2019 2020临沂市沂南县九年级上期末数学试卷有答案推荐
2019—2020学年度临沂市上学期初三期末考试初中数学

2019—2020学年度临沂市上学期初三期末考试初中数学九年级数学试题〔时闻:90分钟 总分值:120分〕一、选择题:以下各题所给出的四个选项中只有一个是正确的.〔每题3分,共30分〕1.以下方程中,一定是关于x 的一元二次方程的是 〔A 〕xx 1432=+. 〔B 〕042=+-x kx . 〔C 〕xy x =-3.〔D 〕043)1(22=-++x x m .2.以下图是北京奥运会自行车竞赛项目的标志,那么图中两轮所在圆的位置关系是〔A 〕内含. 〔B 〕相交. 〔C 〕相切. 〔D 〕外离.3.以下函数中是二次函数的是 〔A 〕232+=x y . 〔B 〕213x x y +=. 〔C 〕xy 3=. 〔D 〕232+=x y . 4.下面的图案中,既是中心对称图形,又是轴对称图形的是5.以下讲法正确的选项是〔A 〕三条任意长的线段能够组成一个三角形.〔B 〕从标有1,2,3,4,5的五张卡片中任意抽取一张,抽到偶数的可能性比抽到奇数的可能性小.〔C 〕买一张彩票一定中奖. 〔D 〕掷一枚硬币,正面一定朝上.6.以下各式:2222)31(,)1(),2(2,1-+-≥-+a a a x ,其中二次根式的个数是〔A 〕1个. 〔B 〕2个. 〔C 〕3个.〔D 〕4个.7.将函数221x y =的图象向下平移2个单位,得到图象的解析式是 〔A 〕2212-=x y .〔B 〕2)2(21-=x y . 〔C 〕2)2(21+=x y .〔D 〕2212+=x y . 8.某机器零件在图纸上的长度是21mm ,它的实际长度是840mm ,那么图纸的比例尺是〔A 〕1:50. 〔B 〕1:40. 〔C 〕1:30. 〔D 〕1:20.9.假设弧长为6π的弧所对的圆心角为60°,那么这条弧所在圆的半径为 〔A 〕6.〔B 〕63.〔C 〕123.〔D 〕18.10.一次函数c ax y +=与c bx ax y ++=2,它们在同一坐标系内的图象大致是二、填空题:请将正确的结果直截了当填写在题中的横线上.〔每题3分,共27分〕 11.假设a -3有意义,那么字母a 的取值范畴是 .12.化简:2349cb a = 〔其中0,0.0>>>c b a 〕. 13.关于x 的一元二次方程032=-+nx mx 的一个根是2,那么2m+n= . 14.十字路口的信号灯每分钟红灯亮30s ,绿灯亮25s ,黄灯亮5s ,当司机抬头看信号灯时,是黄灯的概率是 .15.如图,⊙O 的半径为6cm ,以A 为圆心,OA 长为半径的弧交⊙O 于B ,C ,那么BC 的长度为 cm .16.如图,GH ∥EF//AB ,且EF 、GH 将△ABC 面积三等分,假设AB=6,那么EF 的长为 .17.如图,PB 切⊙O 于B ,PO 交⊙O 于A ,假设OA=PA=2,那么PB 的长为 .18.某商品通过连续两次降价,价格由原先的1000元降为810元,假设设该商品平均每次降价的百分比为x ,依照题意可列方程为 .19.如图,D 是等腰直角三角形ABC 内一点,BC 是斜边,假如将△ABD 绕点A 按逆时针方向旋转到△ACD’的位置,那么∠ADD’的度数是 .三、解答题:〔本大题共7个小题,共63分〕20.〔本小题总分值6分〕 运算:1086175483+-. 21.〔本小题总分值8分〕试用你学过的两种不同方法解方程62=-x x . 22.〔本小题总分值7分〕现有五张扑克牌,分不是〝红心〞3,〝方片〞4,〝方片〞5,〝黑桃〞4,〝梅花〞4.洗匀后背面朝上放在桌上,在每张扑克牌被抽到的机会均等的情形下,回答以下咨询题:〔1〕随机抽取一张,抽到〝方片〞的概率是多少?〔2〕随机抽取一张,将点数作为十位上的数字,再从剩余的四张中随机抽取一张作为个位上的数字,如此产生的两位数大小在40~50之间的概率是多少? 23.〔本小题总分值8分〕如下图,在⊙O 中,弦AC 与BD 相交于点E ,AB=6,AE=8,ED=4,求CD 的长.24.〔本小题总分值9分〕 列方程解应用题:在一次会议上,每个参加会议的人都互相握了一次手,有人统计一共握了45次手,你能求出参加此次会议的共有多少人吗?〔讲明:甲与乙握手等同于乙与甲握手,只记一次〕25.〔本小题总分值12分〕 某企业信息部进行市场调研发觉:信息一:假如单独投资A 种产品,那么所获利润A y 〔万元〕与投资金额x 〔万元〕之间存在正 比例函数关系:kx y A =,同时当投资5万元时,可获利润2万元;信息二:假如单独投资B 种产品,那么所获利润B y 〔万元〕与投资金额x 〔万元〕之间存在二 次函数关系:bx ax y B +=2,同时当投资2万元时,可获利润2.4万元;当投资4万元时,可获利润3.2万元.〔1〕请分不求出上述的正比例函数表达式与二次函数表达式;〔2〕假如企业同时对A ,B 两种产品共投资10万元,请你写出所获总利润W 的表达式,并设计获得最大利润的投资方案,最大利润是多少?26.〔本小题总分值13分〕二次函数c x x y +-=22通过点〔2,一3〕. 〔1〕求那个二次函数的解析式;〔2〕设该函数与x 轴的交点分不为A ,B 〔B 在A 点的左边〕,与y 轴交点为C ,顶点为D ,分不求这四个点的坐标;〔3〕求四边形ABCD 的面积.。
2019-2020学年临沂市沂南县九年级上册期末数学试卷(有答案)-优质资料

2019-2020学年山东省临沂市沂南县九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°2.(3分)若反比例函数y=(k≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)3.(3分)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)4.(3分)如图所示,该几何体的主视图是()A.B.C.D.5.(3分)如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A .75°B .60°C .45°D .30°6.(3分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是( ) A .两正面都朝上 B .两背面都朝上C .一个正面朝上,另一个背面朝上D .三种情况发生的概率一样大7.(3分)若关于x 的一元二次方程(k ﹣1)x 2+4x+1=0有两个不相等的实数根,则k 的取值范围是( ) A .k <5B .k <5,且k ≠1C .k ≤5,且k ≠1D .k >58.(3分)如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则的值为( )A .B .2C .D .9.(3分)反比例函数y=﹣图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( ) A .y 1<y 2<0B .y 1<0<y 2C .y 1>y 2>0D .y 1>0>y 210.(3分)如图,在△ABC 中,D 为AC 边上一点,∠DBC=∠A ,BC=,AC=3,则CD 的长为( )A .1B .C .2D .11.(3分)如图,在平面直角坐标系系中,直线y=kx+2与x轴交于点A,与y轴交于1=1,tan∠点C,与反比例函数y=在第一象限内的图象交于点B,连接BO.若S△OBC的值是()BOC=,则k2A.﹣3 B.1 C.2 D.312.(3分)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)方程x2+x=0的解是.14.(3分)一个不透明盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.15.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为.16.(3分)如图,点A 、B 是双曲线y=上的点,分别过点A 、B 作x 轴和y 轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为 .17.(3分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:的温度为 ℃.18.(3分)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为 .(用含n 的代数式表示,其中n 为正整数)三、解答题(共7小题,满分66分)19.(7分)计算:+sin245°﹣tan60°.20.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积最大,最大面积是多少?21.(8分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,在地面D处测得旗杆顶端B的仰角为30°,在D,C之间选择一点E(D,E,C三点在同一直线上),又测得旗杆顶端B的仰角为60°,且D,E之间的距离为20m,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=,AB=3,求BD的长.23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.24.(11分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.25.(12分)如图,在平面直角坐标系xOy中,抛物线y=﹣+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP 绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上.2019-2020学年山东省临沂市沂南县九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°【解答】解:∵sinA=,∠A为锐角,∴∠A=30°.故选B.2.(3分)若反比例函数y=(k≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【解答】解:把(2,1)代入y=得k=2×1=2,所以反比例函数解析式为y=,因为2×(﹣1)=﹣2,1×(﹣2)=﹣2,﹣2×1=﹣2,﹣2×(﹣1)=2,所以点(﹣2,﹣1)在反比例函数y=的图象上.故选D.3.(3分)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(si nα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.4.(3分)如图所示,该几何体的主视图是()A.B.C.D.【解答】解:该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.5.(3分)如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75°B.60°C.45°D.30°【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°﹣∠ACB﹣∠ABC=30°.故选D.6.(3分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大【解答】解:画树状图为:共有4种等可能的结果数,其中两正面朝上的占1种,两背面朝上的占1种,一个正面朝上,另一个背面朝上的占2种,所以两正面朝上的概率=;两反面朝上的概率=;一个正面朝上,另一个背面朝上的概率==.故选C.7.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.8.(3分)如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则的值为( )A .B .2C .D .【解答】解:∵AH=2,HB=1,∴AB=3,∵l 1∥l 2∥l 3,∴==,故选:D .9.(3分)反比例函数y=﹣图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( )A .y 1<y 2<0B .y 1<0<y 2C .y 1>y 2>0D .y 1>0>y 2【解答】解:∵y=﹣,∴k=﹣3<0,函数的图象在第二、四象限,并且在每个象限内,y 随x 的增大而增大,∵反比例函数y=﹣图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),x 1<0<x 2,∴点P 1在第二象限,点P 2在第四象限,∴y 1>0>y 2,故选D .10.(3分)如图,在△ABC 中,D 为AC 边上一点,∠DBC=∠A ,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.x+2与x轴交于点A,与y轴交于11.(3分)如图,在平面直角坐标系系中,直线y=k1=1,tan∠点C,与反比例函数y=在第一象限内的图象交于点B,连接BO.若S△OBC的值是()BOC=,则k2A.﹣3 B.1 C.2 D.3x+2与x轴交于点A,与y轴交于点C,【解答】解:∵直线y=k1∴点C的坐标为(0,2),∴OC=2,=1,∵S△OBC∴BD=1,∵tan∠BOC=,∴=,∴OD=3,∴点B的坐标为(1,3),∵反比例函数y=在第一象限内的图象交于点B,∴k=1×3=3.2故选D.12.(3分)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.【解答】解:(1)当点P在AB上移动时,点D到直线PA的距离为:y=DA=BC=4(0≤x≤3).(2)如图1,当点P在BC上移动时,,∵AB=3,BC=4,∴AC=,∵∠PAB+∠DAE=90°,∠ADE+∠DAE=90°,∴∠PAB=∠ADE ,在△PAB 和△ADE 中,∴△PAB ∽△ADE ,∴,∴,∴y=(3<x ≤5).综上,可得y 关于x 的函数大致图象是:.故选:D .二、填空题(共6小题,每小题3分,满分18分)13.(3分)方程x 2+x=0的解是 x 1=0,x 2=﹣1 .【解答】解:x (x+1)=0,x=0或x+1=0,所以x 1=0,x 2=﹣1.故答案为x 1=0,x 2=﹣1. 14.(3分)一个不透明盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.【解答】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:=故答案为:.15.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为.【解答】解:由图可得,∠AED=∠ABC,∵⊙O在边长为1的网格格点上,∴AB=2,AC=1,则tan∠ABC==,∴tan∠AED=.故答案为:.16.(3分)如图,点A、B是双曲线y=上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为8 .【解答】解:∵点A、B是双曲线y=上的点,∴S矩形ACOG =S矩形BEOF=6,∵S阴影DGOF=2,∴S矩形ACDF +S矩形BDGE=6+6﹣2﹣2=8,故答案为:817.(3分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:的温度为﹣1 ℃.【解答】解:设l=at2+bt+c (a≠0),选(0,49),(1,46),(4,25)代入后得方程组,解得:,所以l 与t 之间的二次函数解析式为:l=﹣t 2﹣2t+49,当t=﹣=﹣1时,l 有最大值50,即说明最适合这种植物生长的温度是﹣1℃.另法:由(﹣2,49),(0,49)可知抛物线的对称轴为直线t=﹣1,故当t=﹣1时,植物生长的温度最快.故答案为:﹣1.18.(3分)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为 .(用含n 的代数式表示,其中n 为正整数)【解答】解:如图,连接D 1E 1,设AD 1、BE 1交于点M ,∵AE 1:AC=1:(n+1),∴S △ABE1:S △ABC =1:(n+1),∴S △ABE1=,∵==,∴=,∴S △ABM :S △ABE1=(n+1):(2n+1),∴S △ABM :=(n+1):(2n+1),∴S n =.故答案为:.三、解答题(共7小题,满分66分)19.(7分)计算: +sin 245°﹣tan60°.【解答】解:原式=+﹣=+﹣=.20.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y 平方米.(1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的养鸡场面积最大,最大面积是多少?【解答】解:(1)当矩形的一边长为x 米时,另一边长为(16﹣x )米,根据题意,得:y=x (16﹣x )=﹣x 2+16x (0<x <16);(2)∵y=﹣x 2+16x=﹣(x ﹣8)2+64,∴当x=8时,y 取得最大值,最大值为64,答:当x 为8米时,围成的养鸡场面积最大,最大面积是64平方米.21.(8分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,在地面D处测得旗杆顶端B的仰角为30°,在D,C之间选择一点E(D,E,C三点在同一直线上),又测得旗杆顶端B的仰角为60°,且D,E之间的距离为20m,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.【解答】解:∵∠BEC=60°,∠BDE=30°,∴∠DBE=60°﹣30°=30°,∴BE=DE=20m,在Rt△BEC中,BC=BE•sin60°=20×=10≈17.3(m),∴AB=BC﹣AC=17.3﹣12=5.3(m),答:旗杆AB的高度为5.3m.22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=,AB=3,求BD的长.【解答】(1)证明:连接OC,∵CD 是⊙O 的切线,∴∠OCD=90°,∴∠ACO+∠DCE=90°,又∵ED ⊥AD ,∴∠EDA=90°,∴∠EAD+∠E=90°,∵OC=OA ,∴∠ACO=∠EAD ,故∠DCE=∠E ,∴DC=DE ,(2)解:设BD=x ,则AD=AB+BD=3+x ,OD=OB+BD=1.5+x ,在Rt △EAD 中,∵tan ∠CAB=,∴ED=AD=(3+x ),由(1)知,DC=(3+x ),在Rt △OCD 中,OC 2+CD 2=DO 2,则1.52+[(3+x )]2=(1.5+x )2,解得:x 1=﹣3(舍去),x 2=1,故BD=1.23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A ,B 两点,与x 轴交于点C ,与y 轴交于点D ,点B 的坐标是(m ,﹣4),连接AO ,AO=5,sin ∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.【解答】解:(1)过点A作AE⊥x轴于点E,如图所示.设反比例函数解析式为y=.∵AE⊥x轴,∴∠AEO=90°.在Rt△AEO中,AO=5,sin∠AOC=,∠AEO=90°,∴AE=AO•sin∠AOC=3,OE==4,∴点A的坐标为(﹣4,3).∵点A(﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.(2)∵点B(m,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B的坐标为(3,﹣4).设直线AB 的解析式为y=ax+b ,将点A (﹣4,3)、点B (3,﹣4)代入y=ax+b 中得:,解得:,∴一次函数解析式为y=﹣x ﹣1.令一次函数y=﹣x ﹣1中y=0,则0=﹣x ﹣1,解得:x=﹣1,即点C 的坐标为(﹣1,0).S △AOB =OC•(y A ﹣y B )=×1×[3﹣(﹣4)]=.24.(11分)将一副三角尺(在Rt △ABC 中,∠ACB=90°,∠B=60°;在Rt △DEF 中,∠EDF=90°,∠E=45°)如图①摆放,点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C .(1)求∠ADE 的度数;(2)如图②,将△DEF 绕点D 顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC 于点M ,DF′交BC 于点N ,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由. 【解答】解:(1)∵∠ACB=90°,点D 为AB 的中点,∴CD=AD=BD=AB ,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC ﹣∠EDF=120°﹣90°=30°;(2)∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴=,∵=tan∠ACD=tan30°=,∴的值不随着α的变化而变化,是定值.25.(12分)如图,在平面直角坐标系xOy中,抛物线y=﹣+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP 绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上.【解答】解:(1)把A(0,4)和C(8,0)代入y=﹣+bx+c得,解得b=,c=4;(2)作MN⊥x轴于点N,如图,∵M是线段AP的中点,∴MN=2,∵AD⊥BE,BE⊥x轴,∴BE=OA=4,∵线段MP绕点P顺时针旋转90°得线段PB,∴PM=PB,∠MPB=90°,∵∠MPN+∠BPE=90°,∠MPN+∠PMN=90°,∴∠PMN=∠BPE,在△PMN和△BPE中,∴△PMN≌△BPE,∴PE=MN=2,∴OE=2+t,∴D(2+t,4),∵抛物线的对称轴为直线x=﹣=,而点A、点D为对称点,∴D点坐标为(5,4),∴2+t=5,解得t=3,即当t为3时,点D落在抛物线上.。
