1 的正方体构成的一个几何体,其左视图的面积是( B )A .3B. 4C.5D.64.某几何体的主视图和左视图以以下图,则该几何体可能是( C )A.长方体B.圆锥,主视图)C.圆柱D.球,左视图 )5.如图,是一个带有方形空洞和圆形空洞的小孩玩具,假如用以下几何体作为塞子,那么既能够堵住方形空洞,又能够堵住圆形空洞的几何体是( B )A.B.C.D.6.如图是由 6 个棱长均为 1 的正方体构成的几何体,它的主视图的面积为 __5__.7.如图是一个几何体的三视图(图中尺寸单位: cm),依据图中所示数据计算这个几何体的表面积为 __4π__cm2.8.春蕾数学兴趣小组用一块正方形木板在阳光下做投影试验,这块正方形木板在地面上形成的投影可能是__正方形、菱形 (答案不独一 )__.(写出符合题意的两个图形即可 )9.如图,小军、小珠之间的距离为 2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为 __3__m.10.如图,在一次数学活动课上,张明用17 个边长为 1 的小正方形搭成了一个几何体,此后他请王亮用其余相同的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰巧能够和张明所搭几何体拼成一个无空隙的大长方体(不改变张明所搭几何体的形状 ),那么王亮最少还需要__19__个小立方体,王亮所搭几何体的表面积为 __48__.11.画出以以下图立体图形的三视图.解:以以下图:12.一组合体的三视图以以下图,该组合体是由哪几个几何体构成,并求出该组合体的表面积.解:由图形可知,该组合体是由上边一个圆锥和下边一个圆柱构成,π×(10÷2)2 1+π×10× 20+2× (π×10)×(10÷2)2+52= 25π+200π+252π=(225+25 2)π(cm2).故该组合体的表面积是 (225+25 2)πcm213.由几个相同的边长为 1 的小立方块搭成的几何体的俯视图以以下图.方格中的数字表示该地点的小立方块的个数.(1)请在下边方格纸中分别画出这个几何体的主视图和左视图.(2)依据三视图,请你求出这个组合几何体的表面积.(包含底面积 )解: (1)图形以以下图;(2)几何体的表面积为: (3+4+5)×2=24.14.如图,公路旁有两个高度相等的路灯AB ,CD.小明上午上学时发现路灯B 在太阳光下的影子恰巧落到里程碑 E 处,他自己的影子恰巧落在路灯CD 的底部 C 处.晚自习下学时,站在上午同一个地方,发此刻路灯CD 的灯光下自己的影子恰巧落在里程碑 E 处.(1)在图中画出小明的地点 (用线段 FG 表示 ),并画出光芒,注明太阳光、灯光;(2)若上午上学时候高 1 米的木棒的影子为 2 米,小明身高为 1.5 米,他离里程碑E 恰巧 5 米,求路灯高.解: (1)以以下图:(2)∵上午上学时候高 1 米的木棒的影子为 2 米,小明身高为 1.5 米,∴小明的影长 CF 为 3 米,∵GF ⊥AC ,DC ⊥AC ,∴GF ∥CD ,∴△ EGF ∽△ EDC ,∴CD GF=EF1.5 5EC ,∴ CD =5+3,解得 CD =2.4.答:路灯高为 2.4 米。
2024年中考九年级数学一轮复习考点突破练习-投影与视图(含答案)

投影与视图1.如图中影子是中心投影的有()A.0个B.1个C.2个D.3个2.如图所示的几何体由5个大小相同的立方块搭成,则该几何体的左视图是()3.下列几何体中,三视图的三个视图完全相同的几何体是()4.如图所示的几何体的俯视图可能是()5.如图所示的几何体,从正面看,得到的平面图形是()6.如图是一个立体图形的三视图,该立体图形是()A.三棱柱B.圆柱C.三棱锥D.圆锥7.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同8.由若干个完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体所用的小正方体的个数最多是()A.6B.7C.8D.99.沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是()10.某同学学习了正方体的表面展开图后,在如图所示的正方体的表面展开图上写下了“传承红色文化”六个字,还原成正方体后,“红”的对面是( )A .传B .承C .文D .化 11.某款“不倒翁”(如图1)的主视图是图2,PA ,PB 分别与AMB ︵所在圆相切于点A ,B.若该圆半径是10 cm ,∠P =60°,则主视图的面积为______cm 2.12.一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有________个.13.两汉文化看徐州,桐桐在徐州博物馆“天工汉玉”展厅参观时了解到玉璧,玉环为我国的传统玉器,通常为正中带圆孔的扁圆形器物,据《尔雅·释器》记载:“肉倍好,谓之璧;肉好若一,调之环.”如图1,“肉”指边(阴影部分),“好”指孔,其比例关系见图示,以考古发现来看,这两种玉器的“肉”与“好”未必符合该比例关系.