连铸坯质量的控制
防止连铸坯夹渣(杂)缺陷的措施及规定精选

防止连铸坯夹渣(杂)缺陷的措施及规定连铸质量及干净钢消费决定了提供连铸钢水的温度、成分和纯洁度都要进展操纵,同时平衡有节拍的为连铸机提供合格质量的钢水,也是保证连铸机消费顺利及质量保障的首要条件。
提高质量认识,标准质量行为,使炼钢-连铸消费过程的质量受控,是本规定的主旨。
1连铸坯夹渣(杂)缺陷的成因1.1定义:来自于炼钢和浇注过程中的物理化学产物、耐火材料侵蚀产物或卷入钢液的保护渣被称为非金属夹杂物。
非金属夹杂物在酸浸低倍试样上表现为暗黑色斑点。
而铸坯夹渣是夹杂物镶嵌于铸坯外表(形状不规那么)或皮下(深浅不一)的渣疤。
1.2成因:1.2.1钢水氧化性强、温度高、夹杂物多,流淌性不好,中包水口壁上高熔点的大块附着物忽然脱落进入结晶器钢水。
1.2.2保护渣功能不良,渣条多,渣条未捞净,以及中间包液面、结晶器液面急剧波动,造成中间包下渣、结晶器内卷渣并镶嵌于坯壳处。
1.2.3钢包底吹制度执行不好,造成脱氧产物上浮排除不充分。
1.2.4保护浇注执行不好,造成钢液被二次氧化。
1.2.5中包钢水过热度高,耐火材料质量差。
1.2.6中间包内吹氧、加调温料以及金属料等。
2连铸坯夹渣(杂)缺陷的危害2.1破坏了钢的连续性和致密性,轧制过程不能被焊合消除,对钢材质量造成危害。
2.2夹渣部位坯壳薄,容易破裂导致漏钢;夹渣铸坯轧制后,钢材外表遗留为结疤。
3钢水质量操纵措施及规定3.1在一定的消费条件下,要降低转炉终点溶解氧[O]溶,必须精确操纵终点钢水碳和温度。
3.1.1冶炼Q195及其他钢种,终点[C]操纵≥0.06%。
3.1.2开机第一炉及热换第一炉,终点温度操纵在1735~1755℃,出钢温度操纵在1715~1735℃。
特别情况下按机长要的温度操纵。
连浇时那么按温度制度规定操纵。
3.1.3提高转炉终点碳和温度的命中率,杜绝后吹。
挡渣出钢操纵下渣量。
3.1.4冶炼Q195,开机及热换第一炉,成品[Mn]按0.45%左右操纵,成品[Si]按0.15%左右操纵,锰硅比≥2.8;并按3.0左右操纵。
连铸坯质量缺陷

连铸坯的质量缺陷及控制摘要连铸坯质量决定着最终产品的质量。
从广义来说所谓连铸坯质量是得到合格产品所允许的连铸坯缺陷的严重程度,连铸坯存在的缺陷在允许范围以内,叫合格产品。
连铸坯质量是从以下几个方面进行评价的:(1)连铸坯的纯净度:指钢中夹杂物的含量,形态和分布。
(2)连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹、夹渣及皮下气泡等缺陷。
连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度、拉坯速度、保护渣性能、浸入式水口的设计,结晶式的内腔形状、水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。
(3)连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹、偏析、疏松等缺陷程度。
二冷区冷却水的合理分配、支撑系统的严格对中是保证铸坯质量的关键。
(4)连铸坯的外观形状:是指连铸坯的几何尺寸是否符合规定的要求。
