等积变形问题

合集下载

初中数学七年级《等积变形问题》

初中数学七年级《等积变形问题》

10%。如果商品的标价为33元,那么该商品的进价为( )
A.31元
B.30.2元
C.29.7元 D.27元
七、观察规律法
对题干和选项进行仔细观察,找出内在的隐含规律,从而 选出正确答案。于不知运算关系或规律探究类的题目,我们 可以先对
【例】 n个自然数按规律排成下表:
根据规律,从2002到2004,箭头的方向依次应为( ) A. ↑→ B. →↑ C. ↓→ D . →↓
练:如图1是一个小正方体的侧面展开图, 小正方体从如图2所示的位置依次翻到第1格、 第2格、第3格,这时小正方体朝上面的字是 () A、和 B、谐 C、社 D、会
用橡皮擦做道具模拟实验
小结
选择题具有知识覆盖面广、容量大、 解法灵活、评分客观等特点,能有效 地考查同学们识记、理解、比较、辨 别、计算、推理等各方面的能力,所 以是中考最主要的题型之一。因此, 掌握一些必要的解题方法,既能准确 地解答好试题,又能节省宝贵的考试 时间。
解:圆柱形玻璃杯装不下。
设圆柱形瓶内的水面还有x厘米高, 则剩余水的体积为 (5)2 x立方厘米 。
2
根据题意,列方程得
(6)2 10 (5)2 x (5)2 18
2
2
2
整理得 90 + 6.25x =112.5
解得 x = 3.6
经检验,符合题意。
答:圆柱形玻璃杯装不下,圆柱形瓶内的 水面还有3.6厘米高。
2
6 4
x
6
在一个底面直径5厘米、高18厘米的圆柱 形瓶内装满水,再将瓶内的水倒入一个 底面直径6厘米、高10厘米的圆柱形玻璃 杯中,能否完全装下?若装不下,那么 瓶内水面还有多高?若未能装满,求杯 内水面离杯口的距离?

等积变形问题

等积变形问题

一、打折销售问题(1)售价、进价、利润的关系:利润=售价—成本进价、利润、利润率的关系:利润率=商品利润商品成本价×100%商品售价=商品进价×(1+利润率)(2)标价、折扣数、商品售价关系:商品售价=标价×折扣数(3)商品总销售额=1件商品售价×销售量例1. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?等量关系:折扣后价格-进价=151.一家商店将某种服装按成本价提高20%后标价,又以9折销售,售价为270元,这种服装成本价是多少元?2、某商场的电视机原价为2500元,现以8折销售,如果想使降价前后的销售额都为10万元,那么销售量应增加多少?3、一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,•结果每件仍获利15元,这种服装每件的成本为多少?4、一件夹克按成本提高50%后标价,后因季节关系案标价的8折出售,每件以60元卖出,5、一种药物涨价25%的价格是50元,那么涨价前的价格x满足的方程是____________。

6.某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为______.7、某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?8、某商场把一个双肩背的书包按进价提高50%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利8元。

这种书包的进价是多少元?9、商店对某种商品作调价,按原价的8折出售,此时商品的利润率是10%,此商品的进价为1600元。

问商品的原价是多少?10.一商场把彩电按标价的九折出售,仍可获利20%,如果该彩电的进货价是2400元,那么彩电的标价是多少元?11.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?二、相遇与追击问题(画草图)1.行程问题中的三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间2.行程问题基本类型 (1)相遇问题: 快行路程+慢行路程=总路程 (二者所用时间相同)(2)追及问题: 快行路程=慢行路程+二者初始距离 (二者所用时间相同)(1)相遇问题: 两者的路程之和=环形跑道一圈的长度(2)追及问题: 两者的路程之差=环形跑道一圈的长度错车问题:两者路程和或差=两个车身的长度和1、甲、乙两人每天早晨坚持跑步,甲每秒跑4m ,乙每秒跑6m.(1)如果他们站在百米跑道的两端同时起跑,那么几秒后两人相遇?(2)如乙站在百米跑道的起点处,甲站在他前面10米处,两人同时同向起跑,几秒后乙能追上甲?2、一个自行车队进行训练,训练时所有队员都以35km/h 的速度前进。