(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为_________;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法):①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.参考答案1.D 2.A 3.D 4.C 5.A 6.D 7.A 8.B 9.D 10.D11.1003+200π3 12.6 13.解:(1)32∶27(2)①在该圆环任意画两条相交的线,交点在外圆的圆上,且与外圆的交点分别为A ,B ,C ,则分别以点A ,B 为圆心,大于12AB 长为半径画弧,交于两点,连接这两点,同理可画出线段AC 的垂直平分线,线段AB ,AC 的垂直平分线的交点即为圆心O ,过圆心O 画一条直径,以点O 为圆心,内圆半径为半径画弧,看是否满足“肉好若一”的比例关系即可.由作图可知满足比例关系为1∶2∶1的关系,该玉器的比例关系符合“肉好若一”.②按照①中作出圆的圆心O ,过圆心画一条直径AB ,过点A 作一条射线,然后以点A 为圆心,适当长为半径画弧,交点分别为C ,D ,E ,且AC =CD =DE ,连接BE ,然后分别过点C ,D 作BE 的平行线,交AB于点F,G,进而以FG为直径画圆,则问题得解,如图所示.。
中考数学专题复习《视图、投影与尺规作图》专项检测题 ( 含答案)

视图、投影与尺规作图检测题一、三视图类型一三视图的判断1.如图所示的几何体的俯视图可能是()2.如图所示的三棱柱的主视图是()3.左下图为某几何体的示意图,则该几何体的主视图应为()4.如图所示的是三通管的立体图,则这个几何体的俯视图是()5.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()6.如图①放置的一个机器零件,若其主(正)视图如图②所示,则其俯视图是()第6题图7.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()8.如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()9.下列几何体中,正视图是矩形的是( )10.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是( )11.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()类型二由三视图还原几何体及相关计算1.一个几何体的三视图如图所示,这个几何体是()A. 棱柱B. 圆柱C. 圆锥D. 球第1题图第2题图2.如图,一个简单几何体的三视图的主视图与左视图都为正三角形,其俯视图为正方形,则这个几何体是( )A. 四棱锥B. 正方体C. 四棱柱D. 三棱锥3.下面是一个几何体的三视图,则这个几何体的形状是()第3题图A. 圆柱B. 圆锥C. 圆台D. 三棱柱4.一个几何体的三视图如图所示,那么这个几何体是()第4题图5.小颖同学到学校领来n盒粉笔,整齐地摞在讲桌上,其三视图如图所示,则n 的值是()第5题图A. 6B. 7C. 8D. 96.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( )第6题图A. 8B. 9C. 10D. 117.由若干个边长为1 cm的正方体堆积成一个几何体,它的三视图如图,则这个几何体的表面积是( )A. 15 2cmcm D. 24 2cm C. 21 2cm B. 18 2第7题图第8题图8.某商品的外包装盒的三视图如图所示,则这个包装盒的体积是()A. 200π3cmcm B. 500π3C. 1000π3cmcm D. 2000π3命题点2 投影1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序排列正确的是()A. (3)(1)(4)(2)B. (3)(2)(1)(4)C. (3)(4)(1)(2)D. (2)(4)(1)(3)命题点3 立体图形的展开与折叠1.在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制作了一个正方体玩具,其展开图如图所示,原正方体与“文”字所在的面相对的面上标的字应是( )A. 全B. 明C. 城D. 国第1题图2.下列四个图形是正方体的平面展开图的是()3.把如图中的三棱柱展开,所得到的展开图是( )第3题图 第4题图4.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12 cm ,底面周长为10 cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A. 13 cmB. 261 cmC. 61 cmD. 234 cm命题点4 尺规作图1.如图,在△ABC 中,∠C =90°,∠B =30以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上; ④S △DAC :S △ABC =1∶3.A. 1B. 2C. 3D. 4第1题图2.如图所示,已知线段AB .