函数图象的变换及应用
函数图象变换和零点

函数图象变换和零点一、函数图像1、平移变换Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y =f (x )h 左移→y =f (x +h); 2)y =f (x ) h右移→y =f (x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y =f (x ) h 上移→y =f (x )+h ; 2)y =f (x ) h下移→y =f (x )-h 。
2、对称变换Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到;y =f (x ) 轴y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y =f (x ) 轴x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y =f (x ) 原点→y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。
y =f (x ) xy =→直线x =f (y )Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到;y =f (x )ax =→直线y =f (2a -x )。
3、翻折变换Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到4、伸缩变换Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )ay ⨯→y =af (x )Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a倍得到。
函数图像变换及应用

上节课知识检测一、基本内容1.利用描点法作函数图像其基本步骤是列表、描点、连线,具体为:2、会画基本函数图像(一次(两点想x 取0,,y 取0(或X 取1))、反比例(三点(x 取1/2、1,2)对称轴、对称中心)、二次(对称轴\顶点\开口)、幂(四点x 取0,1/2,1,2对称)、指数(三点x 取-1,0,1)、对数(三点Y-1,0,1)、对勾(两部分相等时X 值点)、三角(x 取五点;对称轴、对称中心))3.掌握画图像的基本方法:(1)描点法(2)图像变换法.平移、伸缩、翻折 (3)讨论分段法(1)平移变换:y =f (x ) ――――――――――→a >0,右移a 个单位a <0,左移|a |个单位 y =f (x -a ); y =f (x ) ―――――――――→b >0,上移b 个单位b <0,下移|b |个单位 y =f (x )+b . (2)伸缩变换:y =f (x )10111ωωωω<<>−−−−−−−−→,伸原的倍,短原的长为来缩为来 y =f (ωx );y =f (x ) ――――――――――――→A >1,伸为原来的A 倍0<A <1,缩为原来的A 倍 y =Af (x ). (3)对称变换:y =f (x )―――――――――→关于x 轴对称 y =-f (x ); y =f (x )――――――→关于y 轴对称 y =f (-x ); y =f (x )――――――――→关于原点对称 y =-f (-x ). (4)翻折变换:y =f (x )―――――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图像翻折到左边去y =f (|x |);y =f (x )―――――――――→留下x 轴上方图将x 轴下方图翻折上去y =|f (x )|.二、易错点1.在解决函数图像的变换问题时,要遵循“只能对函数关系式中的x ,y 变换”的原则,写出每一次的变换所得图像对应的解析式,这样才能避免出错.2.明确一个函数的图像关于y 轴对称与两个函数的图像关于y 轴对称的不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三、基本考点及例题 考点一 作图像画函数图像的一般方法1、直接法.(1)描点法 (2)经验法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出;2、图像变换法.若函数图像可由某个基本函数的图像经过平移、翻折、对称得到,可利用图像变换作出,但要注意变换顺序.对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.3、分段函数:分别作出每段区间的图像,注意:分段函数是一种特殊的函数,自变量在不同范围内取值时,对应的解析式不同,但无论分段函数共有几段,它始终是一个函数,而不是多个函数。
对数函数的图象变换及在实际中的应用

对数函数的图象变换及在实际中的应用 对数函数图象是对数函数的一种表达形式,形象显示了函数的性质。
为研究它的数量关系提供了“形”的直观性,它是探求解题途径、获得问题结果的重要途径。
