《圆的有关性质》PPT课件
合集下载
人教版九年级数学上册第24章第1节《圆》课件

A
A
C
B
B C
O C
O
B A
O
D
D
A
A
C
B
B C
O
O
B A
O
C
D
D
【发现】直径是最长的弦
探究新知
24.1 圆的有关性质/
弧:
圆上任意两点间的部分叫做圆弧,简弧.以A、B为 端点的弧记作 AB,读作“圆弧AB”或“弧AB”.
➢半圆
B ·O
A
C
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
A ·O1 C
探究新知
24.1 圆的有关性质/
【想一想】长度相等的弧是等弧吗? 如图,如果A︵B和C︵D的拉直长度都是10cm,平移并调整
小圆的位置,是否能使这两条弧完全重合?
可见这两条弧不可能完全重合
D
B
A
C
实际上这两条弧弯曲程度不同
A
“等弧”要区别于“长度相等的弧”
D BC
【结论】等弧仅仅存在于同圆或者等圆中.
探究新知 素养考点 1 圆的定义的应用
24.1 圆的有关性质/
例1 矩形ABCD的对角线AC、BD相交于O. 求证:A、B、C、D在以O为圆心的同一圆上.
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
A
D
O
又∵AC=BD,
B
C
∴OA=OB=OC=OD.
∴A、B、C、D在以O为圆心,以OA为半径的圆上.
B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的 墨线是运用了“直线外一点与直线上各点连接的所有线段中, 垂线段最短”的原理
C.将自行车的车架设计为三角形形状是运用了“三角形的稳 定性”的原理
圆的有关性质课件.ppt

解:
23÷2÷20=0.575cm
答: 这棵红衫树的半径每年增 加0.575cm
1.如图:CD为⊙O直径,AE交⊙O于B,且AB=OC, ∠A=20o,求∠DOE的度数.
赵州桥主桥拱的半径是多少?
问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石 拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧 形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦 的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?
以OA为半径的圆上。
矩形--四点共圆
练一练 1.如何在操场上画一个半径是5m 的圆?说出你的理由
首先确定圆心, 然后用5米长的绳子一端固 定为圆心端,另一端系在一端尖木棒,木棒 以5米长尖端划动一周,所形成的图形就是 所画的圆.
根据圆的形成定义
练一练
2 你见过树木的年轮吗?从树木的年轮,可以 很清楚的看出树木生长的年龄,如果一棵20年 树龄的红杉树的树干直径是23cm,这棵红杉 树的半径每年增加多少?.
活 动 三 练习
1.如图,在⊙O中,弦AB的长为8cm,圆心O 到AB的距离为3cm,求⊙O的半径.
解: OE AB
A
E
B
AE 1 AB 1 8 4
22 在 Rt △AOE中
·
O
AO2 OE2 AE2
AO OE2 AE2 = 32 +42 =5cm
答:⊙O的半径为5cm.
2.如图,在⊙O中,AB、AC为互相垂直且相等的 两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形 ADOE是正方形.
圆的有关概念和性质
一石激起千层浪 奥运五环
乐在其中
圆的概念
如图,在一个平面内,线段OA绕它固定的一个
23÷2÷20=0.575cm
答: 这棵红衫树的半径每年增 加0.575cm
1.如图:CD为⊙O直径,AE交⊙O于B,且AB=OC, ∠A=20o,求∠DOE的度数.
赵州桥主桥拱的半径是多少?
问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石 拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧 形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦 的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?
以OA为半径的圆上。
矩形--四点共圆
练一练 1.如何在操场上画一个半径是5m 的圆?说出你的理由
首先确定圆心, 然后用5米长的绳子一端固 定为圆心端,另一端系在一端尖木棒,木棒 以5米长尖端划动一周,所形成的图形就是 所画的圆.
根据圆的形成定义
练一练
2 你见过树木的年轮吗?从树木的年轮,可以 很清楚的看出树木生长的年龄,如果一棵20年 树龄的红杉树的树干直径是23cm,这棵红杉 树的半径每年增加多少?.
活 动 三 练习
1.如图,在⊙O中,弦AB的长为8cm,圆心O 到AB的距离为3cm,求⊙O的半径.