(1)用尺规作图的方法作出线段AB 的垂直平分线l (保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线l 上任意取两点M 、N (线段AB 的上方),连接AM 、AN 、BM 、BN ,求证:∠MAN =∠MBN .第2题图参考答案命题点1三视图类型一三视图的判断1. C【解析】圆锥的主视图、左视图和俯视图分别为等腰三角形、等腰三角形和带圆心的圆.2. B 【解析】主视图是从几何体正面看得到的图形,该几何体从正面看,是两个具有公共边的长方形组成的图形,只有选项B符合题意.3. A【解析】从前往后看,可得到本题的主视图为五边形.4. A【解析】俯视图指的是从上向下看到的平面图形.圆柱体的俯视图是长方形,圆应该在长方形的中间.5. A【解析】A选项是主视图,B选项是左视图,C选项不是这个正六棱柱形密封罐的视图,D选项是俯视图.6. D【解析】长方体的俯视图是一个长方形,从上面看共有三列,所以这个组合体的俯视图是D.7. B【解析】俯视图即从上面看物体所得的平面图形.观察图形可得,从上往下看,该几何体的小正方体共有三行三列,第一行第二列有1个,第二行每列1个,第三行第一列1个,因此B选项正确.8. C【解析】俯视图是由上往下观察几何体所得到的图形.几何体上半部为正三棱柱,下半部为圆柱,所以其俯视图由圆和其内接等边三角形组成,故选C.9. B×××10. C视图都是圆,故选C.11. D【解析】从正面看共三列,第一列有三个小正方形,第二列有两个小正方形,第三列有三个小正方形,故选D.类型二由三视图还原几何体及相关计算1. B【解析】本题的几何体是常见几何体,从正面看到的是一个矩形,从左面看到的是一个矩形,从上面看到的是一个圆,所以这个几何体为圆柱.2. A【解析】由底面是有对角线的正方形,侧面是正三角形可以推断出它是四棱锥.3. B【解析】选项名称三视图(主视图,左视图,俯视图)正误A圆柱矩形,矩形,圆×B圆锥等腰三角形,等腰三角形,带圆心的圆√C圆台等腰梯形,等腰梯形,无圆心的同心圆×D三棱柱矩形,矩形,三角形×4. C【解析】选项逐项分析正误A 圆锥的主视图和左视图是等腰三角形,俯视图为带圆心的圆×B 这个几何体由圆锥和圆柱两部分构成,因此俯视图应该为带圆心的圆×C 主视图为中间有一条竖线的矩形,左视图为矩形,俯视图为三角形√D主视图、左视图、俯视图均为三角形×5. B【解析】由主视图可得这些粉盒共有3层,由俯视图可得最底层有4盒,由主视图和左视图可得第二层有2盒,第三层有1盒,共有7盒.6. B【解析】由三视图得第一层有4碗,第二层最少有3碗,第三层最少有2碗,所以至少有9碗.7. B【解析】由几何体的三视图得几何体如解图所示,这个几何体是由4个边长为1 cm的小正方体组成,且重叠部分的面积正好为一个小正方体的表面积,则这个几何体的表面积为6×3=18 cm2.第7题解图8. B【解析】由三视图可知该几何体是圆柱,且底面圆半径r=5 cm,高h =20 cm,所以v=πr2h=π×52×20=500πcm3.命题点2投影C【解析】从太阳“东升西落”入手.太阳光在物体上的投影随时间而变化,投影的方向是先朝西,再逐渐转向朝东,且影长的变化经历:长→短→长(中午时刻的影长最短),因此(3)表示的时刻最早,(2)表示的时刻最晚;由于地球绕着太阳运转,物体的投影应从西边开始顺时针向东旋转,所以(4)表示的时间比(1)表示的时间早.故按时间顺序应排列为(3)→(4)→(1)→(2).命题点3立体图形的展开与折叠1. C【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“全”与“明”是相对面;“国”与“市”是相对面;“文”与“城”是相对面.2. B【解析】选项逐项分析正误A折叠后有两个面重合,缺少一个底面×B可以折叠成一个正方体√C 是“凹”字格,故不能折叠成一个正方体×D 是“田”字格,故不能折叠成一个正方体×3. B【解析】根据“两个全等的三角形,在侧面三个长方形的两侧,这样的图形围成的是三棱柱”把图中的三棱柱展开,所得到的展开图是B.4. A【解析】将圆柱沿A所在的高剪开,展平如解图所示.则MM′=NN′=10,作A关于MM′的对称点A′,连接A′B,则线段A′B即蚂蚁走的最短路径.过B作BD⊥A′N于D,则BD=NE=5,A′D=MN+A′M-BE=12+3-3=12,在Rt△A′BD中,由勾股定理得A′B=A′D2+BD2=13.第4题解图命题点4尺规作图1. D【解析】由尺规作图的作法可知,AD是∠BAC的平分线,∴①正确;∵∠BAC=60°,AD又是∠BAC的平分线,则∠CAD=30°,又∵∠C=90°,则∠ADC=60°,∴②正确;∵∠DAB=30°,∠B=30°,则AD=BD,所以点D在AB的中垂线上,∴③正确;设BD=AD=a,因为∠CAD=30°,∠C=90°,则CD=a2,根据勾股定理得:AC=3a2,∴S△ADC=3a28;BC=3a2,S△ABC=33a28,则S△DAC :S△ABC=3a28:33a28=1∶3,∴④正确;正确的共有4个.2. (1)解:如解图:第2题解图①………………………………………………………………………(5分)【作法提示】分别以A、B两点为圆心,以大于12AB为半径画弧,与两弧分别有两个交点,两点确定的直线即为线段AB的垂直平分线l.(2)证明:如解图②,∵直线l是线段AB的垂直平分线,∴MA=MB,∴∠MAB=∠MBA,……………………(6分)同理:∠NAB=∠NBA,∴∠MAB-∠NAB=∠MBA-∠NBA,……………………(8分) 即:∠MAN=∠MBN. ……………………(9分)第2题解图②。