临沂市沂南县九年级上期末数学试卷(有答案)-精华版

山东省临沂市沂南县九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°2.(3分)若反比例函数y=(k≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)3.(3分)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)4.(3分)如图所示,该几何体的主视图是()A.B.C.D.5.(3分)如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75°B.60°C.45°D.30°6.(3分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A .两正面都朝上B .两背面都朝上C .一个正面朝上,另一个背面朝上D .三种情况发生的概率一样大7.(3分)若关于x 的一元二次方程(k ﹣1)x 2+4x+1=0有两个不相等的实数根,则k 的取值范围是( ) A .k <5B .k <5,且k ≠1C .k ≤5,且k ≠1D .k >58.(3分)如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则的值为( )A .B .2C .D .9.(3分)反比例函数y=﹣图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( ) A .y 1<y 2<0 B .y 1<0<y 2C .y 1>y 2>0D .y 1>0>y 210.(3分)如图,在△ABC 中,D 为AC 边上一点,∠DBC=∠A ,BC=,AC=3,则CD 的长为( )A .1B .C .2D .11.(3分)如图,在平面直角坐标系系中,直线y=k 1x+2与x 轴交于点A ,与y 轴交于点C ,与反比例函数y=在第一象限内的图象交于点B ,连接BO .若S △OBC =1,tan ∠BOC=,则k 2的值是( )A.﹣3 B.1 C.2 D.312.(3分)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)方程x2+x=0的解是.14.(3分)一个不透明盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.15.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED 的正切值为.16.(3分)如图,点A、B是双曲线y=上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为.17.(3分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:科学家经过猜想、推测出l 与t 之间是二次函数关系.由此可以推测最适合这种植物生长的温度为 ℃.18.(3分)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为 .(用含n 的代数式表示,其中n 为正整数)三、解答题(共7小题,满分66分) 19.(7分)计算:+sin 245°﹣tan60°.20.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y 平方米.(1)求y 关于x 的函数关系式;(2)当x为何值时,围成的养鸡场面积最大,最大面积是多少?21.(8分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,在地面D 处测得旗杆顶端B的仰角为30°,在D,C之间选择一点E(D,E,C三点在同一直线上),又测得旗杆顶端B的仰角为60°,且D,E之间的距离为20m,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD 且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=,AB=3,求BD的长.23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.24.(11分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.25.(12分)如图,在平面直角坐标系xOy中,抛物线y=﹣+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上.2016-2017学年山东省临沂市沂南县九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°【解答】解:∵sinA=,∠A为锐角,∴∠A=30°.故选B.2.(3分)若反比例函数y=(k≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【解答】解:把(2,1)代入y=得k=2×1=2,所以反比例函数解析式为y=,因为2×(﹣1)=﹣2,1×(﹣2)=﹣2,﹣2×1=﹣2,﹣2×(﹣1)=2,所以点(﹣2,﹣1)在反比例函数y=的图象上.故选D.3.(3分)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(si nα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.4.(3分)如图所示,该几何体的主视图是()A.B.C.D.【解答】解:该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.5.(3分)如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75°B.60°C.45°D.30°【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°﹣∠ACB﹣∠ABC=30°.故选D.6.(3分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大【解答】解:画树状图为:共有4种等可能的结果数,其中两正面朝上的占1种,两背面朝上的占1种,一个正面朝上,另一个背面朝上的占2种,所以两正面朝上的概率=;两反面朝上的概率=;一个正面朝上,另一个背面朝上的概率==.故选C.7.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.8.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A .B .2C .D .【解答】解:∵AH=2,HB=1, ∴AB=3, ∵l 1∥l 2∥l 3,∴==,故选:D .9.(3分)反比例函数y=﹣图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( ) A .y 1<y 2<0 B .y 1<0<y 2 C .y 1>y 2>0D .y 1>0>y 2【解答】解:∵y=﹣,∴k=﹣3<0,函数的图象在第二、四象限,并且在每个象限内,y 随x 的增大而增大,∵反比例函数y=﹣图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),x 1<0<x 2, ∴点P 1在第二象限,点P 2在第四象限, ∴y 1>0>y 2, 故选D .10.(3分)如图,在△ABC 中,D 为AC 边上一点,∠DBC=∠A ,BC=,AC=3,则CD 的长为( )A .1B .C .2D .【解答】解:∵∠DBC=∠A ,∠C=∠C ,∴△CBD ∽△CAB ,∴=,即=,∴CD=2,故选C .11.(3分)如图,在平面直角坐标系系中,直线y=k 1x+2与x 轴交于点A ,与y 轴交于点C ,与反比例函数y=在第一象限内的图象交于点B ,连接BO .若S △OBC =1,tan ∠BOC=,则k 2的值是( )A .﹣3B .1C .2D .3【解答】解:∵直线y=k 1x+2与x 轴交于点A ,与y 轴交于点C ,∴点C 的坐标为(0,2),∴OC=2,∵S △OBC =1,∴BD=1,∵tan ∠BOC=,∴=,∴OD=3,∴点B 的坐标为(1,3),∵反比例函数y=在第一象限内的图象交于点B ,∴k 2=1×3=3.故选D .12.(3分)如图,矩形ABCD 中,AB=3,BC=4,点P 从A 点出发,按A→B→C 的方向在AB 和BC 上移动.记PA=x ,点D 到直线PA 的距离为y ,则y 关于x 的函数大致图象是( )A .B .C .D .【解答】解:(1)当点P 在AB 上移动时,点D 到直线PA 的距离为:y=DA=BC=4(0≤x ≤3).(2)如图1,当点P 在BC 上移动时,,∵AB=3,BC=4,∴AC=,∵∠PAB+∠DAE=90°,∠ADE+∠DAE=90°,∴∠PAB=∠ADE ,在△PAB 和△ADE 中,∴△PAB ∽△ADE ,∴,∴,∴y=(3<x≤5).综上,可得y关于x的函数大致图象是:.故选:D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)方程x2+x=0的解是x1=0,x2=﹣1 .【解答】解:x(x+1)=0,x=0或x+1=0,所以x1=0,x2=﹣1.故答案为x1=0,x2=﹣1.14.(3分)一个不透明盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.【解答】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是: =故答案为:.15.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O 在格点上,则∠AED的正切值为 .【解答】解:由图可得,∠AED=∠ABC ,∵⊙O 在边长为1的网格格点上,∴AB=2,AC=1,则tan ∠ABC==,∴tan ∠AED=.故答案为:.16.(3分)如图,点A 、B 是双曲线y=上的点,分别过点A 、B 作x 轴和y 轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为 8 .【解答】解:∵点A 、B 是双曲线y=上的点,∴S 矩形ACOG =S 矩形BEOF =6,∵S 阴影DGOF =2,∴S 矩形ACDF +S 矩形BDGE =6+6﹣2﹣2=8,故答案为:817.(3分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:科学家经过猜想、推测出l 与t 之间是二次函数关系.由此可以推测最适合这种植物生长的温度为 ﹣1 ℃.【解答】解:设 l=at 2+bt+c (a ≠0),选(0,49),(1,46),(4,25)代入后得方程组,解得:,所以l 与t 之间的二次函数解析式为:l=﹣t 2﹣2t+49,当t=﹣=﹣1时,l 有最大值50,即说明最适合这种植物生长的温度是﹣1℃.另法:由(﹣2,49),(0,49)可知抛物线的对称轴为直线t=﹣1,故当t=﹣1时,植物生长的温度最快.故答案为:﹣1.18.(3分)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则Sn可表示为.(用含n的代数式表示,其中n为正整数)【解答】解:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=,∵==,∴=,∴S△ABM :S△ABE1=(n+1):(2n+1),∴S△ABM: =(n+1):(2n+1),∴Sn=.故答案为:.三、解答题(共7小题,满分66分)19.(7分)计算: +sin245°﹣tan60°.【解答】解:原式=+﹣=+﹣=.20.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y 平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积最大,最大面积是多少?【解答】解:(1)当矩形的一边长为x米时,另一边长为(16﹣x)米,根据题意,得:y=x(16﹣x)=﹣x2+16x(0<x<16);(2)∵y=﹣x2+16x=﹣(x﹣8)2+64,∴当x=8时,y取得最大值,最大值为64,答:当x为8米时,围成的养鸡场面积最大,最大面积是64平方米.21.(8分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,在地面D 处测得旗杆顶端B的仰角为30°,在D,C之间选择一点E(D,E,C三点在同一直线上),又测得旗杆顶端B的仰角为60°,且D,E之间的距离为20m,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.【解答】解:∵∠BEC=60°,∠BDE=30°,∴∠DBE=60°﹣30°=30°,∴BE=DE=20m,在Rt△BEC中,BC=BE•sin60°=20×=10≈17.3(m),∴AB=BC﹣AC=17.3﹣12=5.3(m),答:旗杆AB的高度为5.3m.22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD 且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=,AB=3,求BD的长.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ACO+∠DCE=90°,又∵ED⊥AD,∴∠EDA=90°,∴∠EAD+∠E=90°,∵OC=OA,∴∠ACO=∠EAD,故∠DCE=∠E,∴DC=DE,(2)解:设BD=x,则AD=AB+BD=3+x,OD=OB+BD=1.5+x,在Rt△EAD中,∵tan∠CAB=,∴ED=AD=(3+x),由(1)知,DC=(3+x),在Rt△OCD中,OC2+CD2=DO2,则1.52+[(3+x)]2=(1.5+x)2,解得:x1=﹣3(舍去),x2=1,故BD=1.23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.【解答】解:(1)过点A作AE⊥x轴于点E,如图所示.设反比例函数解析式为y=.∵AE ⊥x 轴,∴∠AEO=90°.在Rt △AEO 中,AO=5,sin ∠AOC=,∠AEO=90°,∴AE=AO •sin ∠AOC=3,OE==4, ∴点A 的坐标为(﹣4,3).∵点A (﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.(2)∵点B (m ,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B 的坐标为(3,﹣4).设直线AB 的解析式为y=ax+b ,将点A (﹣4,3)、点B (3,﹣4)代入y=ax+b 中得:,解得:,∴一次函数解析式为y=﹣x ﹣1.令一次函数y=﹣x ﹣1中y=0,则0=﹣x ﹣1,解得:x=﹣1,即点C 的坐标为(﹣1,0).S △AOB =OC •(y A ﹣y B )=×1×[3﹣(﹣4)]=.24.(11分)将一副三角尺(在Rt △ABC 中,∠ACB=90°,∠B=60°;在Rt △DEF 中,∠EDF=90°,∠E=45°)如图①摆放,点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C .(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.【解答】解:(1)∵∠ACB=90°,点D为AB的中点,∴CD=AD=BD=AB,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC﹣∠EDF=120°﹣90°=30°;(2)∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴=,∵=tan∠ACD=tan30°=,∴的值不随着α的变化而变化,是定值.25.(12分)如图,在平面直角坐标系xOy中,抛物线y=﹣+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上.【解答】解:(1)把A(0,4)和C(8,0)代入y=﹣+bx+c得,解得b=,c=4;(2)作MN⊥x轴于点N,如图,∵M是线段AP的中点,∴MN=2,∵AD⊥BE,BE⊥x轴,∴BE=OA=4,∵线段MP绕点P顺时针旋转90°得线段PB,∴PM=PB,∠MPB=90°,∵∠MPN+∠BPE=90°,∠MPN+∠PMN=90°,∴∠PMN=∠BPE,在△PMN和△BPE中,∴△PMN≌△BPE,∴PE=MN=2,∴OE=2+t,∴D(2+t,4),∵抛物线的对称轴为直线x=﹣=,而点A、点D为对称点,∴D点坐标为(5,4),∴2+t=5,解得t=3,即当t为3时,点D落在抛物线上.。
[试卷合集3套]临沂市2020年九年级上学期数学期末达标检测试题
![[试卷合集3套]临沂市2020年九年级上学期数学期末达标检测试题](https://img.taocdn.com/s3/m/66cb1c5202d276a201292ece.png)