与结晶器内腔尺寸和表面状态及冷却的均匀程度有关。
下面从以上四个方面对实际生产中连铸坯的质量控制采取的措施进行说明。
关键词:连铸坯;质量;控制1 纯净度与质量的关系纯净度是指钢中非金属夹杂物的数量、形态和分布。
夹杂物的存在破坏了钢基体的连续性和致密性。
夹杂物的大小、形态和分布对钢质量的影响也不同,如果夹杂物细小,呈球形,弥散分布,对钢质量的影响比集中存在要小些;当夹杂物大,呈偶然性分布,数量虽少对钢质量的危害也较大。
此外,夹杂物的尺寸和数量对钢质量的影响还与铸坯的比表面积有关。
一般板坯和方坯单位长度的表面积(S)与体积(V)之比在0.2~0.8。
随着薄板与薄带技术的发展,S/V可达10~50,若在钢中的夹杂物含量相同情况下,对薄板薄带钢而言,就意味着夹杂物更接近铸坯表面,对生产薄板材质量的危害也越大。
所以降低钢中夹杂物就更为重要了。
提高钢的纯净度就应在钢液进入结晶器之前,从各工序着手尽量减少对钢液的污染,并最大限度促使夹杂物从钢液中排除。
为此应采取以下措施:⑴无渣出钢。
连铸坯质量

● 对于极细的钢丝(如直径为0.10-0.25mm 对于极细的钢丝(如直径为0 10- 25mm
的轮胎钢丝)和极薄钢板(如厚度为 025mm的镀锡板) mm的镀锡板 0.025mm的镀锡板)中,其所含夹杂物的尺 寸就可想而知了。 寸就可想而知了 。 夹杂物的尺寸和数量对 钢质量的影响还与铸坯表面积有关。 钢质量的影响还与铸坯表面积有关。
采用压缩浇铸技术或者应用多点矫直技术二冷区采用合适夹辊辊距支撑辊准确对弧二冷水分配适当保持铸坯表面温度均匀合适拉辊压下量最好采用液压控制机构带液心的铸坯在运行过程中于两支撑辊之间高温坯壳中钢液静压力作用下发生鼓胀成凸面的现象称之为鼓肚变形
连铸坯质量控制
内容提要
◆ 连铸坯的质量评价 ◆ 连铸坯的纯净度及控制 ◆ 连铸坯表面质量及控制 ◆ 连铸坯内部质量及控制 ◆ 连铸坯形状缺陷及控制
星状裂纹 一般发生在晶间的细小裂
呈星状或呈网状。 纹,呈星状或呈网状。通常是隐藏在氧化铁 皮之下难于发现, 皮之下难于发现,经酸洗或喷丸后才出现在 铸坯表面。主要是由于铜向铸坯表面层晶界 铸坯表面。 的渗透,或者有AlN,BN或硫化物在晶界沉淀, AlN,BN或硫化物在晶界沉淀 的渗透,或者有AlN,BN或硫化物在晶界沉淀, 这都降低了晶界的强度,引起晶界的脆化, 这都降低了晶界的强度,引起晶界的脆化,从 而导致裂纹的形成。 而导致裂纹的形成。
其实早在结晶器内坯壳表面就存在细小裂纹, 其实早在结晶器内坯壳表面就存在细小裂纹,铸坯进 入二冷区后, 微小裂纹继续扩展形成明显裂纹。 入二冷区后 , 微小裂纹继续扩展形成明显裂纹 。 由于结 晶器弯月面区初生坯壳厚度不均匀,其承受的应力超过 晶器弯月面区初生坯壳厚度不均匀 , 了坯壳高温强度, 在薄弱处产生应力集中致使纵向裂纹。 了坯壳高温强度 , 在薄弱处产生应力集中致使纵向裂纹 。 坯壳承受的应力包括: 坯壳内外, 坯壳承受的应力包括 : 坯壳内外 , 上下存在温度差 产生的热应力; 产生的热应力 ; 钢水静压力阻碍坯壳凝固收缩产生的应 力; 坯壳与结晶器壁不均匀接触而产生的摩擦力。这些 坯壳与结晶器壁不均匀接触而产生的摩擦力。
钢锭连铸坯验收标准

