图像平滑往往使图像中的边界、轮廓变的模糊,为了减少这类不利效
武汉大学遥感院遥感试题(初试答案)

成像雷达成像光谱仪框幅式摄影机多光谱扫描仪
5.下面哪种影像灰度值的大小与后向散射有关()
TM影像HRV影像RADARSAT影像IkONS影像
四、简答题
1.简述卫星传感器的辐射误差来源
2.简述侧视雷达图像的几何特点
3.简述最大似然法与最小距离法的区别与联系
4.简述进行地面光谱测量的意义
卫星遥感技术
形成的综合性感测技术。任何物体都有不同的电磁波反射或辐射特征。航空航天遥感就是利用安装在飞行器上的遥感器感测地物目标的电磁辐射特征,并将特征记录下来,供识别和判断。把遥感器放在高空气球、飞机等航空器上进行遥感,称为航空遥感。把遥感器装在航天器上进行遥感,称为航天遥感。完成遥感任务的整套仪器设备称为遥感系统。航空和航天遥感能从不同高度、大范围、快速和多谱段地进行感测,获取大量信息。航天遥感还能周期性地得到实时地物信息。因此航空和航天遥感技术在国民经济和军事的很多方面获得广泛的应用。例如应用于气象观测、资源考察、地图测绘和军事侦察等。
推扫式传感器
安装在极轨卫星上的一种传感器,其前端有一个CCD光电阵列和可摆动的反射镜,当卫星向前运动时,反射镜左右摇摆,将地物信息通过反射镜反射到CCD相机的感光单元上,CCD相机在通过光电转换将信息记录在存储磁盘上,TM影像就是典型的采用推扫式传感器成像的遥感产品,其边缘程锯齿状,推扫式传感器成像是连续的条带状,成像范围是其星下点附近区域,是极轨卫星普遍采用的一种传感器。
辐射传热学中的一个名词。对热辐射能只能吸收一部分而反射其余部分的物体。例如一般的固体和液体。
辐射光谱曲线的形状与黑体辐射光谱曲线的形状相似,且单色辐射本领不仅小于黑体同波长的单色辐射本领,两者的比例不大于1的常数,这类物质称之为灰体。
数字图像处理开题报告

数字图像处理开题报告数字图像处理开题报告推荐一、研究的目的、意义及国内外现状和发展趋势通常经图像信息输入系统获取的源图像信息中都含有各种各样的噪声与畸变。
例如传感器获取的遥感图像含有大量地物特征信息,在图像上这些地物特征信息以灰度形式表现出来,当地物特征间表现的灰度差很小时,目视判读就无法认辨,而图像增强的目的就是(1)采用某种技术手段,改善图像的视觉效果、工艺的适应性,使图像更清晰,目标物更突出。
(2)将图像转换成一种更适合与人或机器进行分析处理的形式。
它不是以图像保真度为原则,而是通过处理设法有选择地突出便于人或机器分析某些感兴趣的信息,抑制一些无用的信息,以提高图像的使用价值。
因此图像增强的实质是增强感兴趣地物和周围地物图像间的反差。
现阶段国内外普遍使用的图像增强的方法分为光学增强方法和数字增强方法两种。
光学增强处理采用光学仪器进行。
其特点是快速、简易,操作方法容易掌握,仪器和处理材料费用较低,目前在遥感中广泛使用。
但光学仪器功能比较单一,对各种增强方法的适应性比数字处理设备差。
数字增强处理是采用数字图像计算机系统进行。
其特点是快速、功能全,还能应用光学方法无法进行的.一些算法对图像增强。
其主要增强技术从增强的作用域出发包括空间域增强(对图像像素灰度进行操作,即直接对图像进行增强处理)和频率域增强(在图像的某个变换域内,对图像进行操作,修改变换后的系数,例如付立叶变换、DCT变换等的系数,然后再进行反变换得到处理后的图像,以此达到增强的目的)两种。
严格来讲,图形图像处理技术常常是光学技术和数字技术相结合,在未来的21世纪可能采用纯数字技术。
总的说来,21世纪图形图像要向高质量化方面发展。
高质量化内容包括6个方面,即高分辨率、高速度、立体化、多媒体化、智能化和标准化。
二、阅读的文献资料和本课题的主攻方向文献资料:1) 孙家柄,舒宁,关泽群。
遥感原理、方法和应用。
北京:测绘出版社,1997。
2) 贾永红。
拉普拉斯算子、prewitt算子、sobel算子对图像锐化处理

《数字图像处理作业》图像的锐化处理---拉普拉斯算子、prewitt算子、sobel算子性能研究对比一、算法介绍1.1图像锐化的概念在图像增强过程中,通常利用各类图像平滑算法消除噪声,图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。