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.对于不为零的两个实数a ,b ,如果规定:a★b=()()a b a b a a b b+<⎧⎪⎨-≥⎪⎩,那么函数y =2★x 的图象大致是( ) A . B . C . D .【答案】C【解析】先根据规定得出函数y =2★x 的解析式,再利用一次函数与反比例函数的图象性质即可求解.【详解】由题意,可得当2<x ,即x >2时,y =2+x ,y 是x 的一次函数,图象是一条射线除去端点,故A 、D 错误;当2≥x,即x≤2时,y =﹣2x,y 是x 的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B 错误.故选:C .【点睛】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y =2★x 的解析式是解题的关键.2.已知分式2(3)(1)1-+-x x x 的值为0,则x 的值是( ). A .1x =±B .1x =C .1x =-D .3x = 【答案】D【分析】分析已知和所求,根据分式值为0的条件为:分子为0而分母不为0,不难得到(3)(1)x x -+=0且21x -≠0;根据ab=0,a=0或b=0,即可解出x 的值,再根据21x -≠0,即可得到x 的取值范围,由此即得答案.【详解】∵2(3)(1)1-+-x x x 的值为0 ∴(3)(1)x x -+=0且21x -≠0.解得:x=3.故选:D.【点睛】考核知识点:分式值为0.理解分式值为0的条件是关键.3.二次函数 y=(x-1)2 -5 的最小值是( )A .1B .-1C .5D .-5【答案】D 【分析】根据顶点式解析式写出即可.【详解】二次函数y=(x-1)2-1的最小值是-1.故选D .【点睛】本题考查了二次函数的最值问题,比较简单.4.若反比例函数()110a y a x x-=><,图象上有两个点()()1122,,x y x y ,,设()1212()m x x y y =--,则 y mx m =-不经过第( )象限.A .一B .二C .三D .四 【答案】C【分析】利用反比例函数的性质判断出m 的正负,再根据一次函数的性质即可判断.【详解】解:∵()110a y a x x -=><,, ∴a-1>0, ∴()110a y a x x-=><,图象在三象限,且y 随x 的增大而减小, ∵图象上有两个点(x 1,y 1),(x 2,y 2),x 1与y 1同负,x 2与y 2同负,∴m=(x 1-x 2)(y 1-y 2)<0,∴y=mx-m 的图象经过一,二、四象限,不经过三象限,故选:C .【点睛】本题考查反比例函数的性质,一次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.已知m ,n 是关于x 的一元二次方程2x 3x a 0-+=的两个解,若()()m 1n 16--=-,则a 的值为( ) A .﹣10B .4C .﹣4D .10【答案】C【详解】解:∵m ,n 是关于x 的一元二次方程2x 3x a 0-+=的两个解,∴m+n=3,mn=a .∵()()m 1n 16--=-,即()mn m n 16-++=-,∴a 316-+=-,解得:a=﹣1.故选C .6.下列成语所描述的事件是必然事件的是( )A .守株待兔B .瓮中捉鳖C .拔苗助长D .水中捞月 【答案】B【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件依次判定即可得出答案.【详解】解:A 选项为随机事件,故不符合题意;B 选项是必然事件,故符合题意;C 选项为不可能事件,故不符合题意;D 选项为不可能事件,故不符合题意;故选:B .【点睛】本题主要考查了必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,难度适中.7. “抛一枚均匀硬币,落地后正面朝上”这一事件是( )A .必然事件B .随机事件C .确定事件D .不可能事件 【答案】B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.8.若反比例函数的图像在第二、四象限,则它的解析式可能是( )A .3y x =-B .32y x =-C .3y x =D .2y x =-【答案】A【分析】根据反比例函数的定义及图象经过第二、四象限时k 0<,判断即可.【详解】解:A 、对于函数3y x=-,是反比例函数,其30k =-<,图象位于第二、四象限; B 、对于函数32y x =-,是正比例函数,不是反比例函数; C 、对于函数3y x =,是反比例函数,图象位于一、三象限;D 、对于函数2y x =-,是二次函数,不是反比例函数;故选:A .【点睛】本题考查了反比例函数、反比例的图象和性质,可以采用排除法,直接法得出答案.9.下列运算正确的是( )A .()222a b a b +=+B .325a a a =C .632a a a ÷=D .235a b ab +=【答案】B【分析】 根据完全平方公式、同底数幂乘法、同底数幂除法、合并同类项法则逐一进行分析判断即可.【详解】因为()2222a b a b ab +=++,所以选项A 错误; 325a a a =,所以B 选项正确;633a a a ÷=,故选项C 错误;因为2a 与3b 不是同类项,不能合并,故选项D 错误,故选B .【点睛】本题考查了整式的运算,涉及了完全平方公式、同底数幂乘除法等,熟练掌握各运算的运算法则是解题的关键.10.如图,正△ABC 的边长为4,点P 为BC 边上的任意一点(不与点B 、C 重合),且∠APD=60°,PD 交AB 于点D .设BP=x ,BD=y ,则y 关于x 的函数图象大致是( )A .AB .BC .CD .D【答案】C 【解析】∵△ABC 是正三角形,∴∠B=∠C=60°,∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,∴∠BPD=∠CAP ,∴△BPD ∽△CAP ,∴BP:AC=BD:PC ,∵正△ABC 的边长为4,BP=x ,BD=y ,∴x:4=y:(4−x),∴y=−14x 2+x. 故选C.点睛:函数图象是典型的数形结合,图象应用信息广泛,通过看图象获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题能力、解决问题能力.用图象解决问题时,要理清图象的含义即会识图. 11.反比例函数y=﹣2x 的图象在( ) A .第二、四象限B .第一、三象限C .第一、二象限D .第三、四象限 【答案】A【解析】根据反比例函数y=k x(k≠0)的图象,当k >0时位于第一、三象限,在每个象限内,y 随x 的增大而减小;当k <0时图象位于第二、四象限,在每个象限内,y 随x 的增大而增大可得: ∵k=-2<0,∴函数图象在二、四象限.故选B .【点睛】反比例函数y=k x(k≠0)的图象:当k >0时位于第一、三象限,在每个象限内,y 随x 的增大而减小;当k <0时图象位于第二、四象限,在每个象限内,y 随x 的增大而增大.12.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①240b ac ->;②0abc >;③420a b c -+>;④930a b c ++<.其中,正确结论的个数是( )A .1B .2C .3D .4【答案】D 【解析】由题意根据函数图象和二次函数的性质可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【详解】解:函数图象与x 轴有两个交点,故b 2-4ac >0,所以①正确,由图象可得,a>0,b<0,c<0,故abc>0,所以②正确,当x=-2时,y=4a-2b+c>0,故③正确,∵该函数的对称轴为x=1,当x=-1时,y<0,∴当x=3时的函数值与x=-1时的函数值相等,∴当x=3时,y=9a+3b+c<0,故④正确,故答案为:①②③④.故选D.【点睛】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(本题包括8个小题)13.关于x的一元二次方程2310ax x-+=有两个不相等实数根,则a的取值范围是________.【答案】94a<且0a≠【解析】一元二次方程的定义及判别式的意义可得a≠1且△=b2-4ac=(-3)2-4×a×1=9-4a>1,解不等式组即可求出a的取值范围.【详解】∵关于x的一元二次方程ax2-3x+1=1有两个不相等的实数根,∴a≠1且△=b2-4ac=(-3)2-4×a×1=9-4a>1,解得:a<94且a≠1.故答案是:a<94且a≠1.【点睛】考查了根的判别式.一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:(1)△>1⇔方程有两个不相等的实数根;(2)△=1⇔方程有两个相等的实数根;(3)△<1⇔方程没有实数根.14x的取值范围是________.【答案】1x> .【分析】根据二次根式被开方数大于等于0,对于分式,分母不能为0,列式计算即可得解.∴10x->解得:1x>∴实数x的取值范围是:1x>故答案为:1x>【点睛】本题主要考查了二次根式及分式有意义的条件,正确把握相关定义是解题关键.15.如图,点A在双曲线kyx=(0x>)上,过点A作AB x⊥轴,垂足为点B,分别以点O和点A为圆心,大于12OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点()0,2F,连接AC.若1AC=,则k的值为______.【答案】32 25【分析】设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【详解】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,22=5OF OC+∴2555,∴OA=55,∵∠AOB+∠AOF=90°,∠CFO+∠AOF=90°,∴∠AOB=∠CFO,又∵∠ABO=∠COF,∴△FOC∽△OBA,∴OF OC CF OB AB OA ==, ∴215455OB AB ==,∴OB=85,AB=45, ∴A (85,45), ∴k=85×45=3225. 故答案为:3225. 【点睛】本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,反比例函数图象上的点的坐标特征,勾股定理,相似三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.如图,将一张矩形纸片ABCD 沿对角线BD 折叠,点C 的对应点为C',再将所折得的图形沿EF 折叠,使得点D 和点A 重合.若AB 3=,BC 4=,则折痕EF 的长为______.【答案】2512【分析】首先由折叠的性质与矩形的性质,证得BND 是等腰三角形,则在Rt ABN 中,利用勾股定理,借助于方程即可求得AN 的长,又由ANB ≌C'ND ,易得:FDM ABN ∠∠=,由三角函数的性质即可求得MF 的长,又由中位线的性质求得EM 的长,则问题得解【详解】如图,设BC'与AD 交于N ,EF 与AD 交于M ,根据折叠的性质可得:NBD CBD ∠∠=,1AM DM AD 2==,FMD EMD 90∠∠==, 四边形ABCD 是矩形, AD //BC ∴,AD BC 4==,BAD 90∠=,ADB CBD ∠∠∴=,NBD ADB ∠∠∴=,BN DN ∴=,设AN x =,则BN DN 4x ==-,在Rt ABN 中,222AB AN BN +=,2223x (4x)∴+=-,7x 8∴=, 即7AN 8=, C'D CD AB 3===,BAD C'90∠∠==,ANB C'ND ∠∠=,ANB ∴≌()C'ND AAS ,FDM ABN ∠∠∴=,tan FDM tan ABN ∠∠∴=,AN MF AB MD∴=, 7MF 832∴=, 7MF 12∴=, 由折叠的性质可得:EF AD ⊥,EF//AB ∴,AM DM =,13ME AB 22∴==, 3725EF ME MF 21212∴=+=+=, 故答案为2512. 【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.17.方程22310x x --=的两根为1x ,2x ,则2212x x += . 【答案】134. 【解析】试题分析:∵方程22310x x --=的两根为1x ,2x ,∴1232x x +=,1212x x =-,∴2212x x +=21212()2x x x x +-=231()2()22-⨯-=134.故答案为134. 考点:根与系数的关系.18.⊙O 的半径为10cm ,点P 到圆心O 的距离为12cm ,则点P 和⊙O 的位置关系是_____.【答案】点P 在⊙O 外【分析】根据点与圆心的距离d ,则d >r 时,点在圆外;当d=r 时,点在圆上;当d <r 时,点在圆内.【详解】解:∵⊙O 的半径r=10cm ,点P 到圆心O 的距离OP=12cm ,∴OP >r ,∴点P 在⊙O 外,故答案为点P 在⊙O 外.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r ,点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d=r 时,点在圆上,当d <r 时,点在圆内.三、解答题(本题包括8个小题)19.已知关于x 的方程:(m ﹣2)x 2+x ﹣2=0(1)若方程有实数根,求m 的取值范围.(2)若方程的两实数根为x 1、x 2,且x 12+x 22=5,求m 的值.【答案】(1)m≥158;(2)m =3 【分析】(1)根据判别式即可求出答案;(2)根据根与系数的关系即可求出答案.【详解】解:(1)当m ﹣2≠0时,△=1+8(m ﹣2)≥0,∴m≥158且m≠2, 当m ﹣2=0时,x ﹣2=0,符合题意, 综上所述,m≥158 (2)由根与系数的关系可知:x 1+x 2=12m --,x 1x 2=22m --, ∵x 12+x 22=5,∴(x 1+x 2)2﹣2x 1x 2=5, ∴21(2)m -+42m - =5, ∴12m -=1或12m -=﹣5, ∴m =3或m =95(舍去). 【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.20.如图,已知△ABC ,∠B=90゜,AB=3,BC=6,动点P 、Q 同时从点B 出发,动点P 沿BA 以1个单位长度/秒的速度向点A 移动,动点Q 沿BC 以2个单位长度/秒的速度向点C 移动,运动时间为t 秒.连接PQ ,将△QBP 绕点Q 顺时针旋转90°得到△QB P '',设△QB P ''与△ABC 重合部分面积是S .(1)求证:PQ ∥AC ;(2)求S 与t 的函数关系式,并直接写出自变量t 的取值范围.【答案】(1)见解析;(2)()22260744843661555716913555t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪-+<≤⎪⎩ 【分析】(1)由题意可得出236BP t BQ t AB BC ===,继而可证明△BPQ ∽△BAC ,从而证明结论; (2)由题意得出QP`⊥AC ,分三种情况利用相似三角形的判定及性质讨论计算.【详解】解:(1)∵BP=t ,BQ=2t ,AB=3,BC=6∴236BP t BQ t AB BC === ∵∠B=∠B∴△BPQ ∽△BAC∴∠BPQ=∠A∴PQ ∥AC(2)∵BP=tBQ=2t∴5t∵AB=3 BC=6∴AC=35∵PQ ∥AC∴QP`⊥AC当0<t≤67时,S=t 2当67<t≤1时: 设QP`交AC 于点MP`B`交AC 于点N∴∠QMC=∠B=90°∴△QMC ∽△ABC∴CQ QM AC AB= 335QM = ∴52)t - ∵5∴P`M= 6525756555t =-又∵∠P`=∠BPQ=∠A∴△P`NM ∽△ACB∴'AB BC P M MN= ∴MN=2P`M∴S △P`MN =12P`M·MN=P`M 2=2756(5)5-∴QP`B`P`MN222S=S-S498436 t555448436555t tt t=-+-=-+-当1<t≤3时设QB`交AC于点H∵∠HQM=∠PQB∴△HMQ∽△PBQ∴2MH MQt t=∴MH=12MQ∴()()222212141162t4513624420169555S MH MQMQt tt t=⋅==⋅-=-+=-+综合上所述:2226744843661555716913555t tS t t tt t t⎧<≤⎪⎪⎪=-+-<≤⎨⎪⎪-+<≤⎪⎩()()()【点睛】本题是一道关于相似的综合题目,难度较大,涉及的知识点有相似三角形的判定及性质、勾股定理、三角形面积公式、旋转的性质等,需要有数形结合的能力以及较强的计算能力.21.在“美丽乡村”建设中,某村施工人员想利用如图所示的直角墙角,计划再用30米长的篱笆围成一个矩形花园ABCD,要求把位于图中点P处的一颗景观树圈在花园内,且景观树P与篱笆的距离不小2米.已知点 P 到墙体DA 、DC 的距离分别是8米、16米,如果 DA 、DC 所在两面墙体均足够长,求符合要求的矩形花园面积 S 的最大值.【答案】216米2【分析】设AB=x 米,可知BC=(30-x )米, 根据点 P 到墙体DA 、DC 的距离分别是8米、16米,求出x 的取值范围,再根据矩形的面积公式得出 S 关于x 的函数关系式即可得出结论.【详解】解:设矩形花园 ABCD 的宽 AB 为x 米,则长BC 为 (30)x -米 由题意知,8230162x x ≥+⎧⎨-≥+⎩ 解得1012x ≤≤2(30)30S x x x x =-=-+即2(15)225(1012)S x x =--+≤≤显然,1012x ≤≤时S 的值随x 的增大而增大 所以,当12x =时,面积 S 取最大值max 12(3012)216S =⨯-=答: 符合要求的矩形花园面积 S 的最大值是216米2【点睛】此题主要考查二次函数的应用,关键是正确理解题意,列出S 与x 的函数关系式解题的关键. 22.阅读以下材料,并按要求完成相应的任务.“圆材埋壁”是我国古代数学著作《九章算术》中的一个问题:今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?用现在的数学语言表达是:如图,CD 为O 的直径,弦AB CD ⊥,垂足为E ,1CE =寸,1AB =尺,其中1尺10=寸,求出直径CD 的长.解题过程如下:连接OA ,设OA r =寸,则()1OE r CE r =-=-寸.∵,1AB CD AB ⊥=尺,∴152AE AB ==寸. 在Rt OAE △中,222OA AE OE =+,即()22251r r =+-,解得13r =,∴226CD r ==寸.任务:(1)上述解题过程运用了 定理和 定理.(2)若原题改为已知25DE =寸,1AB =尺,请根据上述解题思路,求直径CD 的长.(3)若继续往下锯,当锯到AE OE =时,弦AB 所对圆周角的度数为 .【答案】(1)垂径,勾股;(2)26寸;(3)45︒或135︒【分析】(1)由解题过程可知根据垂径定理求出AE 的长,在Rt △OAE 中根据勾股定理求出r 的值,即可得到答案.(2)连接OA ,设OA=r 寸,则OE=DE-r=25-r ,再根据垂径定理求出AE 的长,在Rt △OAE 中根据勾股定理求出r 的值,进而得出结论.(3)当AE=OE 时,△AEO 是等腰直角三角形,则∠AOE=45°,∠AOB=90°,所以由圆周角定理推知弦AB 所对圆周角的度数为 45°或135°.【详解】解:(1)根据题意知,上述解题过程运用了 垂径定理和 勾股定理.故答案是:垂径;勾股;(2)连接OA ,设OA=r 寸,则OE=DE-r=(25-r )寸∵AB ⊥CD ,AB=1尺,∴AE=12AB=5寸 在Rt △OAE 中,OA 2=AE 2+OE 2,即r 2=52+(25-r )2,解得r=13,∴CD=2r=26寸(2)∵AB ⊥CD ,∴当AE=OE 时,△AEO 是等腰直角三角形,∴∠AOE=45°,∴∠AOB=2∠AOE=90°,∴弦AB 所对圆周角的度数为12∠AOB=45°. 同理,优弧AB 所对圆周角的度数为135°.故答案是:45°或135°.【点睛】此题考查圆的综合题,圆周角定理,垂径定理,勾股定理,等腰直角三角形的判定与性质,综合性较强,解题关键在于需要我们熟练各部分的内容,要注意将所学知识贯穿起来.23.已知:关于x 的一元二次方程x 2﹣(2m+3)x+m 2+3m+2=1.(1)已知x=2是方程的一个根,求m 的值;(2)以这个方程的两个实数根作为△ABC 中AB 、AC (AB <AC )的边长,当ABC 是等腰三角形,求此时m 的值.【答案】(1)m=1或m=1; (2)当1m =或2m = 【分析】(1)将x=2代入方程即可得到关于m 的方程,解之即可得出答案;(2)利用求根公式用含m 的式子表示出方程的两个根,再根据等腰三角形两边相等分类讨论,即可得出答案.【详解】解:(1)∵x=2是方程的一个根,∴22﹣2(2m+3)+m 2+3m+2=1∴m 2-m=1∴m=1,m=1(2)∵()()22234321m m m ⎡⎤∆=-+-++=⎣⎦ ∴()2312m x +±= ∴x=m+2,x=m+1∵AB 、AC (AB <AC )的长是这个方程的两个实数根,∴AC=m+2,AB=m+1∵BC =ABC 是等腰三角形∴当AB=BC 时,有1m +=∴ 1m =-当AC=BC 时,有+2m =2.m ∴=综上所述,当1m =-或2m =时,△ABC 是等腰三角形24.解下列方程:(1)x2+2x﹣3=0;(2)x(x﹣4)=12﹣3x.【答案】(1)x=﹣1或x=1;(2)x=4或x=﹣1.【分析】(1)利用因式分解法求解可得;(2)利用因式分解法求解可得.【详解】解:(1)∵x2+2x﹣1=0,∴(x+1)(x﹣1)=0,则x+1=0或x﹣1=0,解得x=﹣1或x=1;(2)∵x(x﹣4)+1(x﹣4)=0,∴(x﹣4)(x+1)=0,则x﹣4=0或x+1=0,解得x=4或x=﹣1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.25.已知关于的方程,若方程的一个根是–4,求另一个根及的值.【答案】1,-2【解析】把方程的一个根–4,代入方程,求出k,再解方程可得.【详解】【点睛】考察一元二次方程的根的定义,及应用因式分解法求解一元二次方程的知识.26.某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月进馆达到288人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不得超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接待第四个月的进馆人次,并说明理由.【答案】(1)进馆人次的月平均增长率为50%;(2)校图书馆能接纳第四个月的进馆人次.理由见解析. 【分析】(1)先分别表示出第二个月和第三个月的进馆人次,再根据第三个月进馆达到288次,列方程求解;(2)根据(1)所计算出的月平均增长率,计算出第四个月的进馆人次,再与500比较大小即可.【详解】(1)设进馆人次的月平均增长率为x ,根据题意,得:2128(1)288x +=解得10.5x =;2 3.5x =-(舍去).答:进馆人次的月平均增长率为50%.(2)第四个月进馆人数为1288(1)4322+=(人次),∵432500<,∴校图书馆能接纳第四个月的进馆人次.【点睛】 本题考查了一元二次方程的应用题,根据题意找出等量关系,列出方程是解题的关键.27.近年来,各地“广场舞”噪音干扰的问题倍受关注.