中考数学真题专题训练---投影与视图(附解析)

中考数学真题专题训练---投影与视图一.选择题1.(•兴安盟)如图,是一个长方体的主视图与左视图,由图示数据(单位:cm)可得出该长方体的体积是( )A.18cm3B.8cm3C.6cm3D.9cm32.(•河池)如图,该几何体的主视图是( )A.B.C.D.3.(•安丘市)如图是由若干个大小相同的立方体搭成的几何体的俯视图,小正方形中的数字表示该位置的立方体的个数,则这个几何体的左视图是( )A.B.C.D.4.(•营口)如图1,该几何体是由5个棱长为1个单位长度的正方体摆放而成,将正方体A向右平移2个单位长度后(如图2),所得几何体的视图( )A.主视图改变,俯视图改变B.主视图不变,俯视图不变C.主视图改变,俯视图不变D.主视图不变,俯视图改变5.(•辽阳)如图所示几何体是由五个相同的小正方体搭成的,它的左视图是( )A.B.C.D.6.(•广元)如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是( )A.B.C.D.7.(•巴彦淖尔)如图是一个几何体的三视图,则这个几何体的表面积是( )A.60π+48B.68π+48C.48π+48D.36π+48 8.(•锦州)如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图( )A.B.C.D.9.(•牡丹江)由5个完全相同的小长方体搭成的几何体的主视图和左视图如图所示,则这个几何体的俯视图是( )A.B.C.D.10.(•德阳)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是( )A.16πB.12πC.10πD.4π11.(•绥化)已知某物体的三视图如图所示,那么与它对应的物体是( )A.B.C.D.12.(•毕节市)如图所示的几何体是由一个圆柱体挖去一个长方体后得到的,它的主视图是( )A.B.C.D.13.(•益阳)如图是某几何体的三视图,则这个几何体是( )A.棱柱B.圆柱C.棱锥D.圆锥14.(•抚顺)下列物体的左视图是圆的是( )A.足球B.水杯C.圣诞帽D.鱼缸15.(•阜新)如图所示,是一个空心正方体,它的左视图是( )A.B.C.D.二.填空题16.(•百色)如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG 的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是 (用“=、>或<”连起来)17.(•日照)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是 .18.(•东营)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为 .19.(•齐齐哈尔)三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为 cm.20.(•孝感)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为 cm2.21.(•陇南)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .22.(•盘锦)如图,是某立体图形的三视图,则这个立体图形的侧面展开图的面积是 .(结果保留π)23.(•青岛)一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有 种.参考答案一.选择题1.解:观察其视图知:该几何体为立方体,且立方体的长为3cm,宽为2cm,高为3cm,故其体积为:3×3×2=18cm3,故选:A.2.解:由图可得,几何体的主视图是:故选:D.3.解:从左边看有3列,第一列有3行,第二列有1行,第三列有2行,故选:A.4.解:将正方体A向右平移2个单位长度后,所得几何体的左视图和主视图不变,俯视图发生改变,故选:D.5.解:从左面可看到从左往右2列小正方形的个数为:2,1.故选:D.6.解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.7.解:此几何体的表面积为π•42××2+•2π•4×6+(4+4)×6=60π+48,故选:A.8.解:左视图有2列,每列小正方形数目分别为2,1.故选:A.9.解:结合主视图、左视图可知俯视图中左上角有2层,其余1层,故选:A.10.解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6,底面半径为2,故表面积=πrl+πr2=π×2×6+π×22=16π,故选:A.11.解:从上面物体的三视图看出这是一个圆柱体,故排除A选项,从俯视图看出是一个底面直径与长方体的宽相等的圆柱体.故选:B.12.解:其主视图是,故选:B.13.