一. 利用对数函数图象的变换研究复杂函数图象的性质(一) 图象的平移变换例1. 画出函数)2(l o g 2+=x y 与)2(log 2-=x y 的图像,并指出两个图像之间的关系?解:函数x y 2log =的图象如果向右平移2个单位就得到)2(log 2-=x y 的图像;如果向左平移2个单位就得到)2(log 2+=x y 的图像,所以把)2(log 2+=x y 的图象向右平移4个单位得到)2(log 2-=x y 的图象注:图象的平移变换:1.水平平移:函数)(b x f y ±=,)0(>a 的图像,可由)(x f y =的图像向左(+)或向右()-平移a 个单位而得到.2.竖直平移:函数b x f y ±=)(,)0(>b 的图像,可由)(x f y =的图像向上(+)或向下()-平移b 个单位而得到.(二)图像的对称变换例2.画出函数22log x y =的图像,并根据图像指出它的单调区间. 解:当0≠x 时,函数22log x y =满足)(log )(log )(2222x f x x x f ==-=-,所以22log x y =是偶函数,它的图象关于y 轴对称。
当0>x 时,x x y 222l o g 2l o g ==。
因此先画出x y 2log 2=,(0>x )的图象为1c ,再作出1c 关于y 轴对称2c ,1c 与2c 构成函数22l o g x y =的图像,如图:由图象可以知道函数22log x y =的单调减区间是()0,∞-,单调增区间是),0(+∞例3.画出函数x y 3log =与x y 31log =的图像,并指出两个图像之间的关系?解:图象如图:把函数x y 3log =的图象作关于x 轴对称得到x y 31log =的图像注:图象的对称变换:①)(x f y -=与)(x f y =关于y 轴对称②)(x f y -=与)(x f y =关于x 轴对称③)(x f y --=与)(x f y =关于原点轴对称④)(1x f y -=与)(x f y =关于直线x y =轴对称 ⑤)(x f y =的图像可将 )(x f y =,0≥x 的部分作出,再利用偶函数的图像关于y 轴对称,作出0<x 的图像.二. 利用对数函数的图象解决有关问题(一) 利用图像求参数的值例4.已知函数)(log b x y a +=的图像如图所示,求函数a 与b 的值.解:由图象可知,函数的图象过)0,3(-点与)3,0(点,所以得方程)3(log 0b a +-=与b a log 3=,解出2=a ,4=b 。
第7讲函数的图象

第7讲函数的图象一、基础梳理1.作图:描点法作图:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性等);④画出函数的图象.2.图象变换法(1)平移变换①水平平移:y=f(x±a)(a>0)的图象,可由y=f(x)的图象向左(+)或向右(-)平移a个单位而得到.②竖直平移:y=f(x)±b(b>0)的图象,可由y=f(x)的图象向上(+)或向下(-)平移b个单位而得到.(2)对称变换①y=f(-x)与y=f(x)的图象关于y轴对称.②y=-f(x)与y=f(x)的图象关于x轴对称.③y=-f(-x)与y=f(x)的图象关于原点对称.④y=f-1(x)与y=f(x)的图象关于直线y=x对称.(3)翻折变换①作为y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象.②作为y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f(|x|)的图象.(4)伸缩变换①y=af(x)(a>0)的图象,可将y=f(x)图象上每点的纵坐标伸(a>1时)缩(a<1时)到原来的a倍.②y=f(ax)(a>0)的图象,可将y=f(x)的图象上每点的横坐标伸(a<1时)缩(a>1时)到原来的1 a.3.识图:对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.4.用图:函数图象形象地显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题路径,获得问题结果的重要工具,要重视数形结合思想的应用.一条规律对于左、右平移变换,可熟记口诀:左加右减.但要注意加、减指的是自变量,否则不成立.两个区别(1)一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.(2)一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三种方法画函数图象的方法有:(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出;(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响;(3)描点法:当上面两种方法都失效时,则可采用描点法.为了通过描少量点就能得到比较准确的图象,常常需要结合函数的单调性、奇偶性等性质讨论.题型精讲题型一作函数的图象【例1】分别画出下列函数的图象.(1)y=|x2-4x+3|;(2)y=2x+1 x+1;(3)y=10|lg x|.针对训练分别画出下列函数的图象. (1)y =x 2-4|x |+3; (2)y =|log 2(x +1)|.题型二 函数图象的识辨【例2】(1)下列函数图象中不正确的是( ).(2)函数f (x )=1+log 2x 与g (x )=21-x 在同一直角坐标系下的图象大致是(3)设b >0,二次函数y =ax 2+bx +a 2-1的图象为下列之一,则a 的值为A .1B .