解: OE AB
A
E
B
AE 1 AB 1 8 4
22 在 Rt △AOE中
·
O
AO2 OE2 AE2
AO OE2 AE2 = 32 +42 =5cm
答:⊙O的半径为5cm.
2.如图,在⊙O中,AB、AC为互相垂直且相等的 两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形 ADOE是正方形.
圆的有关概念和性质
一石激起千层浪 奥运五环
乐在其中
圆的概念
如图,在一个平面内,线段OA绕它固定的一个
圆的有关性质——弧、弦、圆心角_PPT

∴ CD=AB
弦等
弧等
19
6.小结
1.请回顾本节课我们学习同圆或 等圆中,圆心角及其所对的弧、弦之 间的关系的学习过程.
2.怎样记忆圆心角定理呢? 要注意什么?
20
7.提升
如图,CD为⊙O的弦,在CD上取 CE=DF,连结OE、OF,并延长交⊙O 于点A、B.
((12))试求判证断:A△CO⌒=EBFD的⌒形状,并说明理由;
2)如果OAEB与=C⌒ODF,相⌒那等么吗?为A什B=,么CD? AOB CO。D
3)如果∠AOB=∠COD,那么 AB ,CD AB。=CD
(1) 圆心角相等
(2) 弧相等 (3) 弦相等 (4) 弦心距相等
知A E B
一 得
O· D
二三 C F 16
例1 如图,在⊙O中,A⌒B=A⌒C,∠ACB=60°,
一个角度.
30°
N
N′
15°
O
可以看出,点 N′在圆O上.
4
把圆 O 的半径 ON 绕圆心 O 旋转任意
一个角度.
60°
N′
N
30°
O
可以看出,点 N′也在圆O上.
5
把圆 O 的半径 ON 绕圆心 O 旋转任意
一°
O
可以看出,点 N′还在圆O上.
6
把圆 O 的半径 ON 绕圆心 O 旋转任意
证明: ∵ BC⌒=C⌒D=⌒DE
∴∠COB=∠COD=∠DOE =35A° ∴∠AOE=180°-3∠COD =75°
ED C B
O
弧等
圆心角等
18
3、如图,AD=BC,请比较AB与CD的大小.
解: ∵ AD=BC
24-1 圆的有关性质 课件(共60张PPT)

平分弦所对的两条弧。
知识梳理
知识点4:垂径定理的应用。
将垂径定理和勾股定理有机结合,化圆中问题为三角形问题。
“圆弧AB”或“弧AB”。圆的任意一条直径
的两个端点把圆分成两条弧,每一条弧都叫做
半圆(semi-circle)。
圆
能够重合的两个圆叫做等圆,容易
看出:半径相等的两个圆是等圆;
反过来,同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的
弧叫做等弧。
圆
概念辨析
直径是弦,弦是直径。这句话正确吗?
2
2
1
∠DOB。
2
圆周角
探究结论
分别测量图中所对的圆周角∠ACB和
圆心角∠AOB的度数,可以发现两角的
度数相同。
同弧所对的圆周角的度数等于这条弧所
对的圆心角的度数的一半。
圆周角
则有圆周角定理:一条弧所对的圆周角等
于它所对的圆心角的一半。
我们还可以得到推论:(1)同弧或等弧
进一步,我们还可以得到推论:平分弦(
不是直径)的直径垂直于弦,并且平分弦
所对的两条弧。
垂直于弦的直径
问题二
赵州桥(图右)是我国隋代建造的石拱桥,距
今约有1400年的历史,是我国古代人民勤劳
与智慧的结晶。它的主桥拱是圆弧形,它的跨
度(弧所对的弦的长)为37m,拱高(弧的
中点到弦的距离)为7.23m,求赵州桥主桥拱
8()。∵CD平分∠ACB,∴∠ACD=∠BCD,
∴∠AOD=∠BOD,∴AD=BD。又在Rt∆ABD中,
2
2
2
2
2
AD +BD =AB ,∴AD=BD= AB= ×10=5
知识梳理
知识点4:垂径定理的应用。
将垂径定理和勾股定理有机结合,化圆中问题为三角形问题。
“圆弧AB”或“弧AB”。圆的任意一条直径
的两个端点把圆分成两条弧,每一条弧都叫做
半圆(semi-circle)。
圆
能够重合的两个圆叫做等圆,容易
看出:半径相等的两个圆是等圆;
反过来,同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的
弧叫做等弧。
圆
概念辨析
直径是弦,弦是直径。这句话正确吗?