一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息也主要集中在其高频部分。
这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。
为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。
图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变得清晰。
从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。
但要注意能够进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加的比信号还要多,因此一般是先去除或减轻噪声后再进行锐化处理。
考察正弦函数,它的微分。
微分后频率不变,幅度上升2πa倍。
空间频率愈高,幅度增加就愈大。
这表明微分是可以加强高频成分的,从而使图像轮廓变清晰。
最常用的微分方法是梯度法和拉普拉斯算子。
但本文主要探究几种边缘检测算子,Laplace、Prewitt、Sobel算子以下具体介绍。
图像边缘检测:边缘检测是检测图像局部显著变化的最基本运算,梯度是函数变化的一种度量。
图像灰度值的显著变化可用梯度的离散逼近函数来检测,大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。
边缘检测可分为两大类基于查找一类和基于零穿越的一类。
基于查找的方法通过寻找图像一阶导数中的最大和最小值来检测边界,通常是将边界定位在梯度最大的方向。
基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。
图像锐化报告

一,实验目的。
1、掌握图像锐化的主要原理和常用方法2、掌握常见的边缘提取算法3、利用C#实现图像的边缘检测二,实验原理。
图像锐化就是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,亦分空域处理和频域处理两类。
图像平滑往往使图像中的边界、轮廓变的模糊,为了减少这类不利效果的影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。
图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变的清晰。
从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。
在水下图像的增强处理中除了去噪,对比度扩展外,有时候还需要加强图像中景物的边缘和轮廓。
而边缘和轮廓常常位于图像中灰度突变的地方,因而可以直观地想到用灰度的差分对边缘和轮廓进行提取。
图像边缘锐化的基本方法:微分运算,梯度锐化,边缘检测。
微分运算微分运算应用在图像上,可使图像的轮廓清晰。
微分运算有:纵向微分运算,横向微分运算,双方向一次微分运算。
单向微分运算双向微分微分运算作用:相减的结果反映了图像亮度变化率的大小。
像素值保持不变的区域,相减的结果为零,即像素为黑;像素值变化剧烈的区域,相减后得到较大的变化率,像素灰度值差别越大,则得到的像素就越亮,图像的垂直边缘得到增强。
梯度锐化: 图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,这就需要利用图像鋭化技术,使边缘变得清晰。
梯度锐化常用的方法有:直接以梯度值代替;辅以门限判断;给边缘规定一个特定的灰度级;给背景规定灰度级;根据梯度二值化图像。
边缘检测边缘检测算子检查每个像素的邻域并对灰度变化率进行量化,通常也包括方向的确定。
大多数是基于方向导数模板求卷积的方法。
将所有的边缘模板逐一作用于图像中的每一个像素,产生最大输出值的边缘模板方向,表示该点边缘的方向,如果所有方向上的边缘模板接近于零,该点处没有边缘;如果所有方向上的边缘模板输出值都近似相等,没有可靠边缘方向。