-1 C.-1-52 D.-1+52针对训练(1)函数f (x )=x +|x |x 的图象是( ).(2)函数y =e x +e -xe x -e-x 的图象大致为( ).题型三 函数图象的应用 【例3】(1)直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围是________. (2)函数y =3x -1x +2的图象关于________对称.(3)已知定义在R 上的奇函数y =f (x )的图象关于直线x =1对称,当0<x ≤1时,f (x )=log 12x ,则方程f (x )-1=0在(0,6)内的所有根之和为( ) A .8 B .10 C .12 D .16 针对训练(1)对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x-1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1](2)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是(3)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是______.高考中函数图象的考查题型由解析式找图像【示例】函数y =x2-2sin x 的图象大致是( ).二、图象平移问题【示例】若函数f (x )=ka x -a -x (a >0且a ≠1)在(-∞,+∞)上既是奇函数又是增函数,则g (x )=log a (x +k )的图象是( ).三、图象对称问题【示例】y =log 2|x |的图象大致是( ).课时作业7一、选择题1.一次函数y =ax +b (a ≠0)与二次函数y =ax 2+bx +c (a ≠0)在同一坐标系中的图象大致是( ).2.函数f (x )=log a |x |+1(0<a <1)的图象大致为( ).3.已知f (x )=⎩⎨⎧-2x ,-1≤x ≤0,x ,0<x ≤1,则下列函数的图象错误的是( ).4.函数y =2x -x 2的图象大致是( ).5.方程|x |=cos x 在(-∞,+∞)内( ). A .没有根 B .有且仅有一个根 C .有且仅有两个根 D .有无穷多个根二、填空题6.把函数f (x )=(x -2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数解析式是________.7.函数f (x )=x +1x 的图象的对称中心为________.8.已知f (x )=⎝ ⎛⎭⎪⎫13x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________. 三、解答题9.已知函数y =f (x )的图象关于原点对称,且x >0时,f (x )=x 2-2x +3,试求f (x )在R 上的表达式,并画出它的图象,根据图象写出它的单调区间.10.已知函数y =f (x )的定义域为R ,并对一切实数x ,都满足f (2+x )=f (2-x ). (1)证明:函数y =f (x )的图象关于直线x =2对称;(2)若f (x )是偶函数,且x ∈[0,2]时,f (x )=2x -1,求x ∈[-4,0]时的f (x )的表达式.。
高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析

高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析在高考中涉及到的三角函数图像变换主要指的是形如()sin y A x ωϕ=+的函数,通过横纵坐标的平移与放缩,得到另一个三角函数解析式的过程。
要求学生熟练掌握函数图像变换,尤其是多次变换时,图像变化与解析式变化之间的对应联系。
一、基础知识:(一)图像变换规律:设函数为()y f x =(所涉及参数均为正数) 1、函数图像的平移变换:(1)()f x a +:()f x 的图像向左平移a 个单位 (2)()f x a −:()f x 的图像向右平移a 个单位 (3)()f x b +:()f x 的图像向上平移b 个单位 (4)()f x b −:()f x 的图像向下平移b 个单位 2、函数图像的放缩变换:(1)()f kx :()f x 的图像横坐标变为原来的1k(图像表现为横向的伸缩) (2)()kf x :()f x 的图像纵坐标变为原来的k 倍(图像表现为纵向的伸缩) 3、函数图象的翻折变换: (1)()fx :()f x 在x 轴正半轴的图像不变,负半轴的图像替换为与正半轴图像关于y 轴对称的图像(2)()f x :()f x 在x 轴上方的图像不变,x 轴下方的部分沿x 轴向上翻折即可(与原x 轴下方图像关于x 轴对称)(二)图像变换中要注意的几点:1、如何判定是纵坐标变换还是横坐标变换?在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下: ① 若变换发生在“括号”内部,则属于横坐标的变换 ② 若变换发生在“括号”外部,则属于纵坐标的变换例如:()31y f x =+:可判断出属于横坐标的变换:有放缩与平移两个步骤()2y f x =−+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标的为平移变换2、解析式变化与图像变换之间存在怎样的对应?由前面总结的规律不难发现: (1)加“常数”⇔ 平移变换(2)添“系数”⇔放缩变换 (3)加“绝对值”⇔翻折变换3、多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:① 横坐标的变换与纵坐标的变换互不影响,无先后要求 ② 横坐标的多次变换中,每次变换只有x 发生相应变化 例如:()()21y f x y f x =→=+可有两种方案方案一:先平移(向左平移1个单位),此时()()1f x f x →+。