一元一次方程实际应用题之等积变形问题

一元一次方程实际应用题之等积变形问题

一元一次方程实际应用题之等积变形问题“等积变形”是以形状改变而体积不变为前提. 常见几何图形的周长、面积、体积公式:1.等长变形问题例题1:用一根长10米的铁丝围成一个长方形.使得长方形的长比宽多1.2米,此时长方形的长是多少米?宽是多少米?分析:抓住总长度不变,也就是长方形的周长等于10米。

可设宽为未知数,进而表示出长,等量关系为:2(长+宽)=10,把相关数值代入可求得宽,进而求得长即可。

解:设长方形的宽为x米,则长为(x+1.2)米.依题意得:2(x+1.2+x)=10,解得x=1.9,∴x=1.2+1.9=3.1,答:长方形的长为3.2米,宽为1.9米。

2.等体积变形问题例题2:要锻造直径为60mm,高为30mm的圆柱形毛坯,需截取直径为40mm的圆钢长是多少毫米?分析:抓住锻造前后的体积不变,此题的等量关系为:锻造前的体积=锻造后的体积.据此列方程求解。

要注意的是,题目中已知直径,需要转化为半径。

解:设需截取直径为40mm的圆钢长xmm,60÷2=30(mm)、40÷2=20(mm);依题意得:π×30^2×30=π×20^2×x解得:x=67.5例题3:有一段钢材可作一个底面直径 8 厘米,高 9 厘米的圆柱形零件。

如果把它改制成高是 12 厘米的圆锥形零件,零件的底面积是多少平方厘米?分析:根据“底面直径8厘米,高9厘米的圆柱形零件”,利用圆柱体积公式,可以求出圆柱的体积,又因为把圆柱形的零件改制成圆锥形零件时,此段钢的体积不变,根据体积不变列出方程求解。

解:零件的底面积是x平方厘米。

8÷2=4(厘米)依题意得:3×π×4^2×9=x×12解得:x=36π答:零件的底面积是36π平方厘米。

3.等面积变形问题例题4:如图,某小学将一块梯形空地改成宽为30m的长方形运动场地,要求面积不变.若在改造后的运动场地,小王、小李两人同时从点A出发,小李沿着长方形边顺时针跑,小王则是逆时针跑,并且小王每秒比小李多跑2m,经过10秒钟他们相遇.(1)求长方形的长;(2)求小王、小李两人的速度分析:(1)求得原梯形的面积,利用面积不变和长方形的面积求得长方形的长即可;(2)设小李的速度是xm/s,则小王的速度是(x+2)m/s,利用10秒钟他们相遇所走的路程为长方形的周长列出方程解决问题。

等积变形(复习)

等积变形(复习)

等积变形(复习)例1、M、N分别为四边形ABCD的边AB和CD 的中点,如果四边形的面积是80平方厘米,求阴影部分的面积。

练习1、如图,六边形ABCDEF的面积是16平方厘米,M、N、P、Q分别是AB、CD、DE、AF 的中点。

求阴影部分的面积练习2、如图,平行四边形的面积为50平方厘米,P是其中任意一点,求阴影部分的面积。

例2、如图,D是等边三角形AB边上的中点。

已知三角形BDE的面积为5平方厘米。

求等边三角形的面积。

练习1、如图,AE=EF=FB,AG=2CG,三角形GEF的面积是6平方厘米,求平行四边形的面积。

练习2、如图,已知P点是面积为40平方厘米的等边三角形ABC中的任意一点,PE、PF、PG分别垂直AB、BC、AC,求阴影部分的面积。

例3、如图是两个正方形拼成的图形,其中小正方形的边长是4厘米,求阴影部分的面积。

练习:已知图中大正方形的边长是6厘米,求阴影部分的面积。

ABCD 中,EF 与AC 平行,如果三角形BFC 的面积是35平方厘米,那么三角形AEB 的面积是多少平方厘米?2、在三角形ABC 中,AD 与BC 垂直,CE 与AB 垂直,AD=8厘米,CE=7厘米,AB+BC=21厘米,求三角形ABC 的面积。