Matlab图像的锐化处理及边缘检测

Matlab图像锐化处理及边缘检测本章要点:☑图像边缘锐化的基本方法☑微分运算☑梯度锐化☑边缘检测6.1 图像边缘锐化的基本方法物体的边缘是以图像局部特性不连续性的形式出现。
本质上边缘常意味着一个区域的终结和另一个区域的开始。
图像边缘信息在图像分析和人的视觉中都是十分重要的,是图像识别中提取图像特征的一个重要特性。
图像的边缘有方向和幅度两个特性。
通常,延边缘走向的像素变化平缓,而垂直于边缘走向的像素变化剧烈。
边缘的描述包含以下几个方面:(1)边缘点——它两边像素的灰度值有显著的不同。
边缘点也存在于这样一对邻点之间即一个在较亮的区域内部,另一个在外部。
(2)边缘法线方向——在某点灰度变化最剧烈的方向,与边缘方向垂直。
(3)边缘方向——与边缘法线方向垂直,是目标边界的切线方向。
(4)边缘位置——边缘所在的坐标位置。
(5)边缘强度——沿边缘法线方向图像局部的变化强度的量度。
粗略地区分边缘种类可以有两种,其一是阶跃状边缘,它两边像素的灰度值有显著的不同,其二是屋顶状边缘,它位于灰度值从增加到减少的变化转折点。
这些变化分别对应景物中不同的物理状态。
边缘是图像上灰度变化比较剧烈的地方,如果一个像素落在图像中某一个物体的边界上,那么它的邻域将成为一个灰度级的变化带。
对这种变化最有用的两个特征是灰度的变化率和方向,在灰度变化突变处进行微分,将产生高值。
经典的边缘提取方法是考虑图像的每个像素在某个领域内的变化,利用边缘邻近一阶或二阶方向导数变化规律,来检测边缘。
图像灰度值的显著变化可以用一阶差分替代一阶微分的梯度来表示,它们分别以梯度向量的幅度和方向来表示。
因此图像中陡峭边缘的梯度值将是很大的;那些灰度变化平缓的地方,梯度值是比较小的;而那些灰度值相同的地方,梯度值将为零。
图像经过梯度运算能灵敏地检测出边界线,这种微分边缘检测算子运算简单易行,但有方向性。
利用计算机进行图像锐化处理有两个目的,一是与柔化处理相反,增强图像边缘,使模糊的图像变得更加清晰起来,颜色变得鲜明突出,图像的质量有所改善,产生更适合人观察和识别的图像,本章的梯度锐化就是介绍这方面的内容。
实验三_数字图像处理空域滤波

实验三空域滤波一实验目的1了解空域滤波的方法。
2掌握几种模板的基本原理。
二实验条件PC微机一台和MATLAB软件。
三实验内容1使用函数fspecial( ) 生成几种特定的模板。
2使用函数imfilter( ) 配合模板对图象数据进行二维卷积。
3比较各种滤波器的效果。
四实验步骤空域滤波一般分为线性滤波和非线性滤波。
空域滤波器根据功能分为平滑滤波器和锐化滤波器。
1)平滑空间滤波:平滑的目的有两种:一是模糊,即在提取较大的目标前去除太小的细节或将目标内的小间断连接起来;另一种是消除噪声。
线性平滑(低通)滤波器:线性平滑空域滤波器的输出是包含在滤波掩膜邻域内像素的简单平均值。
线性平滑滤波器也称为均值滤波器,这种滤波器的所有系数都是正数,对3*3的模板来说,最简单的是取所有系数为1,为了保持输出图像仍然在原来图像的灰度值范围内,模板与像素邻域的乘积都要除以9。
a用h=fspecial(‘average’) 得到的h 为3×3的邻域平均模板,然后用h来对图象lenna.gif进行平滑处理。
>> x=imread('lenna.gif');h=fspecial('average');y=imfilter(x,h);imshow(x);title('原始图像');subplot(1,2,2);imshow(y);title('均值滤波后图像')实验结果如图:b 把模板大小依次改为7×7,9×9和11×11,观察其效果有什么不同?>>x=imread('lenna.gif');subplot(1,4,1);imshow(x);title('原始图像');h=fspecial('average',7);y=imfilter(x,h);subplot(1,4,2);imshow(y);title('模板大小7*7的图像');h1=fspecial('average',9);y1=imfilter(x,h1);subplot(1,4,3);imshow(y1);title('模板大小9*9的图像');h2=fspecial('average',11);y2=imfilter(x,h2);subplot(1,4,4);title('模板大小11*11的图像')比较效果:造成图像的模糊,n选取的越大,模糊越严重。