2
2
1
∠DOB。
2
圆周角
探究结论
分别测量图中所对的圆周角∠ACB和
圆心角∠AOB的度数,可以发现两角的
度数相同。
同弧所对的圆周角的度数等于这条弧所
对的圆心角的度数的一半。
圆周角
则有圆周角定理:一条弧所对的圆周角等
于它所对的圆心角的一半。
我们还可以得到推论:(1)同弧或等弧
进一步,我们还可以得到推论:平分弦(
不是直径)的直径垂直于弦,并且平分弦
所对的两条弧。
垂直于弦的直径
问题二
赵州桥(图右)是我国隋代建造的石拱桥,距
今约有1400年的历史,是我国古代人民勤劳
与智慧的结晶。它的主桥拱是圆弧形,它的跨
度(弧所对的弦的长)为37m,拱高(弧的
中点到弦的距离)为7.23m,求赵州桥主桥拱
8()。∵CD平分∠ACB,∴∠ACD=∠BCD,
∴∠AOD=∠BOD,∴AD=BD。又在Rt∆ABD中,
2
2
2
2
2
AD +BD =AB ,∴AD=BD= AB= ×10=5
圆的有关性质精选课件PPT

④.圆是轴对称图形,对称轴是直径
A.1个 B.2个
C.3个
D.4个
4.下列命题中正确的是( D
)
A.弦的垂线平分弦所对的弧;
B.平分弦的直径垂直于这条弦;
C.过弦的中点的直线必过圆心;
D.弦所对的两条弧的中点连线垂直平分弦 且过圆心;
双基训练
5. 如图,将半径为2cm的圆形纸片折叠后,圆弧 恰好经过圆心,则折痕AB的长为( C )
12.已知直径AB被弦CD分成AE=4,
EB=8,CD和AB成300角,则弦CD
的弦心距OF=___1_;CD=_2__3_5_.
D
F
A
B
C
EO
13.已知:如图,直径CD⊥AB,垂足为E .
⑴若半径R = 2 ,AB = 2 3 , 求OE、DE 的长.
⑵若半径R = 2 ,OE = 1 ,求AB、DE 的长.
/cztvr wgi/162391.html
/hohdahq /16301 6.ht ml
A
B
C
D
O
7.已知:⊙O中弦AB∥CD且AB=9cm,CD=12cm, ⊙O的直径为15cm,则弦AB,CD间的距离为
(C )
A.1.5cm
B.10.5cm;
B
·OOE D C
A
P
A
B
10. 同心圆中,大圆的弦AB交小圆于C,D,已知 AB=4,CD=2,AB的弦心距为1,则两个同心圆的
半径之比为( B)
A.3:2 B. 5: 2 C. 5 :2 D.5:4
11.已知:AB 和CD 是⊙O的两条弧,且 AB =2 CD ,则( C )
A.AB=2CD B.AB>2CD C.AB<2CD D.都不对
2圆的有关性质(第3课时)PPT课件(人教版)

把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
N
N′
n°
O
性质:把圆绕圆心旋转任意一个角度后,仍与本来 的圆重合.(圆具有旋转不变性)
2.性质
把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
N
N′
n°
O
我们把顶点在圆心的角叫做圆心角.如∠NON′是 圆 O 的一个圆心角.
3.探究
如图, 在⊙O 中,当圆心角∠AOB =∠A ` OB` 时,
又因为 AO=CO,BO=DO,
A
E
B D
所以 △AOB ≌ △COD.
又因为 OE 、OF 是 AB 与 CD 对应边上的高,
O F
所以 OE=OF.
C
6.例题
例1 如图,在⊙O 中, AB= AC,∠ACB =60°. 求证:∠AOB=∠BOC=∠AOC.
A
O
B
C
6.例题
例2 如图,AB 是⊙O 的直径,BC = CD = DE , ∠COD=35°,求∠AOE 的度数.
它们所对的弧AB和弧A`B`、弦AB和弦A`B` 相等吗?为
什么?
A' B
AB= A'B' AB=A'B'
B'
O
A
4.定理
这样,我们就得到下面的定理: 在同圆或等圆中,相等的圆心角所对的弧相等,所 对的弦也相等.