高中数学《函数图象的变换》教案

高中数学《函数图象的变换》精品教案第一章:函数图象的变换概述1.1 教学目标了解函数图象变换的概念和基本方法。
理解函数图象变换的实质和作用。
1.2 教学内容函数图象的平移变换:水平方向的平移和垂直方向的平移。
函数图象的缩放变换:横向缩放和纵向缩放。
函数图象的旋转变换。
1.3 教学方法采用多媒体演示和实际操作相结合的方式,让学生直观地理解函数图象的变换。
通过例题和练习题,让学生巩固所学内容。
1.4 教学评估通过课堂讲解和练习题,评估学生对函数图象变换概念的理解程度。
通过实际操作和练习题,评估学生对函数图象变换方法的掌握程度。
第二章:函数图象的平移变换2.1 教学目标掌握函数图象的水平方向和垂直方向的平移变换方法。
能够运用平移变换方法改变函数图象的位置。
2.2 教学内容水平方向的平移变换:左加右减的原则。
垂直方向的平移变换:上加下减的原则。
实际操作示例:通过几何画板或函数图象软件,演示函数图象的平移变换过程。
2.3 教学方法通过多媒体演示和实际操作,让学生直观地理解函数图象的平移变换方法。
通过例题和练习题,让学生巩固所学内容。
2.4 教学评估通过课堂讲解和练习题,评估学生对函数图象平移变换方法的理解程度。
通过实际操作和练习题,评估学生对函数图象平移变换的掌握程度。
第三章:函数图象的缩放变换3.1 教学目标掌握函数图象的横向缩放和纵向缩放变换方法。
能够运用缩放变换方法改变函数图象的大小。
3.2 教学内容横向缩放变换:横坐标的乘以一个非零常数。
纵向缩放变换:纵坐标的乘以一个非零常数。
实际操作示例:通过几何画板或函数图象软件,演示函数图象的缩放变换过程。
3.3 教学方法通过多媒体演示和实际操作,让学生直观地理解函数图象的缩放变换方法。
通过例题和练习题,让学生巩固所学内容。
3.4 教学评估通过课堂讲解和练习题,评估学生对函数图象缩放变换方法的理解程度。
通过实际操作和练习题,评估学生对函数图象缩放变换的掌握程度。
函数图象的三种变换

(2)如图数图象的三种变换函数的图象变换是高考中的考查热点之一,常见变换有以下3种:一、平移变换例1设fx)=X2,在同一坐标系中画出:(1)y=fx),y=fx+1)和y=f(x-1)的图象,并观察三个函数图象的关系;(2)y=fx),y=fx)+1和y=f(x)-1的图象,并观察三个函数图象的关系.解(1)如图点评观察图象得:y二fx+1)的图象可由y二fx)的图象向左平移1个单位长度得到;y二fx-1)的图象可由y二fx)的图象向右平移1个单位长度得到;y二fx)+1的图象可由y二fx)的图象向上平移1个单位长度得到;y二fx)-1的图象可由y二fx)的图象向下平移1个单位长度得到.二、对称变换_例2设fx)=x+1,在同一坐标系中画出y=fx)和y=f(—x)的图象,并观察两个函数图象的关系.解画出y二fx)二x+1与y二f(-x)二-x+1的图象如图所示.由图象可得函数y二x+1与y二-x+1的图象关于y轴对称.小点评函数y二fx)的图象与y二f(-x)的图象关于y轴对称;函数y二fx)的图象与y二-fx)的图象关于x轴对称;函数y二fx)的图象与y二-f(-x)的图象关于原点对称.三、翻折变换例3设fx )=x +l ,在不同的坐标系中画出y =fx )和y =|fx )1的图象,并观察两个函数图象的关系.解y 二fx )的图象如图1所示,y 二|fx )l 的图象如图2所示.点评要得到y 二fx )l 的图象,把y 二fx )的图象中x 轴下方图象翻折到x 轴上方,其余部分不变.例4设fx )=x +1,在不同的坐标系中画出y =fx )和y =f(\x\)的图象,并观察两个函数图象的关系.解如下图所示.点评要得到y 二f (\x \)的图象,先把y 二fx )图象在y 轴左方的部分去掉,然后把y 轴右边的对称图象补到左方即可.小结:y €f(x)——,y =f x )\将x 轴下方图象翻折上去y €f(x)——留y 轴右侧图象,y =f (\x \).并作其关于y 轴对称的图象—如图:y+y=f(x)四函数图象自身的对称性 1•函数y =f(x)的图象关于直x =a 2b对称…f (a +x )€f (b -x )…f (a +b -x)=f(x)2•函数y =f(x)的图象关于点(a,b)对称…2b -f(x)=f(2a -x)…f (x )€2b —f (2a —x )…f(a +x)+f(a -x)=2b3.若f(x)€-f (-x),则f(x)的图象关于原点对称,若f(x)=f(-x),则f(x)的图象关于y 轴对称。
高三数学专题教案函数图像的变换及应用_