3、如图,三角形ABC 的面积是30平方厘米,D 是BC 的中点,AE=2ED ,求阴影部分的面积。

4、三角形ABC 的面积是180平方厘米,D 是BC 的中点,AD=3AE ,EF=3BF ,求阴影部分的面积。

5、如图,BD=2DC ,AE=BE ,已知三角形ABC 的面积是18平方厘米,求四边形AEDC 的面积。

6、两个边长为2厘米的正方形,其中一个的顶点在另一个的中心上,求两个正方形不重合部分的面积和。

7、在正方形中,A 、B 、C 分别是所在边的中点,三角形COD 的面积是三角形AOB 的面积的几倍?8、如图,长方形ABCD 的长为10厘米,宽为6厘米,E 、F分别为所在边的中点,FG=2GE。

等积变形问题归纳总结

等积变形问题归纳总结

等积变形问题归纳总结等积变形是数学中一个经典而重要的问题,涉及到几何和代数两个方面。

这类问题一般给定一个几何形状,然后要求找到一个变形的方法,使得该形状在变形后保持等面积不变。

在这篇文章中,我将对等积变形问题进行归纳和总结,介绍常见的等积变形方法及其应用。

一、等积变形的概念和意义等积变形是指通过某种方式改变一个几何形状,使得变形后的形状与原来的形状面积相等。

这个问题在工程、建筑、地理测量等领域有着广泛的应用。

等积变形的主要目的是在不改变面积的情况下,改变某个几何形状的外观或者其他性质。

在实际应用中,等积变形可以用于设计优化、曲面造型、地图绘制等方面。

二、等积变形的常见方法1. 平移变形:平移是最简单的等积变形方法之一。

平移变形是通过将几何形状整体平行地移动,使得形状的外观发生变化,但面积保持不变。

平移变形的关键是保持对称性,即移动后的形状与原来的形状在空间中仍具有相同的位置关系。

2. 旋转变形:旋转变形是通过将几何形状绕一个确定的旋转点旋转一定角度,使得形状的外观发生变化,但面积保持不变。

旋转变形的关键是确定旋转中心和旋转角度,以及保持旋转后的形状与原来的形状在空间中具有相同的位置关系。

3. 缩放变形:缩放变形是通过改变几何形状的尺寸,使得形状的外观发生变化,但面积保持不变。

缩放变形可以分为等比例缩放和非等比例缩放两种方式。

等比例缩放是将形状的所有尺寸同时按照相同的比例进行缩放;非等比例缩放是将形状的各个尺寸分别按照不同的比例进行缩放。

4. 拉伸变形:拉伸变形是通过改变几何形状的某个方向的尺寸,使得形状的外观发生变化,但面积保持不变。

拉伸变形可以在一维、二维和三维空间中进行。

在一维空间中,拉伸变形是指改变线段的长度;在二维空间中,拉伸变形是指改变面的某个方向的尺寸;在三维空间中,拉伸变形是指改变体的某个方向的尺寸。

5. 弯曲变形:弯曲变形是通过施加外力将几何形状弯曲,使得形状的外观发生变化,但面积保持不变。

初一七年级下册数学教学课件之等积变形问题

初一七年级下册数学教学课件之等积变形问题
(x+0.8 +x) ×2 =10 解得 x=2.1 2.1+0.8=2.9
此时长方形的长为2.9米,宽为2.1米,面积为 2.9 ×2.1=6.09(平方米),(1)中长方形的面积为3.2 × 1.8=5.76(平方米).
此时长方形的面积比(1)中长方形的面积增大 6.09-5.76=0.33(平方米).
讲授新课
一 图形的等长变化
合作探究 用一根长为10米的铁丝围成一个长方形. (1)若该长方形的长比宽多1.4米,此时长方形的
长、宽各是多少米呢?
长方形的周 长(或长与宽 的和#43;1.4) m 等量关系: (长+宽)× 2=周长 解: 设此时长方形的宽为x米,则它的长 为(x+1.4)米. 根据题意,得
归纳总结
(1)形状、面积发生了变化,而周长没变; (2)形状、周长不同,但是根据题意找出周长之间的关 系,把这个关系作为等量关系.解决问题的关键是通 过分析变化过程,挖掘其等量关系,从而可列方程.
二 图形的等积变化
合作探究 某居民楼顶有一个底面直径和高均为4 m的圆
柱形储水箱.现该楼进行维修改造,为减少楼顶原 有储水箱的占地面积,需要将它的底面直径由4 m 减少为3.2 m.那么在容积不变的前提下,水箱的 高度将由原先的4 m变为多少米?
挤出1 cm长的牙膏,这样一支牙膏可以用36次,该品牌
牙膏推出新包装,只是将出口处直径改为6 mm,小明还
是按习惯每次挤出1 cm的牙膏,这样,这一支牙膏能用
多少次?
解:设这一支牙膏能用 x 次,根据题意得
5
6
π× 2 2×10×36=π× 2 2×10·x.
解这个方程,得 x=25.
答:这一支牙膏能用 25 次.