你能用几何符号表示出定理吗?
同样,还可以得到: 在同圆或等圆中,如果两条弧相 等,那么它们所对的圆心角__相__等__ ,
30°
N′NLeabharlann 15°O2.性质
把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
60°
N′
N
N′
n°
O
性质:把圆绕圆心旋转任意一个角度后,仍与本来 的圆重合.(圆具有旋转不变性)
2.性质
把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
N
N′
n°
O
我们把顶点在圆心的角叫做圆心角.如∠NON′是 圆 O 的一个圆心角.
3.探究
如图, 在⊙O 中,当圆心角∠AOB =∠A ` OB` 时,
又因为 AO=CO,BO=DO,
A
E
B D
所以 △AOB ≌ △COD.
又因为 OE 、OF 是 AB 与 CD 对应边上的高,
O F
所以 OE=OF.
C
6.例题
例1 如图,在⊙O 中, AB= AC,∠ACB =60°. 求证:∠AOB=∠BOC=∠AOC.
A
O
B
C
6.例题
例2 如图,AB 是⊙O 的直径,BC = CD = DE , ∠COD=35°,求∠AOE 的度数.
它们所对的弧AB和弧A`B`、弦AB和弦A`B` 相等吗?为
什么?
A' B
AB= A'B' AB=A'B'
B'
O
A
4.定理
这样,我们就得到下面的定理: 在同圆或等圆中,相等的圆心角所对的弧相等,所 对的弦也相等.
你能用几何符号表示出定理吗?
同样,还可以得到: 在同圆或等圆中,如果两条弧相 等,那么它们所对的圆心角__相__等__ ,
30°
N′NLeabharlann 15°O2.性质
把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
60°
N′
圆的有关性质课件PPT

(2)由圆的定义可知:圆是一条封闭的曲线,不是圆面.确定圆的两
个条件是圆心和半径,其中圆心确定圆的位置,半径确定圆的大小.
4
教材新知精讲
知识点一
综合知识拓展
知识点二
例1 下列条件中,能确定圆的是(
)
A.以点O为圆心
B.以2 cm长为半径
C.以点O为圆心,以5 cm长为半径
D.经过已知点A
解析:根据圆的定义对各选项进行判断:A,点O为圆心,半径不确
知识点二
例2 如图,CD是☉O的直径,弦AB⊥CD于点E,∠BCD=30°,下列
结论:①AE=BE;②OE=DE;③AB=BC;④BE=
DE.其中正确的是
3
(
)
A.① B.①②③
C.①③
D.①②③④
20
教材新知精讲
知识点一
综合知识拓展
知识点二
解析:根据垂径定理以及等边三角形的性质和判定定理即可作出
中的弦有AB,BC,CE共三条.
答案:B
8
教材新知精讲
知识点一
综合知识拓展
知识点二
抓住“弦是端点在圆上的线段”是解决本题的关键.
9
教材新知精讲
知识点一
综合知识拓展
知识点二
例3 如图,在☉O中,半径有
有
,弦有
,劣弧有
有
.
,直径
,优弧
解析:根据半径、直径、弦、劣弧和优弧的定义分别求解.
答案:OA,OB,OC,OD AB AB,BC , , , ,
知识点二
知识点一圆的轴对称性
圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.
名师解读:不能错误地说成“圆的任何一条直径都是圆的对称轴”,
个条件是圆心和半径,其中圆心确定圆的位置,半径确定圆的大小.
4
教材新知精讲
知识点一
综合知识拓展
知识点二
例1 下列条件中,能确定圆的是(
)
A.以点O为圆心
B.以2 cm长为半径
C.以点O为圆心,以5 cm长为半径
D.经过已知点A
解析:根据圆的定义对各选项进行判断:A,点O为圆心,半径不确
知识点二
例2 如图,CD是☉O的直径,弦AB⊥CD于点E,∠BCD=30°,下列
结论:①AE=BE;②OE=DE;③AB=BC;④BE=
DE.其中正确的是
3
(
)
A.① B.①②③
C.①③
D.①②③④
20
教材新知精讲
知识点一
综合知识拓展
知识点二
解析:根据垂径定理以及等边三角形的性质和判定定理即可作出
中的弦有AB,BC,CE共三条.