钢锭连铸坯验收标准
1、连铸坯的化学成份应符合有关标准的规定;
2、尺寸允许偏差;
尺寸130×130、200×200、φ130、φ200边长允许偏差(mm)±4.0±6.0 对角线长度之差(mm)≤6.0≤9.0 允许偏差(mm)±3.0±4.0椭圆度(mm)不大于直径公差的0.75倍;
3、外形:
3.1、方坯弯曲度每米不大于20 mm,总弯曲度不大于总长度的1.5%;
3.2、圆坯弯曲度每米不大于15 mm,总弯曲度不大于总长度的1.0%;
3.3不得有明显的扭转,端部切斜不得大于10 mm;
4、表面质量□不得有肉眼可见的裂纹、重叠、结疤、夹渣、夹杂、气孔、深度(高度)大于3mm的滑痕、划伤、皱纹、凸块。
如有上述缺陷存在则必须清除,清除深、宽、长比不得小于1:6:8;
5、保证连铸坯的质量,头坯、尾坯的切除量规定如下:
头坯:不得少于700mm;
尾坯:不得少于1000 mm 如头坯切除量达不到上述要求,则判第一条坯为利用品;
尾坯切除量达不到上述要求,则判最后一条坯为利用品;
6、班组质量员对连铸坯进行逐支检查,写上炉号和钢号,注明利用品,按炉做好原始记录;
7、质检部质检员每天对表面质量进行检查,合格品盖上“检”字章,做好抽查记录。
连铸坯质量的控制

连铸坯质量的控制
一、引言
连铸是钢铁生产过程中的重要环节,其连铸坯的质量影响着钢质的稳定性、物
理性能和化学成分等方面。
因此,连铸坯质量控制一直是钢铁生产中的关键技术之一。
二、连铸坯质量的影响因素
1.原料质量:包括钢水、氧化渣等的质量;
2.坯型结构和尺寸:坯型结构和尺寸的设计直接影响坯料的冷却效果和
内部应力状态;
3.坯料表面状态:表面缺陷会在浇铸过程中暴露出来,影响坯料的质量;
4.坯料内部缺陷:坯料内部缺陷会影响钢材的使用寿命和物理性能;
5.连铸工艺参数:包括浇注速度、结晶器温度和冷却水流量等。
三、连铸坯质量控制的措施
为了控制连铸坯质量,需要在生产过程中采取以下措施:
1.加强原料质量控制:保证钢水、氧化渣等原料的质量,避免对坯料质
量的不利影响;
2.优化坯型设计:通过设计合理的坯型结构和尺寸,使坯料均匀冷却、
内部应力均匀分布;
3.改进坯料清理技术:减少表面缺陷的产生;
4.加强坯料表面处理:处理坯料表面缺陷,消除缺陷部位;
5.控制连铸工艺参数:调整浇注速度和结晶器温度等工艺参数控制坯料
成分,改善坯料品质。
四、
通过加强原料质量控制、优化坯型设计、改进坯料清理技术、加强坯料表面处
理和控制连铸工艺参数等措施,可以有效地控制连铸坯质量。
同时,连铸坯质量控制也是钢铁生产中不可或缺的环节,对于提高钢材质量和降低成本都具有非常重要的意义。
炼钢-精炼-连铸流程连铸坯质量控制

炼钢-精炼-连铸流程连铸坯质量“零缺陷”控制北京科技大学冶金与生态工程学院蔡开科孙彦辉2012.5目录1.连铸凝固过程的冶金特性2.连铸钢水质量纯净度(洁净度)控制3.连铸坯裂纹缺陷控制4.连铸坯内部中心缺陷控制5.结语21. 连铸坯凝固过程的冶金特性1. 1连铸坯凝固过程基本特征把钢水凝固成固体,根据冷却速度不同有两种凝固工艺如图:●钢锭模浇注工艺●连续铸钢工艺连铸与模铸流程比较连续铸钢是一项把钢水直接浇注成形的新工艺,它的出现从根本上改变了一个世纪以来占统治地位的钢锭→初轧工艺。