七上数学(沪科版)课件-等积变形问题与行程问题

七上数学(沪科版)课件-等积变形问题与行程问题

甲比乙每小时多行 2.5km,则乙的速度为( B )
A.12.5km/h
B.15km/h
C.17.5km/h
D.20km/h
5.一辆慢车每小时行驶 48km,一辆快车每小时行驶 55km.慢车在前,快
车在后,且相距 14km,则快车追上慢车所需时间是 2 小时.
知识点三:其他问题 6.杭州与嘉兴两地相距 120 千米,一辆汽车从杭州出发,速度为 45 千米/ 时,一辆货车从嘉兴出发,速度为 35 千米/时, 几小时两车相遇 ?请你将 这道题补充完整,并列出方程为 (45+35)x=120 . 7.王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝, 如果每人分 5 袋,还余 3 袋;如果每人分 6 袋,还差 3 袋,则王经理带回 孔明菜 33 袋.
8.甲队有 28 人,乙队有 20 人,现从乙队抽调 x 人到甲队,使甲队的人数
是乙队人数的 2 倍.依题意列出的方程是( D )
A.28=2(20-x)
B.28+x=20-x
C.28+x=2×20
D.28+x=2(20-x)
9.甲仓库存煤 200 吨,乙仓库存煤 70 吨.若甲仓库每天运出 15 吨煤,乙
知识点一:等积变形问题
等积变形问题:变形前的面积(体积)= 变形后 的面积(体积).
1.用直径为 120 毫米的圆钢锻造成 59 克的工件,1 立方厘米钢重 7.8 克,
问需截取圆钢的长是多少毫米?若设需截取圆钢的长为 x 毫米,那么下面
的方程中正确的是( D )
A.7.8×1202·πx=59
B.170.080×1202·πx=59
11.A、B 两地相距 600km,甲车以 60km/h 的速度从 A 地驶向 B 地,2h 后乙车以 100km/h 的速度沿着相同的道路从 A 地驶向 B 地.设乙车出发 x 小时后追上甲车,根据题意可列方程为( A ) A.60(x+2)=100x B.60x=100(x-2) C.60x+100(x-2)=600 D.60(x+2)+100x=600