第8章 图像平滑和锐化

因为正态分布的均值为0,所以根据统计数学,均值可以消
除噪声。
精选可编辑ppt
41
在MATLAB图像处理工具箱中,实现中值滤波的函数是
medfilt2,其常用的调用方法如下:
B=medfilt2(A,[m n])
其中A是输入图像,[m,n]是邻域窗口的大小,默认
值为[3,3],B为滤波后图像。
噪声可以理解为“妨碍人们感觉器官对所
接收的信源信息理解的因素”。
精选可编辑ppt
2
噪声来源
数字图像的噪声主要来源于图像的获取和传输过程
图像获取的数字化过程,如图像传感器的质量和
环境条件
图像传输过程中传输信道的噪声干扰,如通过无
线网络传输的图像会受到光或其它大气因素的干扰
精选可编辑ppt
3
图像噪声特点
1. 噪声在图像中的分布和大小不规则
2. 噪声与图像之间具有相关性
3. 噪声具有叠加性
精选可编辑ppt
4
图像噪声分类
一.
按其产生的原因可分为:外部噪声和内部
噪声。
二.
从统计特性可分为:平稳噪声和非平稳噪
声。
三.
按噪声和信号之间的关系可分为:加性噪
声和乘性噪声。
精选可编辑ppt
5
按其产生的原因
外部噪声:指系统外部干扰从电磁波或经电
源传进系统内部而引起的噪声。
内部噪声:
①
由光和电的基本性质所引起的噪声。
②
电器的机械运动产生的噪声。
③
元器件材料本身引起的噪声。
④
系统内部设备电路所引起的噪声。
精选可编辑ppt
6
按统计特性
实验三数字图像地空间域滤波

实验三、四数字图像的空间域滤波和频域滤波1.实验目的1.掌握图像滤波的基本定义及目的。
2.理解空间域滤波的基本原理及方法。
3.掌握进行图像的空域滤波的方法。
4.掌握傅立叶变换及逆变换的基本原理方法。
5.理解频域滤波的基本原理及方法。
6.掌握进行图像的频域滤波的方法。
2.实验基本原理1.空间域增强空间域滤波是在图像空间中借助模板对图像进行领域操作,处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。
空域滤波基本上是让图像在频域空间内某个范围的分量受到抑制,同时保证其他分量不变,从而改变输出图像的频率分布,达到增强图像的目的。
空域滤波一般分为线性滤波和非线性滤波两类。
线性滤波器的设计常基于对傅立叶变换的分析,非线性空域滤波器则一般直接对领域进行操作。
各种空域滤波器根据功能主要分为平滑滤波器和锐化滤波器。
平滑可用低通来实现,平滑的目的可分为两类:一类是模糊,目的是在提取较大的目标前去除太小的细节或将目标内的小肩端连接起来;另一类是消除噪声。
锐化可用高通滤波来实现,锐化的目的是为了增强被模糊的细节。
结合这两种分类方法,可将空间滤波增强分为四类:线性平滑滤波器(低通)非线性平滑滤波器(低通)线性锐化滤波器(高通)非线性锐化滤波器(高通)空间滤波器都是基于模板卷积,其主要工作步骤是:1)将模板在图中移动,并将模板中心与图中某个像素位置重合;2)将模板上的系数与模板下对应的像素相乘;3)将所有乘积相加;4)将和(模板的输出响应)赋给图中对应模板中心位置的像素。
2.平滑滤波器1)线性平滑滤波器线性低通平滑滤波器也称为均值滤波器,这种滤波器的所有系数都是正数,对3×3的模板来说,最简单的是取所有系数为1,为了保持输出图像任然在原来图像的灰度值范围内,模板与象素邻域的乘积都要除以9。
MATLAB 提供了fspecial 函数生成滤波时所用的模板,并提供filter2 函数用指定的滤波器模板对图像进行运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像平滑往往使图像中的边界、轮廓变的模糊,为了减少这类不利效果的影响,这就需要利用图像鋭化技术,使图像的边缘变的清晰。
图像銳化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变的清晰。