相关人员对本地区15~65岁年龄段的市民进行了随机调查,并制作了如下相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A .没影响 B .影响不大 C .有影响,建议做无声运动 D .影响很大,建议取缔 E .不关心这个问题根据以上信息解答下列问题:(1)根据统计图填空:m = ,A 区域所对应的扇形圆心角为 度;(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整;(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议....? 【答案】(1)32,1;(2)500人;(3)补图见解析;(4)5.88万人.【解析】分析:分析:(1)用1减去A ,D ,B ,E 的百分比即可,运用A 的百分比乘360°即可.(2)用不关心的人数除以对应的百分比可得.(3)求出25-35岁的人数再绘图.(4)用14万市民乘C 与D 的百分比的和求解.本题解析:(1)m%=1-33%-20%-5%-10%=32%,所以m=32,A 区域所对应的扇形圆心角为:360°×20%=1°,故答案为32,1.(2)一共调查的人数为:25÷5%=500(人).(3)(3)500×(32%+10%)=210(人)25−35岁的人数为:210−10−30−40−70=60(人)(4)14×(32%+10%)=5.88(万人)答:估计本地市民中会有5.88万人给出建议.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一元二次方程220x ax -+=的一根是1,则a 的值是( )A .3B .-3C .2D .-2【答案】A【解析】将1x = 代入方程,求出a 的值.【详解】将1x = 代入方程得 120a -+=解得3a =故答案为:A .【点睛】本题考查了求一元二次方程系数的问题,掌握代入求值法求解a 的值是解题的关键.2.如图,已知抛物线211:(2)22y l x =--与x 轴分别交于O 、A 两点,将抛物线1l 向上平移得到2l ,过点A 作AB x ⊥轴交抛物线2l 于点B ,如果由抛物线1l 、2l 、直线AB 及y 轴所围成的阴影部分的面积为16,则抛物线2l 的函数表达式为( )A .21(2) 2 2y x =-+ B .21(2) 3 2y x =-+ C .21(2)42y x =-+ D .21(2)12y x =-+ 【答案】A 【分析】利用二次函数图象上点的坐标特征求出抛物线与x 轴交点的横坐标,由阴影部分的面积等于矩形OABC 的面积可求出AB 的长度,再利用平移的性质“左加右减,上加下减”,即可求出抛物线2l 的函数表达式.【详解】当y =0时,有12(x−2)2−2=0, 解得:x 1=0,x 2=1,∴OA =1.∵S 阴影=OA ×AB =16,∴AB =1,∴抛物线2l 的函数表达式为y =12(x−2)2−2+1=21(2) 2 2y x =-+ 故选A .【点睛】本题考查了抛物线与x 轴的交点、矩形的面积以及二次函数图形与几何变换,观察图形,找出阴影部分的面积等于矩形OABC 的面积是解题的关键.3.已知函数k y x =是的图像过点()2,3-,则k 的值为( ) A .-2B .3C .-6D .6 【答案】C【解析】直接根据反比例函数图象上点的坐标特征求解.【详解】∵反比例函数k y x =的图象经过点(-2,3), ∴k =-2×3=-1.故选:C .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .4.如图,在ABC △中,D 是BC 的中点,6BC =,ADC BAC ∠=∠,则AC 的长为( )A .23B .4C .42D .32【答案】D 【解析】根据相似三角形的判定和性质定理和线段中点的定义即可得到结论.【详解】解:∵∠ADC=∠BAC ,∠C=∠C ,∴△BAC ∽△ADC , ∴AC CD BC AC = , ∵D 是BC 的中点,BC=6,∴CD=3,∴AC 2=6×3=18,∴AC=32,故选:D . 【点睛】 本题考查相似三角形的判定和性质,线段中点的定义,熟练掌握相似三角形的判定和性质是解题的关键. 5.如图点D 、E 分别在△ABC 的两边BA 、CA 的延长线上,下列条件能判定ED ∥BC 的是( ).A .AD DE AB BC =; B .AD AE AC AB=; C .AD AB DE BC ⋅=⋅;D .AD AC AB AE ⋅=⋅.【答案】D 【分析】根据选项选出能推出ADE ABC ∆∆∽,推出D B ∠=∠或E C ∠=∠的即可判断.【详解】解:A 、∵AD DE AB BC=,EAD BAC ∠=∠,不符合两边对应成比例及夹角相等的相似三角形判定定理. 无法判断ADE ∆与ABC ∆相似,即不能推出//DE BC ,故本选项错误;B 、AD AEAC AB= EAD BAC ∠=∠,ADE ACB ∴∆∆∽,E B ∴∠=∠,D C ∠=∠,即不能推出//DE BC,故本选项错误;C、由AD AB DE BC⋅=⋅可知AB DEBC AD=,不能推出DAE BAC∆∆∽,即不能推出D B∠=∠,即不能推出两直线平行,故本选项错误;D、∵AD AC AB AE⋅=⋅,AD AEAB AC∴=,EAD BAC∠=∠,DAE BAC∴∆∆∽,D B∴∠=∠,//DE BC∴,故本选项正确;故选:D.【点睛】本题考查了相似三角形的性质和判定和平行线的判定的应用,主要考查学生的推理和辨析能力,注意:有两组对应边的比相等,且这两边的夹角相等的两三角形相似.6.如图,在ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是( )A.梯形B.矩形C.菱形D.正方形【答案】C【详解】∵在ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∵在△AFO和△CEO中,∠AFO=∠CEO,∠ FOA=∠EOC,AO=CO,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形,故选C.7.如图,已知梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,过点C的双曲线kyx=交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值()A.等于2 B.等于34C.等于245D.无法确定【答案】B【解析】如图分别过D作DE⊥Y轴于E,过C作CF⊥Y轴于F,则△ODE∽△OBF,∵OD:DB=1:2∴相似比= 1:3∴面积比= OD:DB=1:9即又2OCF ODEKS S==∴3+9212KK=∴解得K=34故选B8.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若2tan5BAC∠=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【答案】A【分析】根据BC的长度和tan BAC∠的值计算出AC的长度即可解答.【详解】解:因为2tan5BCBACAC=∠=,又BC=30,所以,3025AC=,解得:AC=75m,所以,故选A.【点睛】本题考查了正切三角函数,熟练掌握是解题的关键.9.如图,直线y=23x+2与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P 为OA上一动点,PC+PD值最小时点P的坐标为()A .(﹣34,0)B .(﹣12,0)C .(﹣32,0)D .(﹣52,0) 【答案】A【分析】根据一次函数解析式可以求得()30A -,,()0,2B ,根据平面直角坐标系里线段中点坐标公式可得3,12C ⎛⎫- ⎪⎝⎭,()0,1D ,根据轴对称的性质和两点之间线段最短的公理求出D 点关于x 轴的对称点()0,1D '-,连接CD ',线段CD '的长度即是PC PD +的最小值,此时求出CD '解析式,再解其与x 轴的交点即可.【详解】解: 223y x =+, ∴()30A -,,()0,2B ∴303222A B C x x x +-+===-, 02122A B C y y y ++===, ∴3,12C ⎛⎫- ⎪⎝⎭同理可得()0,1D∴D 点关于x 轴的对称点()0,1D '-;连接CD ',设其解析式为y kx b =+, 代入3,12C ⎛⎫-⎪⎝⎭与()0,1D '-可得CD ':413y x =--, 令0y =, 解得34x =-. ∴3,04P ⎛⎫- ⎪⎝⎭. 【点睛】本题是结合了一次函数的动点最值问题,熟练掌握一次函数的图象与性质,把点的坐标与线段长度灵活转化为两点间的问题是解答关键.10.如图,在△ABC 中,∠C=90︒,∠B=30︒,以点A 为圆心,适当长为半径画弧,分别交AB ,AC 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于P ,作射线AP 交BC 于点D ,下列说法不正确的是( )A .∠ADC=60︒B .AD=BDC .13ACD ABD S S =:: D .CD=12BD 【答案】C【分析】由题意可知AD 平分CAB ∠,求出DAB ∠,CAD ∠,利用直角三角形30角的性质以及等腰三角形的判定和性质一一判断即可.【详解】解:在Rt ABC ∆中,90C ∠=︒,30B ∠=︒,903060CAB ∴∠=︒-︒=︒, 由作图可知:AD 平分CAB ∠1302DAB CAB B ∴∠=∠=︒=∠, 60ADC DAB B ∴∠=∠+∠=︒,故A 正确DA DB =,故B 正确30CAD ∠=︒,2AD BD CD ∴==,13CD BC ∴=, :1:3ADC ABC S S ∆∆∴=,:1:2ADC ABD S S ∆∆∴=,故C 错误,设CD a =,则2AD BD a ==,12CD BD ∴=,故D 正确, 故选:C .【点睛】本题考查作图-复杂作图,角平分线的性质,线段的垂直平分线的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.常胜村2017年的人均收入为12000元,2019年的人均收入为15000元,求人均收入的年增长率.若设人均收入的年增长率为x ,根据题意列方程为( )A .()212000115000x +=B .()120001215000x +=C .()2150********x -=D .()212000115000x += 【答案】D 【分析】根据“每年的人均收入=上一年的人均收入⨯(1+年增长率)”即可得.【详解】由题意得:2018年的人均收入为12000(1)x +元2019年的人均收入为212000(1)(1)12000(1)x x x ++=+元则212000(1)15000x +=故选:D .【点睛】本题考查了列一元二次方程,理解题意,正确找出等式关系是解题关键.12.下列事件中,必然发生的事件是( )A .随意翻到一本书的某页,这页的页码是奇数B .通常温度降到0℃以下,纯净的水结冰C .地面发射一枚导弹,未击中空中目标D .测量某天的最低气温,结果为-150℃【答案】B【解析】解:A . 随意翻到一本书的某页,这页的页码是奇数,是随机事件;B . 通常温度降到0℃以下,纯净的水结冰,是必然事件;C . 地面发射一枚导弹,未击中空中目标,是随机事件;D . 测量某天的最低气温,结果为-150℃,是不可能事件.故选B .二、填空题(本题包括8个小题)13.已知MAX (a ,b )=a , 其中a >b 如果MAX (2x x -, 0)=0,那么 x 的取值范围为__________【答案】0﹤x ﹤1【分析】由题意根据定义得出x 2-x <0,通过作出函数y=x 2-x 的图象,根据图象即可求得x 的取值范围.【详解】解:由题意可知x 2-x <0,画出函数y=x 2-x 的图象如图:由图象可知x 2-x <0的取值范围为0<x <1.故答案为:0<x <1.【点睛】本题主要考查二次函数的性质,解题的关键是理解新定义并根据新定义列出关于x 的不等式运用数形结合思维分析.14.抛物线y =x 2+2x 与y 轴的交点坐标是_____.【答案】(0,0)【解析】令x=0求出y 的值,然后写出即可.【详解】令x=0,则y=0,所以,抛物线与y 轴的交点坐标为(0,0).故答案为(0,0).【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握抛物线与坐标轴的交点的求解方法是解题的关键. 15.在平面直角坐标系中,点P (﹣2,1)关于原点的对称点P′的坐标是_____________.【答案】(2,﹣1)【详解】解:点P (﹣2,1)关于原点的对称点P′的坐标是(2,﹣1).故答案为(2,﹣1).【点睛】本题考查了关于原点对称的点的坐标的特点,注意掌握两个点关于原点对称时,它们的坐标符号相反. 16.已知二次函数y =-x 2+2x +1,若y 随x 增大而增大,则x 的取值范围是____.【答案】x≤1【解析】试题解析:二次函数221y x x =-++的对称轴为: 1.2b x a=-= y 随x 增大而增大时,x 的取值范围是 1.≤x故答案为 1.≤x17.如图,ABC 中,90ABC ∠=︒,8AC =,9ABC S =,=△ABC C __________.。
临沂市沂南县九年级上册期末数学试卷(有答案)

2019-2020学年山东省临沂市沂南县九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°2.(3分)若反比例函数y=(k≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)3.(3分)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)4.(3分)如图所示,该几何体的主视图是()A.B.C.D.5.(3分)如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75°B.60°C.45°D.30°6.(3分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大7.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>58.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.9.(3分)反比例函数y=﹣图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2C.y1>y2>0 D.y1>0>y210.(3分)如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD 的长为()A.1 B.C.2 D.11.(3分)如图,在平面直角坐标系系中,直线y=k1x+2与x轴交于点A,与y轴交于点C,与反比例函数y=在第一象限内的图象交于点B,连接BO.若S△OBC=1,tan∠BOC=,则k2的值是()A.﹣3 B.1 C.2 D.312.(3分)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A. B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)方程x2+x=0的解是.14.(3分)一个不透明盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.15.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为.16.(3分)如图,点A、B是双曲线y=上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为.17.(3分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度t/℃﹣4﹣2014植物高度增长量l/mm4149494625科学家经过猜想、推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为℃.18.(3分)设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB 的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n 为正整数)三、解答题(共7小题,满分66分)19.(7分)计算: +sin245°﹣tan60°.20.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积最大,最大面积是多少?21.(8分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,在地面D处测得旗杆顶端B的仰角为30°,在D,C之间选择一点E(D,E,C三点在同一直线上),又测得旗杆顶端B的仰角为60°,且D,E之间的距离为20m,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=,AB=3,求BD的长.23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.24.(11分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.25.(12分)如图,在平面直角坐标系xOy中,抛物线y=﹣+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上.2019-2020学年山东省临沂市沂南县九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°【解答】解:∵sinA=,∠A为锐角,∴∠A=30°.故选B.2.(3分)若反比例函数y=(k≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【解答】解:把(2,1)代入y=得k=2×1=2,所以反比例函数解析式为y=,因为2×(﹣1)=﹣2,1×(﹣2)=﹣2,﹣2×1=﹣2,﹣2×(﹣1)=2,所以点(﹣2,﹣1)在反比例函数y=的图象上.故选D.3.(3分)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(si nα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.4.(3分)如图所示,该几何体的主视图是()A.B.C.D.【解答】解:该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.5.(3分)如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75°B.60°C.45°D.30°【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°﹣∠ACB﹣∠ABC=30°.故选D.6.(3分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大【解答】解:画树状图为:共有4种等可能的结果数,其中两正面朝上的占1种,两背面朝上的占1种,一个正面朝上,另一个背面朝上的占2种,所以两正面朝上的概率=;两反面朝上的概率=;一个正面朝上,另一个背面朝上的概率==.故选C.7.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.8.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.【解答】解:∵AH=2,HB=1,∴AB=3,∵l1∥l2∥l3,∴==,故选:D.9.(3分)反比例函数y=﹣图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2C.y1>y2>0 D.y1>0>y2【解答】解:∵y=﹣,∴k=﹣3<0,函数的图象在第二、四象限,并且在每个象限内,y随x的增大而增大,∵反比例函数y=﹣图象上有两点P1(x1,y1),P2(x2,y2),x1<0<x2,∴点P1在第二象限,点P2在第四象限,∴y1>0>y2,故选D.10.(3分)如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD 的长为()A.1 B.C.2 D.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.11.(3分)如图,在平面直角坐标系系中,直线y=k1x+2与x轴交于点A,与y轴交于点C,与反比例函数y=在第一象限内的图象交于点B,连接BO.若S△OBC=1,tan∠BOC=,则k2的值是()A.﹣3 B.1 C.2 D.3【解答】解:∵直线y=k1x+2与x轴交于点A,与y轴交于点C,∴点C的坐标为(0,2),∴OC=2,=1,∵S△OBC∴BD=1,∵tan∠BOC=,∴=,∴OD=3,∴点B的坐标为(1,3),∵反比例函数y=在第一象限内的图象交于点B,∴k2=1×3=3.