与模铸相比,连铸的优点:◆节省工序,缩短流程◆提高金属收得率10~14%◆降低能耗减少1/2~1/4◆机械化自动化程度高◆产品质量好2011年中国钢产量达到6.75亿吨,2011年我国连铸比达98%以上,已达到饱和状态。
近年来近终型(Near Net-Shape)连铸技术如薄板坯连铸连轧(CSP、FTSC…)和中等厚度板坯连铸得到了很大的发展。
与钢锭模浇铸工艺相比,如图所示,连续铸钢过程基本特点如下:(1)连铸坯凝固过程实质上是动态热量传递过程钢水从液态转变为固体放出热量:钢水→固体+Q放出热量包括:✓过热✓凝固潜热✓物理显热连铸凝固过程示意图以20钢为例,钢水凝固冷却到室温放出热量是:✓过热25.2 kJ/kg✓潜热328 kJ/kg✓显热958 kJ/kg总热量中大约1/3从液体→固体放出,其余2/3是完全凝固后放出的。
钢水在连铸机内凝固是一个热量释放和传递的过程,铸坯边运行,边放热,边凝固,形成了很长的液相穴(10~20几米),在液相穴长度上布置了三个冷却区:●一次冷却区:钢水在结晶器中形成足够厚的均匀坯壳,以保证铸坯出结晶器不拉漏。
●二次冷却区:喷水加速铸坯内部热量的传递,使其完全凝固。
●三次冷却区:铸坯向空气中辐射传热使铸坯温度均匀化。
以20钢为例,经过钢水凝固热平衡计算,得出以下概念:a)钢水从结晶器→二冷区→辐射区大约有40%热量放出来,铸坯钢水才能完全凝固。
连铸工艺、设备--09连铸坯质量控制

液相穴内夹杂物上浮示意图: a—带垂直段立弯式连铸机; b—弧形连铸机
B.连铸操作对铸坯中夹杂物的影响
连铸操作有正常浇注和非正常浇注两种情况。
在正常浇注下,浇注过程比较稳定,铸坯中 夹杂物多少主要由钢液的纯净度决定。
B.连铸坯的表面质量:
指连铸坯表面是否存在裂纹、夹渣及皮下 气泡等缺陷。
连铸坯的表面缺陷主要决定于钢水在结晶 器的凝固过程。它是与结晶器内坯壳的形 成、结晶器振动、保护渣性能、浸入式水 口设计及钢液面稳定性等因素有关的,必 须严格控制影响表面质量的各参数在合理 的目标值以内,以生产无缺陷的铸坯,这 是热送和直接轧制的前提。
2.钢包精炼。
根据钢种的需要选择合适的精炼处理方法,以均 匀温度、微调成分、降低氧含量、去除气体夹杂 物、改善夹杂物形态等。
3.无氧化浇注技术。
从钢包→中间包用长水口,中间包→结晶器用浸 入式水口(板坯、大方坯)或气体保护(小方 坯),中间包采用覆盖剂,结晶器用保护渣。
4.充分发挥中间包冶金净化器的作用。
C.在操作中,注温和拉速对铸坯中夹杂物也有 一定影响
当钢液温度降低时,夹杂物指数升高;随着 拉速的提高,铸坯中夹杂物有增多的趋势。
D.耐火材料质量对铸坯夹杂物的影响
注连铸过程中由于钢液和耐火材料接触, 钢液中的元素(锰和铝等)会与耐火材料中 的氧化物发生作用生成夹杂物,当其不能上 浮时就遗留在铸坯中。
2.连铸坯中夹杂物的类型和来源
类型:取决于浇注钢种和脱氧方法。在连铸 坯中较常见的夹杂物有Al2O3和以SiO2为主并 含有MnO和CaO的硅酸盐,以及以Al2O3为主 并含有SiO2、CaO 和CaS等的铝酸盐。此外还 有硫化物如FeS、MnS等。
宽板坯连铸机的特点与铸坯质量控制