芯衣州星海市涌泉学校2021届高三数学专题教案:函数图像的变换及应用一.知识梳理复习函数图像的变换:(1)、奇偶函数图象的对称性;(2)、假设f(x)满足f(a+x)=f(b -x)那么f(x)的图象以2a b x+=为对称轴;特例:假设f(a+x)=f(a -x)那么f(x)的图象关于x=a 对称。
(3)、假设f(x)满足f(a+x)=-f(b -x)那么f(x)的图象以(,0)2a b +为对称中心;特例:假设f(a+x)=-f(a -x)那么f(x)的图象以点〔a,0〕为对称中心。
(4)、假设f(x)满足f(a+x)+f(b-x)=c 那么f(x)的图象关于点(,)22a b c +中心对称。
二.例题讲解例1、求函数y=f 〔1-x 〕与函数y=f 〔x-1〕的图象对称轴方程?〔1〕.对于定义在R 上的函数)(x f ,有下述命题: ①假设)(x f 是奇函数,那么)1(-x f 的图像关于点)0,1(A 对称;②假设对R x ∈,恒有)1()1(-=+x f x f ,那么)(x f 的图像关于直线1=x 对称; ③假设函数)1(-x f 的图像关于直线1=x 对称,那么)(x f 为偶函数; ④函数)1(x f +与函数)1(x f -的图像关于直线1=x 对称.其中正确命题的序号为______________________.例2、设f(x)=x+1,求f(x+1)关于直线x=2对称的曲线的解析式。
例3、设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,求f(x)的解析式。
例3、设定义域为R 的函数⎩⎨⎧=≠-=1,01,||1|lg |)(x x x x f ,那么关于x 的方程0)()(2=++c x bf x f有7个不同实数解的充要条件是〔〕(A)0<b 且0>c(B)0>b 且0<c (C)0<b 且0=c (D)0≥b 且0=c 例4.函数)(x f 的图像与函数21++=x x y 的图像关于点)1,0(A 对称. 〔1〕求)(x f 的解析式;〔2〕假设xa x f x g +=)()(且)(x g 在区间]2,0(上为减函数,求正数a 的取值范围. 例5、函数4(1)|1|()2(1)x x f x x ⎧≠⎪-=⎨⎪=⎩〔1〕作出函数()y f x =的大致图像. 〔2〕〔考虑题〕假设关于x 的方程2()()0f x bf x c ++=有三个不同的实数解123x x x 、、,求222123x x x ++的值.三、课后习题:1、设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,求f(x)的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O 1y=log2x x
(6)由y=f(x)的图象作 y=|f(x)|的图象:
保留y=f(x)中x轴上 方部分,再加上下方部分关 于x轴对称的图形.
a
6
练习2:
1、函数f(x)=loga|x|(a>1)的图象可能是(A )
y
y
y
y
1
-1 0 1 x A
-1 0 1 x B
0
x
C
0
1x
D
2、已知函数f(x)=lgx则函数g(x)=|f(1-x)|的图象大致是(A )
y
y
y
y
0
1x
A
-1 0
x
-2 -1 0 x 0
1x
B
C
a
D
7
问题4:如何由函数f(x)=sinx的图象得到下列函数 的图象?
(1)y=2sinx
y
(2)y= 1 sinx (3)y=sin2x (4)y=sin 1 x
2
2
y=2sinx图象由y=sinx图象(横标不变), 纵标伸长2倍而得。
y= 2s in x
横向伸缩: y=f(x)
y=f(ax)
a>1(纵标不变)横标缩短到原来的
1 a
0<a<1(纵标不变)横标伸长到原来的
1 a
a
10
例1:如何由y=sinx
的图象得到y=3sin(2x+
π 3
)
方法1:
y
y=sinx
纵向伸长3倍
y=3sinx
y=3sinx
左移 π 3π
y=3横si向n(缩x+短31)
(3)f(x)+1=x2+1 (4)f(x)-1=x2-1
1
-1 O 1
x
y=f(x)-1 -1
函数图象的平移变换:
y=f(x)左右平移 y=f(x+a)
a>0,向左平移a个单位 a<0,向右平移|a|个单位
上下平移
k>0,向上平移k个单位
y=f(x)
y=f(x)+k
a
k<0,向下平移|k|个单3位
横标缩短
1 2
而得。
y=si n x
y=si1n x 2
y=sin2x
2π
x
O
y=sin
1 2
x图象由y=sinx图象(纵标不变),
横标伸长2倍而得。
a
9
函数图象伸缩变换的规律:
纵向伸缩: y=f(x)
y=Af(x)
A>1(横标不变)纵标伸长到原来的A倍 0<A<1(横标不变)纵标缩短到原来的A倍
y
(2)y=-2x
y
1 Ox
1
O
-1
x
(3)y=-2-x
y
(4)y=log2x
y
1
O
x
-1
1 O1 x
换 对(1)y=f(x)与y=f(-x)的图象关于 y 轴 称(2)y=f(x)与y=-f(x)的图象关于 x 轴 变(3)y=f(x)与y=-f(-x)的图象关于 原 点
对称; 对称; 对称;
(4)y=f(x)与y=f -1(x)的图象关于 直线y=x 对称.
a
5
问题3:分别在同一坐标系中作出下列各组函数的图 象,并说明它们之间有什么关系?