故选D.12.(3分)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.【解答】解:(1)当点P在AB上移动时,点D到直线PA的距离为:y=DA=BC=4(0≤x≤3).(2)如图1,当点P在BC上移动时,,∵AB=3,BC=4,∴AC=,∵∠PAB+∠DAE=90°,∠ADE+∠DAE=90°,∴∠PAB=∠ADE,在△PAB和△ADE中,∴△PAB∽△ADE,∴,∴,∴y=(3<x≤5).综上,可得y关于x的函数大致图象是:.故选:D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)方程x2+x=0的解是x1=0,x2=﹣1.【解答】解:x(x+1)=0,x=0或x+1=0,所以x1=0,x2=﹣1.故答案为x1=0,x2=﹣1.14.(3分)一个不透明盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.【解答】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:=故答案为:.15.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为.【解答】解:由图可得,∠AED=∠ABC,∵⊙O 在边长为1的网格格点上,∴AB=2,AC=1,则tan ∠ABC==,∴tan ∠AED=. 故答案为:.16.(3分)如图,点A 、B 是双曲线y=上的点,分别过点A 、B 作x 轴和y 轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为 8 .【解答】解:∵点A 、B 是双曲线y=上的点,∴S 矩形ACOG =S 矩形BEOF =6,∵S 阴影DGOF =2,∴S 矩形ACDF +S 矩形BDGE =6+6﹣2﹣2=8,故答案为:817.(3分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度t/℃ ﹣4﹣2 0 1 4 植物高度增长量l/mm41 49 49 46 25科学家经过猜想、推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为﹣1℃.【解答】解:设l=at2+bt+c (a≠0),选(0,49),(1,46),(4,25)代入后得方程组,解得:,所以l与t之间的二次函数解析式为:l=﹣t2﹣2t+49,当t=﹣=﹣1时,l有最大值50,即说明最适合这种植物生长的温度是﹣1℃.另法:由(﹣2,49),(0,49)可知抛物线的对称轴为直线t=﹣1,故当t=﹣1时,植物生长的温度最快.故答案为:﹣1.18.(3分)设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB 的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n 为正整数)【解答】解:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S △ABE1=, ∵==, ∴=, ∴S △ABM :S △ABE1=(n +1):(2n +1),∴S △ABM :=(n +1):(2n +1), ∴S n =. 故答案为:.三、解答题(共7小题,满分66分)19.(7分)计算: +sin 245°﹣tan60°.【解答】解:原式=+﹣ =+﹣ =.20.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y 平方米.(1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的养鸡场面积最大,最大面积是多少?【解答】解:(1)当矩形的一边长为x 米时,另一边长为(16﹣x )米,根据题意,得:y=x (16﹣x )=﹣x 2+16x (0<x <16);(2)∵y=﹣x2+16x=﹣(x﹣8)2+64,∴当x=8时,y取得最大值,最大值为64,答:当x为8米时,围成的养鸡场面积最大,最大面积是64平方米.21.(8分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,在地面D处测得旗杆顶端B的仰角为30°,在D,C之间选择一点E(D,E,C三点在同一直线上),又测得旗杆顶端B的仰角为60°,且D,E之间的距离为20m,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.【解答】解:∵∠BEC=60°,∠BDE=30°,∴∠DBE=60°﹣30°=30°,∴BE=DE=20m,在Rt△BEC中,BC=BE•sin60°=20×=10≈17.3(m),∴AB=BC﹣AC=17.3﹣12=5.3(m),答:旗杆AB的高度为5.3m.22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=,AB=3,求BD的长.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ACO+∠DCE=90°,又∵ED⊥AD,∴∠EDA=90°,∴∠EAD+∠E=90°,∵OC=OA,∴∠ACO=∠EAD,故∠DCE=∠E,∴DC=DE,(2)解:设BD=x,则AD=AB+BD=3+x,OD=OB+BD=1.5+x,在Rt△EAD中,∵tan∠CAB=,∴ED=AD=(3+x),由(1)知,DC=(3+x),在Rt△OCD中,OC2+CD2=DO2,则1.52+[(3+x)]2=(1.5+x)2,解得:x1=﹣3(舍去),x2=1,故BD=1.23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.【解答】解:(1)过点A作AE⊥x轴于点E,如图所示.设反比例函数解析式为y=.∵AE⊥x轴,∴∠AEO=90°.在Rt△AEO中,AO=5,sin∠AOC=,∠AEO=90°,∴AE=AO•sin∠AOC=3,OE==4,∴点A的坐标为(﹣4,3).∵点A(﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.(2)∵点B(m,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B的坐标为(3,﹣4).设直线AB的解析式为y=ax+b,将点A(﹣4,3)、点B(3,﹣4)代入y=ax+b中得:,解得:,∴一次函数解析式为y=﹣x﹣1.令一次函数y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣1,即点C的坐标为(﹣1,0).S△AOB=OC•(y A﹣y B)=×1×[3﹣(﹣4)]=.24.(11分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.【解答】解:(1)∵∠ACB=90°,点D为AB的中点,∴CD=AD=BD=AB,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC﹣∠EDF=120°﹣90°=30°;(2)∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴=,∵=tan∠ACD=tan30°=,∴的值不随着α的变化而变化,是定值.25.(12分)如图,在平面直角坐标系xOy中,抛物线y=﹣+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上.【解答】解:(1)把A(0,4)和C(8,0)代入y=﹣+bx+c 得,解得b=,c=4;(2)作MN⊥x轴于点N,如图,∵M是线段AP的中点,∴MN=2,∵AD⊥BE,BE⊥x轴,21∴BE=OA=4,∵线段MP绕点P顺时针旋转90°得线段PB,∴PM=PB,∠MPB=90°,∵∠MPN+∠BPE=90°,∠MPN+∠PMN=90°,∴∠PMN=∠BPE,在△PMN和△BPE中,∴△PMN≌△BPE,∴PE=MN=2,∴OE=2+t,∴D(2+t,4),∵抛物线的对称轴为直线x=﹣=,而点A、点D为对称点,∴D点坐标为(5,4),∴2+t=5,解得t=3,即当t为3时,点D落在抛物线上.22。
【5套打包】临沂市初三九年级数学上期末考试检测试题及答案

九年级上册数学期末考试题(含答案)一、选择题(每题2分,共24分)下列各题的四个选项中,只有一个答案是正确的,请将正确答案的代号填涂在机读卡上.1.(2分)有一实物如图,那么它的主视图是()A.B.C.D.2.(2分)关于x的方程x2﹣2x﹣2=0的根的情况是()A.有两个不等实根B.有两个相等实根C.没有实数根D.无法判断根的情况3.(2分)若函数y=(2m﹣1)x是反比例函数,则m的值是()A.﹣1或1B.小于的任意实数C.﹣1D.14.(2分)下列四边形中,对角线一定相等的是()A.菱形B.矩形C.平行四边形D.梯形5.(2分)下列式子从左到右变形一定正确的是()A.=B.=C.=D.=6.(2分)关于x的一元二次方程2x(x+1)=(x+1)的根是()A.x=0B.x=﹣1C.x1=0,x2=﹣1D.7.(2分)下列说法中的错误的是()A.一组邻边相等的矩形是正方形B.一组邻边相等的平行四边形是菱形C.一组对边相等且有一个角是直角的四边形是矩形D.一组对边平行且相等的四边形是平行四边形8.(2分)某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A.200只B.400只C.800只D.1000只9.(2分)如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.10.(2分)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A.B.C.D.11.(2分)若m,n满足m2+5m﹣3=0,n2+5n﹣3=0,且m≠n.则的值为()A.B.﹣C.﹣D.12.(2分)两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形P AOB的面积不会发生变化;③P A与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是()A.①②③B.②③④C.①②④D.①③④二、填空题(每小题3分,共15分)将答案填在答题卡相应的横线上.13.(3分)菱形的两条对角线长分别是6和8,则菱形的边长为.14.(3分)对于实数a,b,定义运算“※”:a※b=a2+b,则方程x※(x﹣2)=0的根为.15.(3分)已知A(x1,y1),B(x2,y2)都在反比例函数y=的图象上.若x1x2=﹣4,则y1y2的值为.16.(3分)将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处,则BC的长为.九年级上册数学期末考试题(含答案)一、选择题(每题2分,共24分)下列各题的四个选项中,只有一个答案是正确的,请将正确答案的代号填涂在机读卡上.1.(2分)有一实物如图,那么它的主视图是()A.B.C.D.2.(2分)关于x的方程x2﹣2x﹣2=0的根的情况是()A.有两个不等实根B.有两个相等实根C.没有实数根D.无法判断根的情况3.(2分)若函数y=(2m﹣1)x是反比例函数,则m的值是()A.﹣1或1B.小于的任意实数C.﹣1D.14.(2分)下列四边形中,对角线一定相等的是()A.菱形B.矩形C.平行四边形D.梯形5.(2分)下列式子从左到右变形一定正确的是()A.=B.=C.=D.=6.(2分)关于x的一元二次方程2x(x+1)=(x+1)的根是()A.x=0B.x=﹣1C.x1=0,x2=﹣1D.7.(2分)下列说法中的错误的是()A.一组邻边相等的矩形是正方形B.一组邻边相等的平行四边形是菱形C.一组对边相等且有一个角是直角的四边形是矩形D.一组对边平行且相等的四边形是平行四边形8.(2分)某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A.200只B.400只C.800只D.1000只9.(2分)如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.10.(2分)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A.B.C.D.11.(2分)若m,n满足m2+5m﹣3=0,n2+5n﹣3=0,且m≠n.则的值为()A.B.﹣C.﹣D.12.(2分)两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形P AOB的面积不会发生变化;③P A与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是()A.①②③B.②③④C.①②④D.①③④二、填空题(每小题3分,共15分)将答案填在答题卡相应的横线上.13.(3分)菱形的两条对角线长分别是6和8,则菱形的边长为.14.(3分)对于实数a,b,定义运算“※”:a※b=a2+b,则方程x※(x﹣2)=0的根为.15.(3分)已知A(x1,y1),B(x2,y2)都在反比例函数y=的图象上.若x1x2=﹣4,则y1y2的值为.16.(3分)将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处,则BC的长为.九年级(上)期末考试数学试题及答案一.选择题(满分42分,每小题3分)1.方程(x+1)2=0的根是()A.x1=x2=1 B.x1=x2=﹣1 C.x1=﹣1,x2=1 D.无实根2.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)3.点P(3,5)关于原点对称的点的坐标是()A.(﹣3,5)B.(3,﹣5)C.(5,3)D.(﹣3,﹣5)4.如果⊙O的半径为7cm,圆心O到直线l的距离为d,且d=5cm,那么⊙O和直线l的位置关系是()A.相交B.相切C.相离D.不确定5.用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x+1)2=2 D.(x+1)2=46.不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.7.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°8.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是()A.(1,1)B.(0,1)C.(﹣1,1)D.(2,0)9.如图,△A′B′C′是△ABC在以点O为位似中心经过位似变换得到的,若△ABC的面积与△A′B′C′的面积比是16:9,则OA:OA′为()A.4:3 B.3:4 C.9:16 D.16:910.若一次函数y=kx+b与反比例函数y=的图象如图所示,则关于x的不等式kx+b﹣≤﹣2的解集为()A.0<x≤2或x≤﹣4 B.﹣4≤x<0或x≥2C.≤x<0或x D.x或011.如图,过y轴上一个动点M作x轴的平行线,交双曲线于点A,交双曲线于点B,点C、点D在x轴上运动,且始终保持DC=AB,则平行四边形ABCD的面积是()A.7 B.10 C.14 D.2812.如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C 三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π13.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则DE的长为()A.2.2 B.2.5 C.2 D.1.814.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t (单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点N C.点P D.点Q二.填空题(共5小题,满分15分,每小题3分)15.若关于x的方程x2﹣x+cosα=0有两个相等的实数根,则锐角α为.16.如图,点A、B是双曲线y=上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为.17.如图,在△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=2,则扇形BDE的面积为.18.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=.19.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,﹣3)AB为半圆直径,半圆圆心M(1,0),半径为2,则经过点D的“蛋圆”的切线的解析式为.三.解答题(共6小题,满分63分)20.(8分)有四张正面分别标有数字:﹣1,1,2,﹣2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线y=﹣上的概率.21.(9分)如图,AB是⊙O的直径,PA切⊙O于A,OP交⊙O于C,连BC.若∠P=30°,求∠B的度数.22.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O 点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S.23.(12分)如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)求n与k的值;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y>﹣2时,请直接写出自变量x的取值范围.24.(11分)如图,已知,正方形ABCD和一个圆心角为45°的扇形,圆心与A点重合,此扇形绕A点旋转时,两半径分别交直线BC、CD于点P.K.(1)当点P、K分别在边BC.CD上时,如图(1),求证:BP+DK=PK.(2)当点P、K分别在直线BC.CD上时,如图(2),线段BP、DK、PK之间又有怎样的数量关系,请直接写出结论.(3)在图(3)中,作直线BD交直线AP、AK于M、Q两点.若PK=5,CP=4,求PM的长.25.(13分)如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x 轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.参考答案一.选择1.方程(x+1)2=0的根是()A.x1=x2=1 B.x1=x2=﹣1 C.x1=﹣1,x2=1 D.无实根【分析】根据一元二次方程的解法即可求出答案.解:由于(x+1)2=0,∴x+1=0,∴x1=x2=﹣1故选:B.【点评】本题考查一元二次方程的解法,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.2.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.3.点P(3,5)关于原点对称的点的坐标是()A.(﹣3,5)B.(3,﹣5)C.(5,3)D.(﹣3,﹣5)【分析】根据关于原点对称的点的坐标特点;两个点关于原点对称时,它们的坐标符号相反可得答案.解:点P(3,5)关于原点对称的点的坐标是9﹣3,﹣5),故选:D.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的变化规律.4.如果⊙O的半径为7cm,圆心O到直线l的距离为d,且d=5cm,那么⊙O和直线l的位置关系是()A.相交B.相切C.相离D.不确定【分析】根据直线和圆的位置关系的内容判断即可.解:∵⊙O的半径为7cm,圆心O到直线l的距离为d,且d=5cm,∴5<7,∴直线l与⊙O的位置关系是相交,故选:A.【点评】本题考查了直线和圆的位置关系的应用,注意:已知⊙O的半径为r,如果圆心O到直线l的距离是d,当d>r时,直线和圆相离,当d=r时,直线和圆相切,当d<r时,直线和圆相交.5.用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x+1)2=2 D.(x+1)2=4【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解:∵x2+2x﹣3=0∴x2+2x=3∴x2+2x+1=1+3∴(x+1)2=4故选:D.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6.不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.【分析】先画树状图展示所有12种等可能的结果数,再找出两次都摸到白球的结果数,然后根据概率公式求解.解:画树状图为:共有12种等可能的结果数,其中两次摸出的球都是的白色的结果共有2 种,所以两次都摸到白球的概率是=,故选:B.