解:由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.故选:D.14.解:A、球的左视图是圆形,故此选项符合题意;B、水杯的左视图是等腰梯形,故此选项不合题意;C、圆锥的左视图是等腰三角形,故此选项不合题意;D、长方体的左视图是矩形,故此选项不合题意;故选:A.15.解:如图所示:左视图为:.故选:C.二.填空题(共8小题)16.解:∵立体图形是长方体,∴底面ABCD∥底面EFGH,∵矩形EFGH的投影是矩形ABCD,∴S1=S,∵EM>EF,EH=EH,∴S<S2,∴S1=S<S2,故答案为:S1=S<S2.17.解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2,故答案为:4πcm2,18.解:根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长l==5,所以这个圆锥的侧面积是π×4×5=20π.故答案为:20π19.解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm).故答案为:4.20.解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).故答案为:16π.21.解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.22.解:由三视图可知圆锥的底面半径为5,高为12,所以母线长为13,所以侧面积为πrl=π×5×13=65π,故答案为:65π.23.解:由题意和主视图、左视图可知俯视图必定由9个正方形组成,并设这9个位置分别如图所示:由主视图和左视图知:①第1个位置一定是4,第6个位置一定是3;②一定有2个2,其余有5个1;③最后一行至少有一个2,当中一列至少有一个2;根据2的排列不同,这个几何体的搭法共有10种:如下图所示:故答案为:10.。
2023年中考数学专题21 视图与投影(原卷版)

专题21 视图与投影一、投影1.投影:在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光下形成的物体的投影叫做中心投影,点光叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光近的物体的影子短,离点光远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.二、视图1.视图:由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.三、几何体的展开与折叠1.常见几何体的展开图几何体立体图形表面展开图侧面展开图圆柱圆锥三棱柱2.正方体的展开图正方体有11种展开图,分为四类:第一类,中间四连方,两侧各有一个,共6种,如下图:第二类,中间三连方,两侧各有一、二个,共3种,如下图:第三类,中间二连方,两侧各有二个,只有1种,如图10;第四类,两排各有三个,也只有1种,如图11.考向一三视图1.下列立体图形中,主视图是三角形的是()A.B.C.D.2.如图所示的几何体从上面看到的形状图是()A.B.C.D.3.某立体图形如图,其从正面看所得到的图形是()A.B.C.D.4.如图的几何体由若干个棱长为1的正方体堆放而成,则这个几何体的俯视图面积.考向二几何体的还原5.下列几何体中,俯视图与主视图完全相同的几何体是()A.圆锥B.球C.三棱柱D.四棱锥6.如图是某几何体的三视图,这个几何体是()A.三棱柱B.三棱锥C.长方体D.正方体7.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A.3cm3B.14cm3C.5cm3D.7cm38.如图是由一些相同的小正方体构成的立体图形的三种视图,则构成这个立体图形的小正方体的个数是个.考向三组合正方体的最值问题9.如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5B.6C.7D.810.如图,是一个由若干个小正方体组成的几何体的主视图和左视图,则该几何体最多可由多少个小正方体组合而成?()A.12个B.13个C.14个D.15个11.如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则m+n=()A.14B.16C.17D.1812.如图,用小立方块搭一几何体,从正面看相从上面看得到的图形如图所示,这样的几何体至少要个立方块.考向四几何体的计算问题13.长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是()A.10cm2B.12cm2C.15cm2D.20cm214.如图所示的三棱柱,其俯视图的内角和为()A.180°B.360°C.540°D.720°15.如图,是一个几何体的三视图,则该几何体的表面积是()A.7πcm2B.(+2)πcm2C.6πcm2D.(+5)πcm2 16.某几何体从三个方向看到的图形分别如图,则该几何体的体积为.考向五立体图形的展开与折叠17.下面图形中是正方体的表面展开图的是()A.B.C.D.18.