答案:B
8
教材新知精讲
知识点一
综合知识拓展
知识点二
抓住“弦是端点在圆上的线段”是解决本题的关键.
9
教材新知精讲
知识点一
综合知识拓展
知识点二
例3 如图,在☉O中,半径有
有
,弦有
,劣弧有
有
.
,直径
,优弧
解析:根据半径、直径、弦、劣弧和优弧的定义分别求解.
答案:OA,OB,OC,OD AB AB,BC , , , ,
知识点二
知识点一圆的轴对称性
圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.
名师解读:不能错误地说成“圆的任何一条直径都是圆的对称轴”,
圆的有关性质ppt课件

7.1.4 圆周角定理及推论
(1)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相 等,都等于这条弧所对的圆心角的一半. (2)推论:半圆(直径)所对的圆周角是直角,90°的圆周角所 对 的弦是直径.
7.1.5 圆内接四边形
(1)定义:如果一个四边形的四个顶点在同一个圆上,那么这个 四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆. (2)性质:圆内接四边形的对角互补,并且任何一个外角都等于 它的内对角.
7.1.5 圆内接四边形
(1)定义:如果一个四边形的四个顶点在同一个圆上,那么这个 四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆. (2)性质:圆内接四边形的对角互补,并且任何一个外角都等于 它的内对角.
【例1】如图,在⊙O中, A,B是圆上的两点,已知∠AOB=40°,直 径CD∥AB,连接AC,则∠BAC= 35 度.
②经过切点且垂直于切线的直线必经过圆心. (3)切线长定理:从圆外一点可以引圆的两条切线,它们的切线 长相等.这一点和圆心的连线平分这两条切线的夹角.
【例1】在公园的O处附近有E、F、G、H四棵树,
位置如图所示(图中小正方形的边长均相等),现计划修建一座以
为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、
(3)正多边形的有关计算:
①边长:an=2Rn·sin180°/n
②周长:Pn=n·an
③边心距:rn=Rn·cos180°/n
④面积:Sn=
1 2
an·rn·n
⑤内角:n 2180
n
⑥外角:360
n
⑦中心角: 36n0(Rn为正多边形的半径,rn为边心距,an为边长)
7.3.2 圆的周长与弧长公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 如图,AB 是⊙O 的直径,AC 是弦,若∠ACO=32°,则∠COB 的度数等于 64°. 2.如图,⊙O 的直径 CD=10,弦 AB=8,AB⊥CD,垂足为 M,则 DM 的长为 8.
3.如图,△ABC 内接于⊙O,AB=BC,∠ABC=120°,AD 为⊙O 的直径,AD=6,那么 BD =3 3.
1.垂径定理的应用 用垂径定理进行计算或证明,常需作出圆心到弦的垂线段(即弦心距),则垂足为弦的中 点,再利用解半径、弦心距和弦的一半组成的直角三角形来达到求解的目的 . 2.圆心角、圆周角性质的应用. 3.圆心角、弧、弦、弦心距之间的关系定理的应用.
(1)(2010·重庆)如图,△ABC 是⊙O 的内接三角形,若∠ABC=70°,则∠AOC 的
∴AB=2OB=4OP=4 3 cm. (2)①∵AB 是半圆的直径,点 C 在半圆上, ∴∠ACB=90°.在 Rt△ABC 中, AC= AB2-BC2= 102-62=8 ②∵PE⊥AB,∴∠APE=90°. 又∠ACB=90°, ∴∠APE=∠ACB.又∵∠PAE=∠CAB, ∴△AEP∽△ABC,∴BPEC=AACP ,∴P6E=10×8 12,∴PE=145.
A.17 cm B.7 cm C.12 cm D.17 cm 或 7 cm
(4)(2010·南通)如图,⊙O 的直径 AB=4,点 C 在⊙O 上,∠ABC=30°,则 AC 的长是( )
A.1
B. 2
C. 3
D.2
【点拨】本组题主要考查圆的有关基本知识,掌握有关性质或定理是做好此类题的关键.
【解答】(1)∵∠ABC=70°,∴∠AOC=2∠ABC=2×70°=140°,故选 A.
1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心 距相等.