【点评】此题主要考查了利用树状图法求概率,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.7.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°【分析】根据圆周角定理即可求出答案解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.【点评】本题考查圆周角定理,注意圆的半径都相等,本题属于基础题型.8.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是()A.(1,1)B.(0,1)C.(﹣1,1)D.(2,0)【分析】利用旋转的性质,旋转中心在各对应点的连线段的垂直平分线上,则作线段AD、BE、FC的垂直平分线,它们相点P(0,1)即为旋转中心.解:作线段AD、BE、FC的垂直平分线,它们相交于点P(0,1),如图,所以△DEF是由△ABC绕着点P逆时针旋转90°得到的.故选:B.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是利用旋转的性质确定旋转中心.9.(3分)如图,△A′B′C′是△ABC在以点O为位似中心经过位似变换得到的,若△ABC 的面积与△A′B′C′的面积比是16:9,则OA:OA′为()A.4:3 B.3:4 C.9:16 D.16:9【分析】根据位似变换的概念得到△ABC∽△A′B′C′,根据相似三角形的面积比等于相似比的平方解答.解:∵△A′B′C′是△ABC在以点O为位似中心经过位似变换得到的,∴△ABC∽△A′B′C′,∵△ABC的面积与△A′B′C′的面积比是16:9,∴OA:OA′为4:3,故选:A.【点评】本题考查的是位似变换,掌握位似图形是相似图形、相似思想的面积比等于相似比的平方是解题的关键.10.若一次函数y=kx+b与反比例函数y=的图象如图所示,则关于x的不等式kx+b﹣≤﹣2的解集为()A.0<x≤2或x≤﹣4 B.﹣4≤x<0或x≥2C.≤x<0或x D.x或0【分析】根据图形找出点的坐标,利用待定系数法求出一次函数和反比例函数解析式,将一次函数图象向上移2个单位长度找出新的一次函数解析式,联立新一次函数解析式和反比例函数解析式成方程组,通过解方程组求出交点坐标,结合函数图象即可得出不等式的解集.解:将(﹣2,0)、(0,﹣2)代入y=kx+b,,解得:,∴一次函数解析式为y=﹣x﹣2.当x=2时,y=﹣x﹣2=﹣4,∴一次函数图象与反比例函数图象的一个交点坐标为(2,﹣4),∴k=2×(﹣4)=﹣8,∴反比例函数解析式为y=﹣.将一次函数图象向上移2个单位长度得出的新的函数解析式为y=﹣x.联立新一次函数及反比例函数解析式成方程组,,解得:,.观察函数图象可知:当﹣2<x<0或x>2时,新一次函数图象在反比例函数图象下方,∴不等式﹣x≤﹣的解集为﹣2≤x<0或x≥2.故选:C.【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求一次(反比例)函数解析式以及一次函数图象与几何变换,根据图形中点的坐标利用待定系数法求出一次(反比例)函数解析式是解题的关键.11.如图,过y轴上一个动点M作x轴的平行线,交双曲线于点A,交双曲线于点B,点C、点D在x轴上运动,且始终保持DC=AB,则平行四边形ABCD的面积是()A.7 B.10 C.14 D.28【分析】设出M点的坐标,可得出过M与x轴平行的直线方程为y=m,将y=m代入反比例函数y=﹣中,求出对应的x的值,即为A的横坐标,将y=m代入反比例函数y=中,求出对应的x的值,即为B的横坐标,用B的横坐标减去A的横坐标求出AB的长,根据DC=AB,且DC与AB平行,得到四边形ABCD为平行四边形,过B作BN垂直于x轴,平行四边形的底边为DC,DC边上的高为BN,由B的纵坐标为m,得到BN=m,再由求出的AB的长,得到DC的长,利用平行四边形的面积等于底乘以高可得出平行四边形ABCD 的面积.解:设M的坐标为(0,m)(m>0),则直线AB的方程为:y=m,将y=m代入y=﹣中得:x=﹣,∴A(﹣,m),将y=m代入y=中得:x=,∴B(,m),∴DC=AB=﹣(﹣)=,过B作BN⊥x轴,则有BN=m,则平行四边形ABCD的面积S=DC•BN=•m=14.故选:C.【点评】此题属于反比例函数综合题,涉及的知识有:平面直角坐标系与坐标,反比例函数的性质,平行四边形的面积求法,以及一次函数与反比例函数的交点,利用了数形结合的思想,其中设出M的坐标,表示出过M与x轴平行的直线方程是本题的突破点.12.如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C 三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π【分析】根据弧长公式l=解答.解:依题意知:图中三条圆弧的弧长之和=×3=2π.故选:B.【点评】考查了弧长公式和等边三角形的性质,熟记弧长公式即可解答,属于基础题.13.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则DE的长为()A.2.2 B.2.5 C.2 D.1.8【分析】连接BD、CD,由勾股定理先求出BD的长,再利用△ABD∽△BED,得出=,可解得DE的长.解:如图1,连接BD、CD,,∵AB为⊙O的直径,∴∠ADB=90°,∴BD===,∵弦AD平分∠BAC,∴CD=BD=,∴∠CBD=∠DAB,在△ABD和△BED中,∴△ABD∽△BED,∴,即,解得DE=.故选:A.【点评】此题主要考查了三角形相似的判定和性质及圆周角定理,解答此题的关键是得出△ABD ∽△BED.14.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t (单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点N C.点P D.点Q【分析】分别假设这个位置在点M、N、P、Q,然后结合函数图象进行判断.利用排除法即可得出答案.解:A、假设这个位置在点M,则从A至B这段时间,y不随时间的变化改变,与函数图象不符,故本选项错误;B、假设这个位置在点N,则从A至C这段时间,A点与C点对应y的大小应该相同,与函数图象不符,故本选项错误;C、,假设这个位置在点P,则由函数图象可得,从A到C的过程中,会有一个时刻,教练到小翔的距离等于经过30秒时教练到小翔的距离,而点P不符合这个条件,故本选项错误;D、经判断点Q符合函数图象,故本选项正确;故选:D.【点评】此题考查了动点问题的函数图象,解答本题要注意依次判断各点位置的可能性,点P 的位置不好排除,同学们要注意仔细观察.二.填空题(共5小题,满分15分,每小题3分)15.若关于x的方程x2﹣x+cosα=0有两个相等的实数根,则锐角α为60°.【分析】根据根的判别式,将原式转化为关于cosα的方程,然后根据特殊角的三角函数值解答.解:∵关于x的方程x2﹣x+cosα=0有两个相等的实数根,∴b2﹣4ac=(﹣)2﹣4×1×cosα=0,∴cosα=,∴α=60°.故答案为:60°.【点评】此题考查利用根的判别式b2﹣4ac来判定根的情况;注意特殊角的三角函数值.16.如图,点A、B是双曲线y=上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为8 .【分析】由A,B为双曲线上的两点,利用反比例系数k的几何意义,求出矩形ACOG与矩形BEOF面积,再由阴影DGOF面积求出空白面积之和即可.解:∵点A、B是双曲线y=上的点,∴S矩形ACOG=S矩形BEOF=6,∵S阴影DGOF=2,∴S矩形ACDF+S矩形BDGE=6+6﹣2﹣2=8,故答案为:8【点评】此题考查了反比例函数系数k的几何意义,熟练掌握反比例函数系数k的几何意义是解本题的关键.17.如图,在△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=2,则扇形BDE的面积为.【分析】根据三角形内角和定理求出∠C,根据三角形的外角的性质求出∠BDE,根据扇形面积公式计算.解:∵∠A=60°,∠B=100°,∴∠C=20°,∵BD=DC=1,DE=DB,∴DE=DC=1,∴∠DEC=∠C=20°,∴∠BDE=40°,∴扇形BDE的面积==,故答案为:.【点评】本题考查的是扇形面积计算,三角形内角和定理,等腰三角形的性质,掌握扇形面积公式S扇形=πR2是解题的关键.18.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=30°.【分析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理求出∠PAB即可.解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°.故答案为:30°.【点评】本题主要考查了正多边形和圆、圆周角定理、弦切角定理;作出适当的辅助线,利用弦切角定理是解答此题的关键.19.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,﹣3)AB为半圆直径,半圆圆心M(1,0),半径为2,则经过点D的“蛋圆”的切线的解析式为y=﹣2x﹣3 .【分析】根据圆心坐标及圆的半径,结合图形,可得点A坐标为(﹣1,0),点B坐标为(3,0),利用待定系数法确定抛物线解析式,因为经过点D的“蛋圆”切线过D点,所以本题可设它的解析式为y=kx﹣3,因为相切,所以它们的交点只有一个,进而可根据一元二次方程的有关知识解决问题.解:∵AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2,∴A(﹣1,0),B(3,0),∵抛物线过点A、B,∴设抛物线的解析式为y=a(x+1)(x﹣3),又∵抛物线过点D(0,﹣3),∴﹣3=a•1•(﹣3),即a=1,∴y=x2﹣2x﹣3,∵经过点D的“蛋圆”切线过D(0,﹣3)点,∴设它的解析式为y=kx﹣3,又∵抛物线y=x2﹣2x﹣3与直线y=kx﹣3相切,∴x2﹣2x﹣3=kx﹣3,即x2﹣(2+k)x=0只有一个解,∴△=(2+k)2﹣4×0=0,解得:k=﹣2,即经过点D的“蛋圆”切线的解析式为y=﹣2x﹣3.故答案为:y=﹣2x﹣3.【点评】本题考查了二次函数的综合,需灵活运用待定系数法建立函数解析式,并利用切线的性质,结合一元二次方程来解决问题,难度一般.三.解答题(共6小题,满分63分)20.(8分)有四张正面分别标有数字:﹣1,1,2,﹣2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线y=﹣上的概率.【分析】(1)利用树状图展示所有16种等可能的结果数;(2)利用反比例函数图象上点的坐标特征找出点(x,y)落在双曲线y=﹣上的结果数,然后根据概率公式求解.解:(1)画树状图为:两次抽出卡片上的数字的所有结果为(﹣1,1),(﹣1,2),(﹣1,﹣2),(﹣1,﹣1),(1,1)(1,﹣1),(1,2),(1,﹣2),(2,﹣1),(2,1),(2,﹣2),(2,2),(﹣2,﹣1),(﹣2,1),(﹣2,2),(﹣2,﹣2);(2)点(x,y)落在双曲线y=﹣上的结果数为4,所以点(x,y)落在双曲线y=﹣上的概率==.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了列表法与树状图.21.(9分)如图,AB是⊙O的直径,PA切⊙O于A,OP交⊙O于C,连BC.若∠P=30°,求∠B的度数.【分析】应用圆切线的性质可得∠PAO=90°,再利用同弧所对的圆周角是圆心角的一半直接求出∠B的度数.解:∵PA切⊙O于A,AB是⊙O的直径,∴∠PAO=90°,∵∠P=30°,∴∠AOP=60°,∴∠B=∠AOP=30°.【点评】这是一道应用圆切线的性质以及三角形外角的性质来建立的问题,这样的求稳定的同时,又有一些情景新颖考法常常能更好地考查学生的基础意识,以及简单的运用方程思想解决问题的能力.试题的特色和亮点:能直接利用性质进行必要的计算,属于中考容易得分的题目.22.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S.【分析】(1)根据∠D=60°,可得出∠B=60°,继而求出BC,判断出OE是△ABC的中位线,就可得出OE的长;(2)连接OC,将阴影部分的面积转化为扇形FOC的面积.解:(1)∵∠D=60°,∴∠B=60°(圆周角定理),又∵AB=6,∴BC=3,∵AB是⊙O的直径,∴∠ACB=90°,∵OE⊥AC,∴OE∥BC,又∵点O是AB中点,∴OE是△ABC的中位线,∴OE=BC=;(2)连接OC,则易得△COE≌△AFE,故阴影部分的面积=扇形FOC的面积,S==π.扇形FOC即可得阴影部分的面积为π.【点评】本题考查了扇形的面积计算、含30°角的直角三角形的计算及圆周角定理及垂径定理的知识,综合考察的知识点比较多,难点在第二问,注意将不规则图形转化为规则图形.23.(12分)如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)求n与k的值;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y>﹣2时,请直接写出自变量x的取值范围.【分析】(1)把A点坐标代入一次函数解析式可求得n,则可求得A点坐标,代入反比例函数解析式则可求得k的值;(2)由一次函数解析式可先求得B点坐标,从而可求得AB的长,则可求得C点坐标,利用平移即可求得D点坐标;(3)在y=中,当y>﹣2时可求得对应的x的值,结合图象即可求得x的取值范围.解:(1)把A点坐标代入一次函数解析式可得n=×4﹣3=3,∴A(4,3),∵A点在反比例函数图象上,∴k=3×4=12;(2)在y=x﹣3中,令y=0可得x=2,∴B(2,0),∵A(4,3),∴AB==,∵四边形ABCD为菱形,且点C在x轴正半轴上,点D在第一象限,∴BC=AB=,∴点C由点B向右平移个单位得到,∴点D由点A向右平移个单位得到,∴D(4+,3);(3)由(1)可知反比例函数解析式为y=,令y=﹣2可得x=﹣6,结合图象可知当y>﹣2时,x的取值范围为x<﹣6或x>0.【点评】本题为反比例函数的综合应用,涉及待定系数法、函数图象的交点、菱形的性质、勾股定理、坐标的平移和数形结合思想等知识.在(1)中注意函数图象的交点坐标满足每一个函数解析式,在(2)中利用平移的知识更容易解决,在(3)中注意求得y=﹣2时对应的x的值是解题的关键,注意数形结合.本题考查知识点较多,综合性较强,难度适中.24.(11分)如图,已知,正方形ABCD和一个圆心角为45°的扇形,圆心与A点重合,此扇形绕A点旋转时,两半径分别交直线BC、CD于点P.K.(1)当点P、K分别在边BC.CD上时,如图(1),求证:BP+DK=PK.(2)当点P、K分别在直线BC.CD上时,如图(2),线段BP、DK、PK之间又有怎样的数量关系,请直接写出结论.(3)在图(3)中,作直线BD交直线AP、AK于M、Q两点.若PK=5,CP=4,求PM的长.【分析】(1)延长CD到N,使DN=BP,连接AN,根据正方形的性质和全等三角形的判定SAS证△ABP≌△ADN,推出AN=AP,∠NAD=∠PAB,求出∠NAK=∠KAP=45°,根。
九年级上册临沂数学期末试卷练习(Word版 含答案)

九年级上册临沂数学期末试卷练习(Word 版 含答案)一、选择题1.如图,AB 为圆O 直径,C 、D 是圆上两点,∠ADC=110°,则∠OCB 度( )A .40B .50C .60D .70 2.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( )A .(0,﹣1)B .(﹣2,﹣1)C .(2,﹣1)D .(0,1)3.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④B .①③C .②③④D .①③④4.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .5.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内 B .P 在圆上 C .P 在圆外 D .无法确定 6.方程2x x =的解是( )A .x=0B .x=1C .x=0或x=1D .x=0或x=-1 7.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( ) A .4 B .4.5 C .5 D .6 8.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A .1B .2C .3D .49.如图,∠1=∠2,要使△ABC ∽△ADE ,只需要添加一个条件即可,这个条件不可能是( )A.∠B=∠D B.∠C=∠E C.AD ABAE AC=D.AC BCAE DE=10.如图,如果从半径为6cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A.2cm B.4cm C.6cm D.8cm 11.如图所示的网格是正方形网格,则sin A的值为()A.12B.22C.35D.4512.下列条件中,一定能判断两个等腰三角形相似的是()A.都含有一个40°的内角B.都含有一个50°的内角C.都含有一个60°的内角D.都含有一个70°的内角二、填空题13.平面直角坐标系内的三个点A(1,-3)、B(0,-3)、C(2,-3),___ 确定一个圆.(填“能”或“不能”)14.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是_____cm2.15.已知tan(α+15°)=33,则锐角α的度数为______°.16.将二次函数y=2x2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.17.如图,由边长为1的小正方形组成的网格中,点,,,A B C D为格点(即小正方形的顶点),AB与CD相交于点O,则AO的长为_________.18.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.19.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=﹣1,那么方程a (x +m +2)2+b =0的解_____.20..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.21.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.22.已知正方形ABCD 边长为4,点P 为其所在平面内一点,PD =5,∠BPD =90°,则点A 到BP 的距离等于_____.23.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.24.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.三、解答题25.如图,分别以△ABC 的边AC 和BC 为腰向外作等腰直角△DAC 和等腰直角△EBC ,连接DE .(1)求证:△DAC∽△EBC;(2)求△ABC与△DEC的面积比.26.我们不妨约定:如图①,若点D在△ABC的边AB上,且满足∠ACD=∠B(或∠BCD=∠A),则称满足这样条件的点为△ABC边AB上的“理想点”.(1)如图①,若点D是△ABC的边AB的中点,AC=22,AB=4.试判断点D是不是△ABC 边AB上的“理想点”,并说明理由.(2)如图②,在⊙O中,AB为直径,且AB=5,AC=4.若点D是△ABC边AB上的“理想点”,求CD的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C为x轴正半轴上一点,且满足∠ACB=45°,在y轴上是否存在一点D,使点A是B,C,D三点围成的三角形的“理想点”,若存在,请求出点D的坐标;若不存在,请说明理由.27.(问题发现)如图1,半圆O的直径AB=10,点P是半圆O上的一个动点,则△PAB 的面积最大值是;(问题探究)如图2所示,AB、AC、BC是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F,即分别在BC、线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.显然,为了快捷环保和节约成本,就要使线段PE、EF、FP之和最短(各物资站点与所在道路之间的距离、路宽均忽略不计).可求得△PEF周长的最小值为 km;(拓展应用)如图3是某街心花园的一角,在扇形OAB中,∠AOB=90°,OA=12米,在围墙OA和OB上分别有两个入口C和D,且AC=4米,D是OB的中点,出口E在AB上.现准备沿CE、DE从入口到出口铺设两条景观小路,在四边形CODE内种花,在剩余区域种草.①出口E设在距直线OB多远处可以使四边形CODE的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE所用的普通石材每米的造价是200元,铺设小路DE所用的景观石材每米的造价是400元.