等积变形问题

等积变形问题

等积变形问题引言等积变形问题是数学中的一个重要概念,涉及到几何图形的形状变化和面积的关系。

在这个问题中,我们考虑一个固定面积的图形,在保持面积不变的情况下,改变图形的形状。

这个问题有着广泛的应用背景,例如在工程设计、物理学和经济学中都能找到对等积变形问题的研究。

等积变形问题的定义等积变形问题是指在保持图形面积不变的前提下,通过改变图形的尺寸或者形状,使得其它属性发生相应的改变。

通常情况下,我们会固定一个属性(例如周长、直径等),然后通过调整另外一个属性(例如宽度、长度等)来实现对图形进行等积变形。

等积变形问题的解法1. 基于比例关系的解法在等积变形问题中,最常见且直观的解法就是基于比例关系。

假设我们有一个矩形,并且知道其面积为A。

如果我们要将这个矩形进行等积变换,并且保持其宽度不变,那么我们可以通过调整其长度来实现。

根据矩形的面积公式,我们可以得到长度与宽度之间的比例关系:长度/宽度 = A/宽度。

通过这个比例关系,我们可以计算出新的长度。

同样地,如果我们要保持矩形的长度不变,而调整其宽度来实现等积变换,我们也可以利用比例关系进行计算。

这种基于比例关系的解法适用于各种图形,包括矩形、圆形、三角形等。

2. 基于微积分的解法除了基于比例关系的解法外,我们还可以使用微积分方法来解决等积变形问题。

这种方法通常需要使用到函数的导数和积分等概念。

考虑一个简单的例子:一个圆形区域的面积为A。

现在我们要将这个圆形区域进行等积变换,并且保持其半径不变。

我们可以通过求解一个方程来找到新的半径。

设原始圆的半径为r,新圆的半径为R。

根据圆的面积公式,我们有πr^2 = πR2,即r2 = R^2。

由此可得R = ±r。

根据几何意义可知,R不能取负值,因此新圆的半径为r。

这意味着,在保持圆的半径不变的情况下,进行等积变换得到的仍然是一个圆形。

3. 基于几何变换的解法除了基于比例关系和微积分方法的解法外,我们还可以使用几何变换来解决等积变形问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
90
三、根据等量关系列出方 300 程;
精讲
例题
200


思考4:如何解这个方程?
×
(
200 2
)
2x
=300×300×90
方程化简为x =810
解得 x≈258
x
90
四、解方程,求出未知数的值;
五、检验求得的值是否正确和符 300 合实际情形,并写出答案.
300
精讲
例题
一、分析题意,找出等量关系 :
在有关营销问题中,一般要涉及到成本、售 价、利润。它们的关系是:利润=售价-成本,利润 率=利润/成本×100℅,售价=成本×(1+利润率)。
有时可以用“进货价”代替“成本”。但是, 成本除包括进货价外,还应包括诸如运输费、仓储 费、损耗、职工工资等。
复习:常用几何图形的计算公式
长方形的周长 = (长+宽) ×2 长方形的面积 = 长 ×宽 三角形的面积 = 1 ×底×高
x
90
何设未知数?
已知:圆钢直径(200mm)、长方体毛
胚的长宽高(300mm、300mm、90mm)
一、未知分:析圆钢题的意高,找出等量 关系相等,关分系:析题中数量及其 圆关钢系体积,=长用方字体毛母胚(的例体积如x), 表示设未问知题数:里的未知数;
300
设应截取圆钢 x 毫米。
300
精讲
例题 200
例 如图,用直径为200毫 米的圆钢,锻造一个长、
圆解钢:体设积应截= 取长的方圆体钢毛长坯为体x积毫,米,根据题意
设得应:截取圆钢长为x毫米
宽、高分别为300毫米、 二圆 、钢•(用的2含体00未积/2知是)2数的(• 式2x0子0/表=2)示32 0有0x立关×方的3毫量00米:×是. 指80
300毫米和80毫米的长方体 三、根据等量3.关14系x列=7出20方程,得:
毛坯底板,应截取圆钢多
少(计算时取3.14.要求
×(200/2x)2 •23x0 = 300×300×90
结果误差不超过1毫米)?
四、解方程求出未知数的值即解这个方程得:
答:x应截2取58圆钢的长为230毫米 .


1.将一个底面直径为10厘米,高为36厘米的“瘦长”形 圆柱锻压成底面直径是20厘米的“矮胖”形圆柱,高变 成了多少?
锻压
等量关系:变形前的体积=变形后的体积
等量关系: 锻压前的体积=锻压后的体积
解:设锻压后圆柱的高为x厘米,填写下表:
锻压前
锻压后
底面半径
5厘米
10厘米
高 体积
36厘米
× 52×36
方程为:_0_._5_2___X__=__0_.__3_2_×__0_.5 解这个方程:__X__=_0_.__1_8_ 答:_容__器___内__水__面__将___升__高__0_._1_8m。
一圆柱形容器的内半径为3厘米,内壁高30厘 米,容器内盛有15厘米高的水。现将一个底 面半径为2厘米、高18厘米的金属圆柱竖直放 入容器内,问容器的水将升高多少米?
2
圆的周长= 2πr(其中r是圆的半径) 圆的面积= πr2
长方体的体积 = 长×宽×高
圆柱体的体积 = 底面积×高=π r2h
(这里r为底面圆的半径,h为圆柱体的高)
想一想: 请指出下列过程中,哪些量发生 了变化,哪些量保持不变?
1、把一小杯水倒入另一只大杯中; 解:水的底面积、高度发生变化,水的 体积和质量都保持不变 2、用一块橡皮泥先做成一个立方体,再把 它改变成球。
0.5m
1.5m
1m
0.3m 0.5m
分析: 根据以上演示我们知道了它们的等量关系:
水位上升部分的体积=小圆柱形铁块的体积
圆柱形体积公式是__r_2_h___,
水升高后的体积 小铁块的体积
(__0_._5_2___X__) (_0_._3_2__×__0_._5______)
解:设水面将升高x米, 根据题意得
五、检验求得的值是否正确和符合实际情形, 并写出答案:应截取圆钢的长为258毫米.
等积变形问题的等量关系
变形前的体积(周长)=变形后的体积(周长)