如图是一个几何体的展开图,则这个几何体是()A.B.C.D.19.从如图所示的7个小正方形中剪去一个小正方形,使剩余的6个小正方形折叠后能围成一个正方体,则应剪去标记为()的小正方形A.祝或考B.你或考C.好或绩D.祝或你或成20.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6的小正方形中不能剪去的是(填编号).考向六投影21.下列投影不是中心投影的是()A.B.C.D.22.在同一时刻,将两根长度不等的竹竿置于阳光之下,但它们的影长相等,那么这两根竹竿的相对位置是()A.两根竹竿都垂直于地面B.以两根竹竿平行斜插在地上C.两根竹竿不平行D.无法确定23.如图,晚上小明在路灯下沿路从A处径直走到B处,这一过程中他在地上的影子()A.一直都在变短B.先变短后变长C.一直都在变长D.先变长后变短24.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4m.则路灯的高度OP为m.一.选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.如图所示,圆柱的主视图是()A.B.C.D.3.下面四个几何体中,左视图为圆的是()A.B.C.D.4.如图,是一个几何体的三视图,则这个几何体是()A.B.C.D.5.如图是一个几何体的三视图,则该几何体的体积为()A.1B.2C.D.46.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体的小正方体的个数最少是()A.6B.5C.4D.3二.填空题7.一个几何体的三视图如图所示,则该几何体的表面积为.8.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是(结果保留π).9.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)10.如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面.(填字母,注意:字母只能在多面体外表面出现)11.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.12.如图是某物体的三视图,则此物体的体积为(结果保留π).三.解答题13.已知某几何体的三视图如图所示,其中俯视图为正六边形,求该几何体的表面积.14.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位)(2)画出该几何体的主视图和左视图.15.一个正方体的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.(1)A的对面是,B的对面是,C的对面是;(直接用字母表示)(2)若A=﹣2,B=|m﹣3|,C=m﹣3n﹣,E=(+n)2,且小正方体各对面上的两个数都互为相反数,请求出F所表示的数.16.用若干个棱长为1cm的小正方体搭成如图所示的几何体.(1)这个几何体的体积为cm3.(2)请在方格纸中用实线画出该几何体的主视图,左视图,俯视图.(3)这个几何体的表面积为cm2.。
初三数学中考复习 视图与投影 专项复习练习题 含答案

初三数学中考复习视图与投影专项复习练习题1.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( B )2.如图是一个空心圆柱体,它的左视图是( B )3.中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”“牛”“羊”“马”“鸡”“狗”.将其围成一个正方体后,则与“牛”相对的是( C )A.羊 B.马 C.鸡 D.狗4.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是( B ),A) ,B) ,C) ,D)5.经过圆锥顶点的截面的形状可能是( B )6.某几何体的左视图如图所示,则该几何体不可能是( D )7.七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( C )8.如图,是由若干个相同的小立方体搭成的几何体俯视图和左视图,则小立方体的个数可能是( D )A.5或6 B.5或7 C.4或5或6 D.5或6或79.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有8条棱,该模型的形状对应的立体图形可能是( D )A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥10.有一个正方体,A,B,C的对面分别是x,y,z三个字母,如图所示,将这个正方体从现有位置依次翻到第1,2,3,4,5,6格,当正方体翻到第3格时正方体向上一面的字母是__x__.11.太阳光形成的投影是__平行__投影,灯光形成的投影是__中心__投影,身高相同的两名同学站在同一路灯下,影子长的离路灯__远__.12.已知,如图所示,木棒AB在投影面P上的正投影为A1B1,且AB=20 cm,∠BAA1=120°,则正投影A1B1=__103__cm.13.