(1)y=2x与y=2|x|
y
y=2|x|
(2)y=log2x与y=|log2x|
y
y=|log2x|
1 y=2x
O
x
(5)由y=f(x)的图象作 y=f(|x|)的图象:
保留y=f(x)中y轴 右侧部分,再加上这部分 关于y轴对称的图形.
3
y=sinx
- O 6
y=3sin(2x+ ) )
3
x
y=3sin2x
a
12
例2.画出函数
y
=
2 x
-x -1
的图象
y
=
2 x
-x -1
=
-(x -1) x-1
+1
=
-1 +
1 x -1
y
=
1 x
x换成x-1
向右平移1个单位
y
=
1 x -1
向下平移1个单位
y
O
1
x
-1 (1,-1)
y = 1 -1
2
y=3sin(2x+ π)
3
y=sinx
-
3
-
6
O
y=3sin(2x+ ) )
3
x
y=3sin(x+ ) 3
a
11
例1:如何由y=sinx
的图象得到y=3sin(2x+
π 3
)
方法2:
y
y=sinx
纵向伸长3倍ຫໍສະໝຸດ y=3sinxy=3sinx
横向缩短 1 2
y=3sin2x
左移 π 6
y=3sin(2x+π )
专 题 研 究
高三总复习
a
1
你想利用图象的直观性来解决问题吗? 那么你首先应该认识与掌握
函数图象的三大变换
平移 对称 伸缩
a
2
问题1:如何由f(x)=x2的图象得到下列各函数的
图象?
y
(1)f(x-1)=(x-1)2 (2)f(x+1)=(x+1)2
y=f(x)+1 y=f(x+1)
y=f(x-1)
x -1
a
13
例3.已知函数y=|2x-2|
(1)作出函数的图象; 如图 (2)指出函数 的单调区间; (3)指出x取何值时,函数有最值。
y 当x=1时,函数有最小值为0
y=2x
y=2x-2
y=|2x-2|
1
y=|2x-2|
O 1 23 x -1
f(x)在(-∞,1]单调减a;在[1,+∞)单调增
当a=4时,方程有三个解;
当a>4时, 方程有两个解.
当a>4或a=0时,方程有两个解.a
4
-1 O 1
x
y=a(a=0) 有两个交点
-4
15
1.(2002年全国高考)函数
y
y
1 1
O 1 x O1
2
01
x
-1 0 x
-1 0 x
A
B
C
D
13my 、=(若-1f,(0x))平=a移x(a的y>图01,a象≠大1)满致足是f(-1(1yB)12 <)0则函数f(x1y)的图象沿
a
4
0A
x0 B
x0 C
x0 D x
问题2:说出下列函数的图象与指数函数y=2x的图象的 关系,并画出它们的示意图.
(1)y=2-x
14
例4.关于x的方程|x2+2x-3|=a(a∈R)
的不同实根的个数。
y=a(a>4)有二个交点
y
解:在同一坐
标系中,作出 y=|x2+2x-3|和
y=a(a=4) 有三个交点
y=a的图象。 y=a(0<a<4)
有四个交点
由图可知:
当a<0时, 方程无解;
当a=0时, 方程有两个解; y=a(a<0) 当0<a<4时,方程有四个解; 没有交点
y=si n x
y=1 sinx 2
O
2π
x
纵y=标12缩sin短x图1象而由得a y。=sinx图象(横标不变), 8
2
问题4:如何由函数f(x)=sinx的图象得到下列函数 的图象?
(1)y=2sinx
y
(2)y= 1 sinx (3)y=sin2x (4)y=sin1 x
2
2
y=sin2x图象由y=sinx图象(纵标不变),
练习1:
1、将函数f(x)=2x的图象( A )可得到
函数f(x)=2x-1的图象 A、向右平移一个单位 B、向左平移一个单位
C、向下平移一个单位 D、向上平移一个单位
2、若奇函数f(x)=kax-a-x(a>0,a1)在R上是增函数,
那y 么g(x)=㏒ya(x+k)的大致图象是y( C )
y
01 2 x