请问:在AB上是否存在点E,使铺设小路CE和DE的总造价最低?若存在,求出最低总造价和出口E距直线OB的距离;若不存在,请说明理由.28.利用一面墙(墙的长度为20m),另三边用长58m的篱笆围成一个面积为200m2的矩形场地.求矩形场地的各边长?29.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)30.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?31.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.32.一只不透明的袋子中装有标号分别为1、2、3、4、5的5个小球,这些球除标号外都相同.(1)从袋中任意摸出一个球,摸到标号为偶数的概率是;(2)先从袋中任意摸出一个球后不放回,将球上的标号作为十位上的数字,再从袋中任意摸出一个球,将球上的标号作为个位上的数字,请用画树状图或列表的方法求组成的两位数是奇数的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【详解】解:∵ ADC=110°,即优弧ABC的度数是220°,∴劣弧ADC的度数是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=12∠AOC=70°,故选D.【点睛】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.C解析:C【解析】【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C.【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.3.A解析:A【解析】【分析】根据三角形的外心得出OA=OC=OB,根据正方形的性质得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐个判断即可.【详解】解:如图,连接OB、OD、OA,∵O为锐角三角形ABC的外心,∴OA=OC=OB,∵四边形OCDE为正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:A.【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.4.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC、2只有选项B的各边为1B.【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.5.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P到圆心O的距离为4.5,⊙O的半径为4,∴点P在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d的距离与半径r的大小确定点与圆的位置关系.6.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】解:2x x =, 方程整理,得,x 2-x=0 因式分解得,x (x-1)=0, 于是,得,x=0或x-1=0, 解得x 1=0,x 2=1, 故选:C . 【点睛】本题考查了解一元二次方程,因式分解法是解题关键.7.C解析:C 【解析】 【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可. 【详解】由3、4、6、7、x 的平均数是5, 即(3467)55++++÷=x 得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5. 故选C 【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.8.B解析:B 【解析】 【分析】将x=2代入方程即可求得k 的值,从而得到正确选项. 【详解】解:∵一元二次方程x 2-3x+k=0的一个根为x=2, ∴22-3×2+k=0, 解得,k=2, 故选:B . 【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.9.D解析:D 【解析】【分析】先求出∠DAE =∠BAC ,再根据相似三角形的判定方法分析判断即可. 【详解】 ∵∠1=∠2,∴∠1+∠BAE =∠2+∠BAE , ∴∠DAE =∠BAC ,A 、添加∠B =∠D 可利用两角法:有两组角对应相等的两个三角形相似可得△ABC ∽△ADE ,故此选项不合题意;B 、添加∠C =∠E 可利用两角法:有两组角对应相等的两个三角形相似可得△ABC ∽△ADE ,故此选项不合题意;C 、添加AD ABAE AC=可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D 、添加AC BCAE DE=不能证明△ABC ∽△ADE ,故此选项符合题意; 故选:D . 【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.10.B解析:B 【解析】 【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可. 【详解】解:∵从半径为6cm 的圆形纸片剪去13圆周的一个扇形, ∴剩下的扇形的角度=360°×23=240°, ∴留下的扇形的弧长=24061880ππ⨯=, ∴圆锥的底面半径248r ππ==cm ; 故选:B. 【点睛】此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.11.C解析:C【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵224225AC BC=+==,BC=22,AD=2232AC CD+=,∵S△ABC=12AB•CE=12BC•AD,∴CE=22326525BC ADAB⨯==,∴6535525CEAsin CABC∠===,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.12.C解析:C【解析】试题解析:因为A,B,D给出的角40,50,70可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A,B,D错误;C. 有一个60的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C正确.故选C.二、填空题13.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.14.35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.解析:35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=12lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:12×10π×7=35πcm2.故答案是:35π.本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.16.y=2(x-2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为解析:y=2(x-2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,故答案为:y=2(x-2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.17.【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=12BE=12,∵BF∥AD,∴△BOF∽△AOD,∴11248 BO BFAO AD===,∴89AO AB=,∵AB=∴9 AO=【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.18.【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵,∴∠BOC=90°,∵的长是,∴,解得:解析:52【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵45BAC ∠=︒,∴∠BOC =90°,∵BC 的长是54π, ∴9051804OB ππ⋅=, 解得:52OB =. 故答案为:52.【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键. 19.x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,解析:x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.20.甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差解析:甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴2222甲乙丁丙<<<S S S S ,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差的概念,正确理解方差所表示的意义是解题的关键.21.8【解析】【分析】在Rt △ADC 中,利用正弦的定义得sinC ==,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos ∠DAC =sinC 得到tanB =,接着在Rt △A解析:8【解析】【分析】在Rt △ADC 中,利用正弦的定义得sin C =AD AC =1213,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos ∠DAC =sin C 得到tan B =1213,接着在Rt △ABD 中利用正切的定义得到BD =13x ,所以13x +5x =12,解得x =23,然后利用AD =12x 进行计算. 【详解】在Rt △ADC 中,sin C =AD AC =1213, 设AD =12x ,则AC =13x ,∴DC =5x ,∵cos ∠DAC =sin C =1213, ∴tan B =1213, 在Rt △ABD 中,∵tan B =AD BD =1213, 而AD =12x ,∴BD =13x ,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.22.或【解析】【分析】由题意可得点P在以D为圆心,为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP的距离.【详解】解析:335+或335-【解析】【分析】由题意可得点P在以D为圆心,5为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP 的距离.【详解】∵点P满足PD=5,∴点P在以D为圆心,5为半径的圆上,∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图,点P是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD=2∵∠BPD =90°,∴BP ,∵∠BPD =90°=∠BAD ,∴点A ,点B ,点D ,点P 四点共圆,∴∠APB =∠ADB =45°,且AH ⊥BP ,∴∠HAP =∠APH =45°,∴AH =HP ,在Rt △AHB 中,AB 2=AH 2+BH 2,∴16=AH 2+(AH )2,∴AH =2(不合题意),或AH =2, 若点P 在CD 的右侧,同理可得AH =2,综上所述:AH =2或2. 【点睛】本题是正方形与圆的综合题,正确确定点P 是以D BD 为直径的圆的交点是解决问题的关键.23.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π. 【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.24.4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】 本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 三、解答题25.(1)见解析;(2)12【解析】【分析】(1)利用等腰直角三角形的性质证明△DAC ∽△EBC ;(2)依据△DAC ∽△EBC 所得条件,证明△ABC 与△DEC 相似,通过面积比等于相似比的平方得到结果.【详解】(1)证明:∵△EBC 是等腰直角三角形∴BC =BE ,∠EBC =90°∴∠BEC =∠BCE =45°.同理∠DAC =90°,∠ADC =∠ACD =45°∴∠EBC =∠DAC =90°,∠BCE =∠ACD =45°.∴△DAC ∽△EBC .(2)解:∵在Rt △ACD 中, AC 2+AD 2=CD 2,∴2AC 2=CD 2∴AC CD =, ∵△DAC ∽△EBC ∴AC BC =DC EC , ∴EC BC =DC AC, ∵∠BCE =∠ACD∴∠BCE -∠ACE =∠ACD -∠ACE ,即∠BCA =∠ECD ,∵在△DEC 和△ABC 中,EC BC =DC AC,∠BCA =∠ECD , ∴△DEC ∽△ABC , ∴S △ABC :S △DEC =2DC AC ⎛⎫ ⎪⎝⎭=12. 【点睛】本题考查了相似三角形的判定和性质,以及相似三角形的面积比等于相似比的平方,解题的关键在于利用(1)中的相似推导出第二对相似三角形.26.(1)是,理由见解析;(2)125;(3)D (0,42)或D (0,6) 【解析】【分析】(1)依据边长AC=AB=4,D 是边AB 的中点,得到AC 2=AD AB ,可得到两个三角形相似,从而得到∠ACD=∠B ;(2)由点D 是△ABC 的“理想点”,得到∠ACD=∠B 或∠BCD=∠A ,分两种情况证明均得到CD ⊥AB ,再根据面积法求出CD 的长;(3)使点A 是B ,C ,D 三点围成的三角形的“理想点”,应分两种情况讨论,利用三角形相似分别求出点D 的坐标即可.【详解】(1)D 是△ABC 边AB 上的“理想点”,理由:∵AB=4,点D 是△ABC 的边AB 的中点,∴AD=2,∵AC 2=8,8AD AB •=,∴AC 2=AD AB ,又∵∠A=∠A ,∴△ADC ∽△ACB ,∴∠ACD=∠B ,∴D 是△ABC 边AB 上的“理想点”.(2)如图②,∵点D是△ABC的“理想点”,∴∠ACD=∠B或∠BCD=∠A,当∠ACD=∠B时,∵∠ACD+∠BCD=90︒,∴∠BCD+∠B=90︒,∴∠CDB=90︒,当∠BCD=∠A时,同理可得CD⊥AB,在Rt△ABC中,∵∠ACB=90︒,AB=5,AC=4,∴BC=222254AB AC-=-=3,∵1122AB CD AC BC⋅=⋅,∴11534 22CD,∴125 CD=.(3)如图③,存在.过点A作MA⊥AC交CB的延长线于点M,∵∠MAC=∠AOC=90︒,∠ACM=45︒,∴∠AMC=∠ACM=45︒,∴AM=AC,∵∠MAH+∠CAO=90︒,∠CAO+∠ACO=90︒,∴∠MAH=∠ACO,∴△AHM≌△COA∴MH=OA,OC=AH,设C(a,0),∵A(0,2),B(0,-3),∴OA=MH=2,OB=3,AB=5,OC=AH=a,BH=a-5,∵MH∥OC,∴MH BH OC OB,∴253aa,解得a=6或a=-1(舍去),经检验a=6是原分式方程的解,∴C(6,0),OC=6.①当∠D1CA=∠ABC时,点A是△BCD1的“理想点”,设D1(0,m),∵∠D1CA=∠ABC,∠CD1A=∠CD1B,∴△D1AC∽△D1CB,∴2111CD D A D B,∴226(2)(3)m m m,解得m=42,∴D1(0,42);②当∠BCA=∠CD2B时,点A是△BCD2“理想点”,可知:∠CD2O=45︒,∴OD2=OC=6,∴D2(0,6).综上,满足条件的点D的坐标为D(0,42)或D(0,6).【点睛】此题考查相似三角形的判定及性质,通过证明三角形相似得到点是三角形某条边上的“理想点”,通过点是三角形的“理想点”,从而证明出三角形相似,由此得到点的坐标,相互反推的思想的利用,注意后者需分情况进行讨论.27.[问题发现] 25;[问题探究] 9;[拓展应用]①出口E设在距直线OB的7.2米处可以使四边形CODE的面积最大为60平方米,②出口E距直线OB米.【解析】【分析】[问题发现]△PAB的底边AB一定,面积最大也就是P点到AB的距离最大,故当OP⊥AB时,12OP AB=时最大,值是5,再计算此时△PAB面积即可;[问题探究]先由对称将折线长转化线段长,即分别以AB、AC所在直线为对称轴,作出P关于AB的对称点为M,P关于AC的对称点为N,连接MN,易求得:3MN AP=,而3PE EF PF ME EF FN MN AP++=++≥=,即当AP最小时,PE EF PF++可取得最小值.[拓展应用]①四边形CODE面积=S△CDO+S△CDE′,求出S△CDE′面积最大时即可;②先利用相似三角形将费用问题转化为CE+2DE=CE+QE,求CE+QE的最小值问题.然后利用相似三角形性质和勾股定理求解即可。
2019—2020学年度临沂市上学期期末考试试题初中数学

2019—2020学年度临沂市上学期期末考试试题初中数学八年级数学一、选择题(此题共12小题,每题3分,共36分)请将唯独正确答案的代号填在表格内.1.以下运算正确的选项是A.3a2×2a2 =6a2 B.(-ab2)2=ab4C.(-a)4÷(-a)2=a2 D.(a2)3×a4=0。