从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。
为了要把图像中间任何方向伸展的的边缘和轮廓线变得清晰,我们希望对图像的某种运算是各向同性的。
可以证明偏导平方和的运算是各向同性的,既:
式中()是图像旋转前的坐标,()是图像旋转后的坐标。
梯度运算就是在这个式子的基础上开方得到的。
图像(x,y)点的梯度值:
为了突出物体的边缘,常常采用梯度值的改进算法,将图像各个点的梯度值与某一阈值作比较,如果大于阈值,该像素点的灰度用梯度值表示,否则用一个固定的灰度值表示。
我们在对图像增强的过程中,采用的是一种简单的高频滤波增强方法:
式中f,g分别为锐化前后的图像,是与扩散效应有关的系数。
表示对图像f进行二次微分的拉普拉斯算子。
这表明不模糊的图像可以由模糊的图像减去乘上系数的模糊图像拉普拉斯算子来得到。
可以用下面的模板H={{1,4,1},{4,-20,4},{1,4,1}}来近似。
在具体实现时,上述模板H中的各个系数可以改变,这个系数的选择也很重要,太大了会使图像的轮廓过冲,太小了则图像锐化不明显。
实验表明,选取2-8之间往往可
以达到比较满意的效果。
下面给出等于4的情况下的实现代码和效果图:
SetStretchBltMode(hDC,COLORONCOLOR);
CDibDoc *pDoc=GetDocument();
HDIB hdib;
hdib=pDoc->GetHDIB();
BITMAPINFOHEADER *lpDIBHdr;//位图信息头结构指针;
BYTE *lpDIBBits;//指向位图像素灰度值的指针;
lpDIBHdr=( BITMAPINFOHEADER *)GlobalLock(hdib);//得到图像的位图头信息
lpDIBBits=(BYTE*)lpDIBHdr+sizeof(BITMAPINFOHEADER)+256*sizeof(RGBQUAD);//获取图像像素值
BYTE* pData1;
static int a[3][3]={{1,4,1},{4,-20,4},{1,4,1}};//拉普拉斯算子模板;
int m,n,i,j,sum;
int Width=lpDIBHdr->biWidth;
int Height=lpDIBHdr->biHeight;
pData1=(BYTE*)new char[WIDTHBYTES(Width*8)*Height];
file://进行拉普拉斯滤波运算;
for(i=1;i<HEIGHT-1;I++)
</HEIGHT-1;I++)
for(j=1;j<WIDTH-1;J++)
</WIDTH-1;J++)
{
sum=0;
for(m=-1;m<2;m++)
for(n=-1;n<2;n++)
sum+=*(lpDIBBits+WIDTHBYTES(Width*8)*(i+m)+j+n)*a[1+m][1+n];
if(sum<0) sum=0;
if(sum>255) sum=255;
*(pData1+WIDTHBYTES(Width*8)*i+j)=sum;
}
file://原始图像pData减去拉普拉斯滤波处理后的图像pData1
for(i=0;i<HEIGHT;I++)
</HEIGHT;I++)
for(j=0;j<WIDTH;J++)
</WIDTH;J++)
{ sum=(int)(*(lpDIBBits+WIDTHBYTES(Width*8)*i+j)-4*(*(pData1+WIDTHBYTES(Width* 8)*i+j)));
if(sum<0) sum=0;
if(sum>255) sum=255;
*(lpDIBBits+WIDTHBYTES(Width*8)*i+j)=sum;
}
StretchDIBits (hDC,0,0,lpDIBHdr->biWidth,lpDIBHdr->biHeight,0,0,
lpDIBHdr->biWidth,lpDIBHdr->biHeight,
lpDIBBits,(LPBITMAPINFO)lpDIBHdr,
DIB_RGB_COLORS,。