列一元一次方程解应用题的一般步骤: 1、分析题意,找出等量关系,分析题中数量及其关系, 用字母(例如 x),表示问题里的未知数. 2、用代数式表示有关的量. 3、根据等量关系列出方程. 4、解方程,求出未知数的值. 5、检验求得的值是否正确和符合实际情形,并写出答案.
解:形状改变,体积不变
精讲
例题
200
例 如图,用直径为200毫米
??
90
的圆钢,锻造一个长、宽、
高分别为300毫米、300毫米
和90毫米的长方体毛坯底板,
应截取圆钢多少(计算时取 3.14.要求结果误差不超过1
毫米)? 300
300
精讲
例题


200
思考1:题目中有哪些已知量和
未知量?它们之间有什么关系?如


思考2:如何用字母(未知
数x)表示圆钢的体积?
圆钢的体积=
(
200 2
)2x
立方毫米
x
90
二、用含未知数x的一次式 300 表示有关的量;
300
精讲
例题 200


思考3:如何根据等量关系“圆钢体 积=长方体毛胚的体积”列出方程?
根据等量关系列出方程,得:ห้องสมุดไป่ตู้

(
200 2
)
2

x
=300×300×80
根据题意,得 π·(32-22)·x= π 32×15
解这个方程,得x=27 因为27>28,这表明此时容器内的水已淹没了金 属圆柱,不符合题意,应舍去。
(2)如果容器内的水升高后淹没放入的金属圆柱, 根据题意,得
π ·32 ·x= π ·32×15+ π ·22×18
解这个方程,得 x=23 23-15=8 所以,容器内的水升高8厘米。
一元一次方程的应用
商店对某种商品进行调价,决定按原价的九 折出售,此时该商品的利润率是15℅,已知这种 商品每件的进货价为1800元,求每件商品的原 价。 售价=成本×(1+利润率)
解 设商品的原价为x元,根据题意,得
90℅x=1800(1+15℅) 解这个方程,得x=2300
所以,每件商品的原件为2300元。
小结:说说列方程解应用题的一半步骤:
列一元一次方程解应用题的一般步骤: 1、分析题意,找出等量关系,分析题中数量及其关系, 用字母(例如x),表示问题里的未知数. 2、用代数式表示有关的量. 3、根据等量关系列出方程. 4、解方程,求出未知数的值. 5、检验求得的值是否正确和符合实际情形,并写出答案.
x厘米
× 102 • x
根据等量关系,列出方程: × 52×36= × 102 • x
解得: x =9
因此,高变成了 9 厘米
练习
2.已知一圆柱形容器底面半径为0.5m,高为1.5m,里面盛有 1m深的水,将底面半径为0.3m,高为0.5m的圆柱形铁块沉 入水中,问容器内水面将升高多少?
分析:本题涉及圆柱的体积v= π r2h,这里r是圆柱底面半 径,h为圆柱的高。一个金属圆柱竖直放入容器内,会出现 两种可能:
(1)容器内的水升高后不淹没放入的金属圆柱;(2) 容 器内的水升高后 淹没放入的金属圆柱 。
因此列方程求解时要分两种情况。
解 设容器内放入金属圆柱后水的高度为x厘米。 (1)如果容器内的水升高后不淹没放入的金属圆柱,
相关文档
最新文档