2.点P为△ABC内的一点,假设点P到△ABC三边的距离相等,那么点P是△ABC的A.三条内角平分线的交点 B.三条中线的交点C.三条高线的交点 D.三条垂直平分线的交点3.AD为△ABC的角平分线,从点D分不向AB、AC两边作垂线,垂足分不是E、F,那么以下结论错误的选项是A.DE=DF B.AE=AF C.BD=CD D.∠ ADE=∠ADF4.A为四次多项式,B也是四次多项式,那么A+B的次数是A.4次 B.8次 C.不小于4次 D.不大于4次5.以下各多项式能用公式法因式分解的是A.-x2-y2 B.x2+x+12C.221x xy y2-+ D.2x4x4-++6.在正比例函数,y=(2k—1)x的图象上有两点A(x1,y 1)、B(x2,y2),当x1<x2时,有y1> y2.那么k的取值范畴是A.k>2 B.k<2 C.k>12D.k<127.0为锐角△ABC的∠C平分线上一点,0关于AC、BC的对称点分不为P、Q,那么△POQ一定是A.等边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形8.如图,是某同学一天的作息时刻分配的扇形统计图.假如他把自己的阅读时刻调整为2小时,那么他的阅读时刻需增加A.15分钟 B.48分钟 C.60分钟 D.100分钟9.在Rt△ABC中,∠C=90,∠A=60.∠A的平分线AD交BC边于点D,点D到AB的距离是2cm,那么BC的长是A.2cm B.4cm C.6cm D.8cm10.函数y=-x+4与y=kx-4的图象的交点在x轴上,那么后的值为A .IB .一1C .4D .不存在11.等腰三角形一腰上的高与底边所夹的角等于A .顶角的一半B .顶角的2倍C .底角的一半D .底角的2倍12.如图.∠ AOB 是一钢架,且∠AOB=15∠为了使钢架更加牢固,需要在其内部添加一些钢管朋、FG 、GH ……,添加的钢管长度都与OE 相等,那么最多能添加如此的钢管A .4根B .5根C .6根D .7根二、填空题(此题共8小题,每题4分,共32分)请将正确答案直截了当填在题中横线上.13.一个多项式减去多项式22x y -等于22x 2y +,那么那个多项式是 . 14.如图,AB=AC ,OA 平分∠BAC ,延长CO 交AB 于D ,延长BO 交AC 于E ,那么图中全等三角形共有 对.15.x-y=5,x ·y=3,那么x 2+y 2的值等于 .16.假设点A(a-1,4)和点B(1,b-1)关于x 轴对称,那么(a+b)2007的值等于 .17.直线y=-2x+10与x 轴、y 轴分不交于A 、B 两点,那么AOB 的面积等于 .18.如图,在ABC 中,AB=AC ,DE 垂直平分AB ,垂足为D ,交AC 于E ,BCE 的周长为20, BC=8.那么AB 的长等于 .19.m 3=a ,n 27=b ,那么2m 3n 3+的值等于 .20.如图,在ABC 中,AB=AC ,∠ BAC=120,EF 为AB 的垂直平分线,交AB 于E ,交BC 于 F ,且BF=5cm ,那么FC 的长等于 cm .三、解答题(此题共8小题,共52分)21.(本小题总分值5分)分解因式:(x+1)(x-5)+4x+1.22.(本小题总分值6分)某班同学参加公民道德知识竞赛,将竞赛所得成绩(得分取整数)进行整理后分成五组,并绘制成频数分布直方图(如图),请结合直方图提供的信息,解答以下咨询题:(1)该班共有多少名学生参加竞赛?(2)假如80分以上(不含80分)的学生能够获奖,该班学生的获奖率是多少?(3)结合图形请你另外讲出两条信息.23.(本小题总分值6分)探究规律以下等式:1×2+2×3=2×2;2×3+3×4=2×3;3×4+4×5=2×4;4×5+5×6=2×5;…………………请用含字母n的代数式表示第n个等式是什么?并证明你的结论.24.(本小题总分值6分)如图,点D、B分不在∠EAF的两边上,C是∠EAF内的一点,且AB=AD,BC=DC,CE⊥ AE,CF⊥AF,垂足分不为E、F.求证:CE=CF.25.(本小题总分值6分)先化简,再求值:[(2x+y)2+(y+2x)(y-2x)-2y(4x-y)]÷4y.其中x=12,y=32.26.(本小题总分值8分)如图,AD是ABC的中线,∠ ADC=45,以AD为对称轴,作出ACD关于AD对称的△AC'D.连接C'A、C'D、C'B.试判定△BDC'的形状,并加以证明.27.(本小题总分值7分)甲骑自行车,乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时刻的函数关系图象如下图.依照图象解答以下咨询题:(1)分不求出甲、乙两人的行驶速度为每小时走多少千米?(2)甲动身多少分钟后与乙相遇?28.(本小题总分值8分)如图,在Rt△ABC中,∠ACB=9O,CE⊥AB,垂足为E,AF平分∠CAB交CE于点F,过点F 作 FD∥CB.交AB于点D.求证:AC=AD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年山东省临沂市沂南县九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)sinA=AA13等于(.(分)已知∠,那么∠为锐角,且)A15°B30°C45°D60°....y=k02123))的图象过点((,则这个函数的图象一定过点≠.(,分)若反比例函数()A21 B12 C21 D21),﹣))(﹣,﹣.(.(﹣,﹣.),(.PB1A33O是的弧交坐标轴于.(,分)如图,以原点上一点为圆心,半径为两点,POPPOB=αAB)(不与,则点,重合),连接的坐标是(,设∠AsinαsinαBcosαcosαCcosαsinαDsinαcosα)),.((,)),.(.(,.43分)如图所示,该几何体的主视图是().(D CAB ....5ABOBCO3OBC=60°BAC的度数是(则∠的直径,是⊙)的弦.(分)如图,若∠,.是⊙A75°B60°C45°D30°....163分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是(().A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大24x1=0xk73xk1的取.(+分)若关于)的一元二次方程(+﹣有两个不相等的实数根,则值范围是()Ak5Bk5k1 Ck5k1 Dk5>≠..,且<,且≠.≤<.83lllAClllABCDF分别交分别交,,.(;直线分)如图,直线,∥,∥于点,直线323112 BC=5AH=2HB=1ACDFHlllDEF则的值为(于点,,,,.与)相交于点,,,且,312D2 CA B....PxyPxy=yx0x93,则下,图象上有两点(<,)),,若.(分)反比例函数(<﹣21121221列结论正确的是()Ayy0By0y Cyy0Dy0y><><...<.><>22121112BC=AACDBC=DAC=3CD103ABC,,边上一点,∠,则的为.(∠分)如图,在△中,长为()DC1 B2 A....113y=kx2xAy轴交于点+轴交于点与,与.(分)如图,在平面直角坐标系系中,直线1BOC=BBOStan=1Cy=,若连接∠,在第一象限内的图象交于点,与反比例函数,.OBC△k)则的值是(223D1 C2 A3 B....﹣A→B→CABC=4P312ABCDAB=3的方向在,点,.(分)如图,矩形点出发,按中,从xyPAyABBCPA=xD),点关于到直线的函数大致图象是的距离为(和,上移动.记则D CA B....18分)小题,每小题3分,满分二、填空题(共62x=0 133x.+ 的解是.(分)方程11143个、.(个、绿球分)一个不透明盒子内装有大小、形状相同的四个球,其中红球 2 .个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是白球O11153在格点上,则∠的小正方形构成的网格中,半径为.(的⊙分)如图,边长为AED .的正切值为yxy=ABA316B轴的垂线段,上的点,分别过点、是双曲线轴和作.(分)如图,点、 2 .若图中阴影部分的面积为,则两个空白矩形面积的和为3317分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同.(温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:t温242549464941l/mm植物高度增长量tl之间是二次函数关系.由此可以推测最适合这种植物生长科学家经过猜想、推测出与℃.的温度为ADBEBCAC2ABC1831相交于点、等分,,如图①,将边.(分别分)设△的面积为、11AOBADBEOAOBSBCAC3O,△的面积记为、;如图②将边、,△等分,分别相交于点111nn S …S的代数式表示,其中可表示为(用含的面积记为;.,依此类推,则n2为正整数)66分)7三、解答题(共小题,满分2tan60°719sin45°..(分)计算: +﹣x32820米,面积为米的篱笆围一个矩形养鸡场,设围成的矩形一边长为(.分)用长为y平方米.41yx的函数关系式;)求关于(2x为何值时,围成的养鸡场面积最大,最大面积是多少?()当218ACABABC在同一条直线上,在地分)如图,某建筑物顶部有一旗杆,,且点.(,DB30°DCEDEC三点在同一直线面之间选择一点处测得旗杆顶端,的仰角为,在(,,B60°DE20m,已知建筑物的高度,且之间的距离为,上),又测得旗杆顶端的仰角为 1.411.73AC=12mAB0.1.≈,求旗杆,的高度(结果精确到≈米).参考数据:2210ABOCDOCABD,的直径,,与与⊙的延长线交于点.(相切于点分)如图,是⊙DEADACE.且与的延长线交于点⊥1DC=DE;()求证:CAB=AB=3BDtan2的长.,求∠(,)若2310分)如图,在平面直角坐标系中,.(一次函数的图象与反比例函数的图象交于第二、ABxCyDBm4),点四象限内的,﹣,两点,与的坐标是(轴交于点,与,连轴交于点AOC=sinAOAO=5.接∠,,1)求反比例函数的解析式;(2OBAOB的面积.,求△()连接5EDF=90°DEFB=60°RtACB=90°2411RtABC,;在将一副三角尺(在中,△△中,∠,∠∠.(分)CDFACPE=45°DABDE.∠于点)如图①摆放,点为经过点的中点,,交ADE1的度数;()求∠60°0°α2DEFDα,此时的等腰直角三角)如图②,将△<绕点)顺时针方向旋转角<((αDF′MBCNDE′F′DE′AC的变化而变,交试判断尺记为△,于点交的值是否随着于点,的值;反之,请说明理由.化?如果不变,请求出y=12xOy25Abxc04﹣分)如图,在平面直角坐标系((中,抛物线,)和++.过点MPAPxt0M0C8P绕点,)是是线段轴正半轴上的一个动点,(的中点,将线段,),(yxBAP90°PB轴的垂线,两直线交于点轴的垂线,过点作顺时针旋转得线段作,过点D.cb1的值;、()求D2t落在抛物线上.)当为何值时,点(672019-2020学年山东省临沂市沂南县九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)sinA=AA13等于(.(,那么∠分)已知∠)为锐角,且A15°B30°C45°D60°....sinA=A为锐角,【解答】解:∵,∠A=30°.∴∠B.故选y=k03212)分)若反比例函数)的图象过点((,则这个函数的图象一定过点≠.(,()A21 B12 C21 D21)(),﹣(﹣),﹣..((﹣,﹣.),.y=k=211=22,)代入得×【解答】解:把(,y=,所以反比例函数解析式为21=212=221=221=2,﹣因为,﹣×(﹣,﹣)×﹣,)×(﹣﹣)×(﹣y=12的图象上.,﹣)在反比例函数所以点(﹣D.故选PB1A33O是的弧交坐标轴于两点,(.,分)如图,以原点上一点为圆心,半径为POPPOB=αBA),则点(不与,重合),连接的坐标是(,设∠AsinαsinαBcosαcosαCcosαsinαDsinαcosα).((,),..(,).(,)PPQOBOBQ,于点【解答】解:过作⊥,交8RtOPQOP=1POQ=α,在中,△,∠cosα=PQ=sinαsinα=OQ=cosα,,,∴,即Pcosαsinα)则,的坐标为(,C.故选43分)如图所示,该几何体的主视图是(.()D AC B ....1个矩形,中间的轮廓线用虚线表示.【解答】解:该几何体为三棱柱,它的主视图是由D.故选5ABOBCO3OBC=60°BAC的度数是(()分)如图,若∠.则∠是⊙的直径,,是⊙的弦.A75°B60°C45°D30°....ABO的直径,【解答】解:∵是⊙ACB=90°,∴∠OBC=60°,又∵∠BAC=180°ACBABC=30°.﹣∠∴∠﹣∠9D.故选63分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是(.()A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大【解答】解:画树状图为:411种,一个正面朝种等可能的结果数,其中两正面朝上的占种,两背面朝上的占共有2种,上,另一个背面朝上的占==;一个正面朝上,另一个背面朝上的概;两反面朝上的概率所以两正面朝上的概率==.率C.故选24x1=0xk37xk1的取.(+分)若关于)的一元二次方程(+﹣有两个不相等的实数根,则值范围是()Ak5Bk5k1 Ck5k1 Dk5>...<≠≤.<≠,且,且24xx1=0xk1有两个不相等的实数根,的一元二次方程(+【解答】解:∵关于﹣+),即,∴k5k1.且解得:≠<B.故选83lllAClllABCDF分别交,,,于点(.;直线分)如图,直线∥∥,,直线分别交331122 BC=5AH=2HHB=1DFFDlllEAC则的值为(且,,于点,,.与相交于点,,,,)31210DB2 CA ....HB=1AH=2,【解答】解:∵,AB=3,∴lll,∥∵∥312==,∴D.故选:x0xyx3y=xPyP9,则下,<﹣图象上有两点(),,若),<(.(分)反比例函数22111221)列结论正确的是(yy0yCy0DyAyy0 By0 >.<.><<.>.><21221112y=,﹣【解答】解:∵xk=30y的增大而增大,﹣随<∴,函数的图象在第二、四象限,并且在每个象限内,xyy=Px0xPyx,﹣图象上有两点(,,)∵反比例函数<(,),<22112211PP在第四象限,在第二象限,点∴点21y0y,>∴>21D.故选CDABC310DADBC=ACBC=AC=3的(.分)如图,在△中,为边上一点,∠∠,,,则)长为(DC2 1 AB....11DBC=AC=C,,∠【解答】解:∵∠∠∠CBDCAB,∴△∽△==,∴,即CD=2,∴C.故选113y=kx2xAy轴交于点+轴交于点.(分)如图,在平面直角坐标系系中,直线与,与1BOC=BBOy=tanS=1C,连接∠若在第一象限内的图象交于点,.,,与反比例函数OBC△k)则的值是(2A3 B1 C2 D3....﹣y=kx2xAyC,+与,与【解答】解:∵直线轴交于点轴交于点1C02),∴点,的坐标为(OC=2,∴S=1,∵OBC△BD=1,∴BOC=tan,∵∠=,∴OD=3,∴B13)∴点,的坐标为(,y=B,在第一象限内的图象交于点∵反比例函数3=3=1k.×∴2D.故选12A→B→CABC=4P123ABCDAB=3的方向在.(,点分)如图,矩形点出发,按中,从,xyyBCPA=xDPAAB)到直线的函数大致图象是的距离为,则和(上移动.记,点关于DC A B....ABP1上移动时,)当点【解答】解:(在PAD的距离为:到直线点3y=DA=BC=40x.≤)≤(BC21P,)如图上移动时,,当点在(BC=4AB=3,,∵AC=,∴DAE=90°PABDAE=90°ADE,+,∠+∠∵∠∠ADEPAB=,∠∴∠ADEPAB中,在△和△ADEPAB,∽△∴△13,∴,∴5y=x3.(≤∴<)综上,可得xy的函数大致图象是:关于.D.故选:18分)6小题,每小题3分,满分二、填空题(共21==0x=0x133xx.的解是﹣.(,分)方程 +21=01xx,【解答】解:+()1=0xx=0,+或1x=0=x.﹣,所以211x=x=0.故答案为,﹣2111143个、(.个、绿球分)一个不透明盒子内装有大小、形状相同的四个球,其中红球2.白球个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是【解答】解:画树状图得:212种情况,种等可能的结果,两次都摸到白球的有∵共有= ∴两次都摸到白球的概率是:.故答案为:1415311O在格点上,则∠(的小正方形构成的网格中,半径为分)如图,边长为的⊙.AED.的正切值为AED=ABC,∠【解答】解:由图可得,∠O1的网格格点上,在边长为∵⊙AB=2AC=1,,∴=ABC=tan,∠则AED=tan.∴∠故答案为:.y=ABx163ABy轴的垂线段,.(上的点,分别过点分)如图,点、轴和是双曲线、作28若图中阴影部分的面积为.,则两个空白矩形面积的和为y=BA上的点,、【解答】解:∵点是双曲线S=S=6,∴BEOFACOG矩形矩形S=2,∵DGOF阴影SS=6622=8,﹣﹣++∴BDGEACDF矩形矩形8故答案为:15317分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同.(温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:410℃t/﹣﹣温度242546494941l/mm物高度增长量植tl之间是二次函数关系.由此可以推测最适合这种植物生长与科学家经过猜想、推测出℃.1的温度为﹣2254460491 l=atbtc a0)代入后得方程组(,(++,(,≠,选()),,)【解答】解:设,,解得:249t2tltl=,+﹣所以与﹣之间的二次函数解析式为:501l=t=,时,﹣当﹣有最大值℃.1即说明最适合这种植物生长的温度是﹣1t=49t=14920时,植物﹣)可知抛物线的对称轴为直线﹣另法:由(﹣,(),,故当,生长的温度最快.1.故答案为:﹣ADBEAC1318ABCBC2相交于点、.(分)设△的面积为,如图①,将边、分别等分,1116OAOBSBCAC3BEADOAOB△分别相交于点等分,,△的面积记为,;如图②将边、、111nnS…S的代数式表示,其中.,依此类推,则可表示为(用含的面积记为;n2为正整数)DEADBEM,、【解答】解:如图,连接,设交于点1111AEAC=1n1)+:(,∵:1SS=1n1)+:∴(:,ABCABE1△△=S,∴ABE1△==,∵=,∴SS=n12n1)+(∴)::(,+ABE1ABM△△=n12n1S)+():,(∴:+ABM△=S.∴n故答案为:.三、解答题(共7小题,满分66分)245°719sintan60°..(分)计算: +﹣17=﹣【解答】解:原式+=﹣+=.20832x米,面积为分)用长为米的篱笆围一个矩形养鸡场,设围成的矩形一边长为.(y平方米.1yx的函数关系式;)求关于(2x为何值时,围成的养鸡场面积最大,最大面积是多少?()当1x16x)米,【解答】解:(米时,另一边长为()当矩形的一边长为﹣216x0x16y=x16x=x)(;﹣)(﹣<<根据题意,得:+2264xy=x816x=2,﹣﹣+)∵+)(﹣(x=8y64,∴当取得最大值,最大值为时,x864平方米.答:当米时,围成的养鸡场面积最大,最大面积是为218ACABABC在同一条直线上,在地分)如图,某建筑物,顶部有一旗杆,.(,且点DB30°DCEDEC三点在同一直线面处测得旗杆顶端(的仰角为,,在,,之间选择一点B60°DE20m,已知建筑物的高度,且上),又测得旗杆顶端,的仰角为之间的距离为 1.41AB0.11.73AC=12m.米),.参考数据:≈,求旗杆的高度(结果精确到≈BEC=60°BDE=30°,【解答】解:∵∠,∠DBE=60°30°=30°,﹣∴∠BE=DE=20m,∴RtBEC中,△在18=1017.3BC=BE?sin60°=20m)(≈×,AB=BCAC=17.312=5.3m)﹣,∴﹣(AB5.3m.答:旗杆的高度为2210ABOCDOCABD,的直径,,与.(与⊙分)如图,的延长线交于点是⊙相切于点DEADACE.且与⊥的延长线交于点1DC=DE;()求证:CAB=AB=3tanBD2的长.∠,(,求)若1OC,)证明:连接【解答】(CDO的切线,是⊙∵OCD=90°,∴∠ACODCE=90°,+∴∠∠EDADEDA=90°,又∵,∴∠⊥EADE=90°,∴∠∠+OC=OAACO=EAD,,∴∠∠∵DCE=E,故∠∠DC=DE,∴2BD=xAD=ABBD=3xOD=OBBD=1.5x,(,)解:设,则++++RtEAD中,△在AD=3ED=tanCAB=x)+∵,∠(,∴DC=3x1RtOCD中,△(+,在)由()知,222=DOCDOC,+19222x=3x1.51.5,((+])则)++[x=3x=1,﹣解得:(舍去),21BD=1.故2310分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、.(ABxCyDBm4),,点两点,与,﹣轴交于点,与的坐标是(轴交于点四象限内的,连AOC=AO=5sinAO.,接∠,1)求反比例函数的解析式;(2OBAOB的面积.)连接(,求△1AAExE,如图所示.⊥【解答】解:()过点轴于点作y=.设反比例函数解析式为AEx轴,⊥∵20AEO=90°.∴∠AOC=sinAEO=90°RtAEOAO=5,在∠△,中,,∠OE=AOC=3=4AE=AO?sin,,∠∴3A4.∴点,的坐标为(﹣)y=43A的图象上,,∵点)在反比例函数(﹣123=k=.﹣,解得:∴y=﹣.∴反比例函数解析式为y=42Bm﹣)∵点,﹣((的图象上,)在反比例函数m=34=,,解得:﹣∴﹣B34).,﹣∴点的坐标为(ABy=axb,的解析式为设直线+A43B34y=axb中得:将点((﹣)代入,,﹣)、点+,解得:,y=x1.∴一次函数解析式为﹣﹣y=x1y=00=x1,﹣,则﹣﹣中﹣令一次函数x=1C10)解得:的坐标为(﹣﹣.,即点,=31OC?yy4=S=.(﹣(﹣﹣)])×[×BAAOB△2411RtABCACB=90°B=60°RtDEFEDF=90°,中,;在∠.(分)将一副三角尺(在△△中,∠,∠E=45°DABDEACPDFC.的中点,交经过点于点,∠)如图①摆放,点为1ADE的度数;)求∠(212DEFDα0°α60°))如图②,将△<绕点<顺时针方向旋转角,此时的等腰直角三角((αBCNACMDF′DE′F′DE′的变化而于点于点,尺记为△,试判断,交交的值是否随着的值;反之,请说明理由.变化?如果不变,请求出1ACB=90°DAB的中点,,点【解答】解:(为)∵∠CD=AD=BD=AB,∴ACD=A=30°,∴∠∠ADC=180°30°2=120°,﹣×∴∠ADE=ADCEDF=120°90°=30°;∠∴∠﹣﹣∠2EDF=90°,()∵∠PDME′DF=CDNE′DF=90°,∠+∠+∴∠∠PDM=CDN,∠∴∠B=60°BD=CD,,∵∠BCD是等边三角形,∴△BCD=60°,∴∠CPD=AADE=30°30°=60°,+∵∠∠∠+CPD=BCD,∴∠∠DPMDCN中,在△和△,DPMDCN,∴△∽△=,∴==tanACD=tan30°∠∵,α的变化而变化,是定值的值不随着.∴4y=xOy1225bx0Ac)和(,(.分)如图,在平面直角坐标系中,抛物线﹣++过点C80Pt0xMAPMP绕点,(,)(,)是轴正半轴上的一个动点,是线段的中点,将线段22P90°PBBxAy轴的垂线,两直线交于点得线段轴的垂线,过点,过点作顺时针旋转作D.1bc的值;)求(、2tD落在抛物线上.)当(为何值时,点cy=bx804C01A得﹣)和+(,,【解答】解:()代入)把(+,b=c=4;解得,2MNxN,如图,)作轴于点(⊥MAP的中点,∵是线段MN=2,∴ADBEBEx轴,,∵⊥⊥BE=OA=4,∴MPP90°PB,∵线段顺时针旋转绕点得线段PM=PBMPB=90°,,∠∴MPNBPE=90°MPNPMN=90°,∠,∠∵∠++∠PMN=BPE,∴∠∠PMNBPE中在△和△,PMNBPE,≌△∴△PE=MN=2,∴OE=2t,∴+D2t4),∴(+,23=x=,﹣∵抛物线的对称轴为直线DA为对称点,而点、点45D,,点坐标为(∴)t=32t=5,∴,解得+D3t落在抛物线上.为时,点即当24。