2.推论:同圆或等圆中:(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等;(4)两条 弦的弦心距相等.四项中有一项成立,则其余对应的三项都成立.
考点四 圆心角与圆周角
1.定义:顶点在圆心上的角叫圆心角;顶点在圆上,角的两边和圆都相交的角叫圆周角. 2.性质 (1)圆心角的度数等于它所对弧的度数; (2)一条弧所对的圆周角的度数等于它所对圆心角的度数的一半; (3)同弧或等弧所对的圆周角相等.同圆或等圆中相等的圆周角所对的弧相等; (4)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
转.不.变.性...
考点二 垂径定理及推论 1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 2.推论 1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平 分线经过圆心,并且平分弦所对的两条弧;平分弦所对的一条弧的直径,垂直平分弦,并且
平分弦所对的另一条弧.
考点三 圆心角、弧、弦、弦心距之间的关系
度数等于( )
A.140°
B.130°
C.120°
D.110 °
例 1(1)题
例 1(2)题
(2)(2010·哈尔滨)如图,AB是⊙O 的弦,半径 OA=2,∠AOB=120°,则弦 AB 的长是( ) A.2 2 B.2 3 C. 5 D.3 5
(3)(2010·襄樊)已知:⊙O 的半径为 13 cm,弦 AB∥CD,AB=24 cm,CD=10 cm,则 AB、CD 之间的距离为( )
则弦 CD 的长为( B )
3 A.2 cm
B.3 cm
C.2 3 cm
D.9 cm
(第 5 题)
(第 6 题)
6. 如图,在⊙O 中,∠ACB=∠BDC=60°,AC=2 3 cm.(1)求∠BAC 的度数;(2)求⊙O 的周长.
(2)如图,作 OE⊥AB 于 E,则 OE 平分 AB,即 AE=BE.
∵∠AOB=120°,∴∠AOE=60°,∴AE=OA·sin60°= 3. ∴AB=2AE=2 3,故选 B. (3)当两条平行弦在圆心同侧时,AB、CD 之间的距离为 7 cm,当两条平行弦在圆心异侧 时,AB、CD 之间的距离为 17 cm,故选 D. (4)∵AB 是⊙O 的直径,∴∠ACB=90°. 又∵∠ABC=30°,∴AC=12AB=2,故选 D.
(1)(2010·南通)如图,⊙O 的直径 AB 垂直于弦 CD,垂足 P 是 OB 的中点,CD=6 cm,求直径 AB 的长.
例 2(1)题
例 2(2)题
(2)(2009·南充)如图,半圆的直径 AB=10,点 C 在半圆上,BC=6. ①求弦 AC 的长;②若 P 为 AB 的中点,PE⊥AB 交 AC 于点 E,求 PE 的长.
(第 3 题)
(第 4 题)
4.如图,已知 CD 为⊙O 的直径,过点 D 的弦 DE 平行于半径 OA,若∠D 的度数是 50°,
则∠C 的度数是( A )
A.25°
B.40°
C.30°
D.50°
5.如图,AB 是⊙O 的直径,弦 CD⊥AB 于点 E,∠CDB=30°,⊙O 的半径为 3 cm,
【点拨】(1)题考查垂径定理及其推论. (2)题主要考查“直径所对的圆周角为直角,勾股定理及三角形的相似判定和性质”,属 于综合题.仔细审题,明确已知和未知条件是关键.
【解答】(1)连结 OC、BC,则根据 AB⊥CD 且 P 是 OB 的中点,得 OC=BC. ∵OC=OB,∴OC=OB=BC,∴△BOC 为等边三角形,∴∠BOC=60°. 由垂径定理得 CP=12CD=12×6 cm=3 cm. 在 Rt△POC 中,tan∠COP=COPP= 3,∴OP= 3 cm
第六章 圆
第 25 讲 圆的有关性质
考点一 圆的定义及其性质 1.圆的定义有两种方式 (1)在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转 所形成的图形叫做圆.固定的端点叫圆心,线段 OA 叫做半径; (2)圆是到定点的距离等于定长的点的集合. 2.圆的对称性 (1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴; (2)圆是以圆心为对称中心的中心对称图形; (3)圆是旋转对称图形.圆绕圆心旋转任意角度,都能和原来的图形重Байду номын сангаас,这就是圆的旋.