三棱柱的三视图如图所示,在△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为__6__cm.14.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是__4或5__.15.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为__3__m. 16.画出如图所示立体图形的三视图.解:如图所示:17.如图①所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图②所示,已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度,这样的线段可画几条?(2)试比较立体图形中∠BAC与平面展开图中∠B′A′C′的大小关系.解:(1)最长线段为10,有4条.(2)连结B′C′.由勾股定理得A′B′=5,B′C′=5,A′C′=10.∴A′B′2+B′C′2=A′C′2.∴∠A′B′C′=90°.∴∠C′A′B′=45°.又∠CAB=45°,∴∠BAC=∠B′A′C′.18.如图是一个几何体的三视图.(1)这个几何体的名称为__圆锥__;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程.解:(2)16π cm 2.(3)如图,将圆锥侧面展开,得到扇形ABB′,则线段BD 为所求最短路程.设∠BAB′=n °,∵n π×6180=4π,∴n =120,即∠BAB′=120°.∵C 为BB′︵的中点,∴∠ADB =90°,∠BAD =60°,∴BD =AB·sin ∠BAD =33cm ,∴线路的最短路程为3 3 cm.19.如图,在一间黑屋子里用一盏白炽灯照一个球.(1)球在地面上的阴影是什么形状?(2)当球沿铅垂方向下落时,阴影的大小会怎样变化?(3)若白炽灯到球心的距离是1 m ,到地面的距离是3 m ,球的半径是0.2 m ,求球在地面上留下的阴影的面积.解:(1)圆.(2)变小.(3)设如图所示各点,连结点O 与切点B ,由题意得△OAB∽△DAC.∵OB =0.2 m ,AO =1 m ,∴AB =256 m ,∴2563=0.2CD ,∴CD =64 m .∴S 阴影=(64)2π=38π m 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019 初三中考数学专题复习投影与视图专项练
习题
1. 同一时刻,身高1.72 m的小明在阳光下影长为0.86米;小宝在阳光下的影长为0.64 m,则小宝的身高为( )
A.1.28 m B.1.13 m C.0.64 m D.0.32 m
2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) A.小明的影子比小强的影子长B.小明的影子比小强的影子短
C.小明的影子和小强的影子一样长D.无法判断谁的影子长
3. 如图,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影是( )
4. 三角形的正投影是( )
A.三角形B.线段C.直线或三角形D.线段或三角形
5. 如图所示的几何体的左视图是( )
6. 如图是一个水平放置的圆柱型物体,中间有一细棒,则此几何体的俯视图是( )
7. 如图是由5个大小相同的小正方体拼成的几何体,下列说法中,正确的是( )
A.主视图是轴对称图形B.左视图是轴对称图形
C.俯视图是轴对称图形D.三个视图都不是轴对称图形
8. 三视图都是一样的几何体是( )
A.球、圆柱B.球、正方体C.正方体、圆柱D.正方体、圆锥
9.长方体的主视图与左视图如图所示(单位:cm),则其俯视图的面积是( ) A.4 cm2B.6 cm2C.8 cm2D.12 cm2
10. 如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是( )
A.5个B.6个C.7个D.8个
11. 如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB =1.5 m,CD=4.5 m,点P到CD的距离为2.7 m,则AB与CD间的距离是_________m.
12. 如图,把一根木棒AB的一个端点放在平面上,木棒AB在平面P上的正投影为A1B,若AB长为15 cm,影长A1B为9 cm,则AA1的长为________m.
13. 如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_______.
14. 一个几何体的三视图如图所示,其中主视图和俯视图都是矩形,则它的表面积是___________.
15. 如图所示,是某几何体的三视图.
(1) 指出该几何体的名称;
(2) 求出该几何体的侧面展开图的表面积;
(3) 求出该几何体的体积.
参考答案:
1---10 ADDDA CBBDA
11. 1.8
12. 12
13. 5
14. 108
15. 解:(1)正六棱柱(2)S侧=4×2×6=48 cm2(3)V=243cm3。