宽板坯连铸机的特点与铸坯质量控制摘要:本文介绍了八一钢铁集团有限公司投产的宽板坯连铸机主要设备技术参数及工艺特点,并对连铸坯生产过程中的质量控制工艺措施进行探讨,例如结晶器内的钢液面的平稳控制、振动和振痕的控制、钢水的流动的控制等等。
关键词:宽板坯连铸机;特点;铸坯质量控制前言:八一钢铁4#连铸机至2008年7月份开始生产。
中等厚度宽板坯连铸机是承上启下的,生产过程中,设备装备水平的提高是确保本生产线高质量和高产量的一个重要步骤,所以,本连铸机在采用当前普通连铸机成熟技术和可靠工艺的同时,积极应用国际同类连铸机先进技术来达到工艺要求──铸坯零缺陷和热效率高。
一、八钢宽板连铸机工艺特点为确保连铸机产能,节奏和上下道工序相匹配,作业率和线上其他设备相一致以及热送热装等要求,连铸机除使用垂直结晶器、弧形连铸机外,在一般板坯连铸机上多点弯曲多点矫直,液压振动,全程保护浇注技术之外,对浸入式水口进行优化设计、实现了动态轻压下,二冷纵横分区控制和计算机动态配水,实现了铸坯质量的在线判断。
二、浸入式水口的优化设计结晶器中钢水是否畅通,不仅关系到铸坯的质量,而且有时还关系到连铸能否正常运行。
结晶器内部最佳流场应该具备如下特点:1)流股贯穿深度中等,利于夹杂物及气泡上浮;2)流股在局部坯壳上冲刷作用很小,防止了表面纵裂纹和其他缺陷;3)弯月面上的钢液面较为平稳和活跃,不仅避免了保护渣的卷入,减少了角部裂纹的产生;还利于上部钢液更新和避免钢液面结壳对保护渣融化造成影响。
结果表明:弯月面上钢水波纹的最佳高度在5~10 mm之间。
结晶器内流场的变化与结晶器的形状,拉速,通钢量,浸入式水口的形状和浸入深度等因素相关。
八钢4#连铸机不仅结晶器宽度、拉速、通钢量、当地气候环境等变化范围大,而且宽厚比最大超过8,这就对设计提出了更高的要求。
公司根据自己前两台连铸机的设计经验和应用效果,经过优化设计了一台适用于八钢宽板的连铸机,并对其水口浸入深度的最佳范围进行了研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连铸坯的质量控制系统专业:班级:姓名:XXX目录1连铸坯纯净度与产品质量 (1)1.1纯净度与质量的关系 (1)1.2提高纯净度的措施 (2)2连铸坯质量 (3)2.1 连铸坯的几何形状质量 (3)2.1.1 铸坯形状缺陷类型 (4)2.1.2 铸坯形状缺陷产生原因及防止措施 (4)2.1.3 铸坯鼓肚 (4)2.1.4 铸坯菱变 (4)2.1.5 铸坯变成梯形坯 (5)2.2 连铸坯表面质量 (5)2.2.1 连铸坯表面振痕 (5)2.2.2 振痕形成机理 (5)2.2.3 振痕对铸坯质量的影响 (6)2.2.4 影响振痕深度的因素 (6)2.2.5 减少振痕深度的措施 (7)2.2.6 铸坯表面裂纹 (7)2.2.7 表面纵裂纹 (8)2.2.8 铸坯角部纵裂纹 (11)2.2.9 表面横裂纹 (12)2.2.10 角部横裂纹 (13)2.2.11 铸坯表面星状和网状裂纹 (15)2.2.12 铸坯表面夹渣(杂) (16)2.2.13 铸坯气孔和气泡 (17)2.2.14 铸坯表面凹陷 (17)2.2.15 铸坯表面增碳和偏析 (18)2.2.16 重皮和重结及结疤 (18)2.3 连铸坯内部质量 (19)2.3.1 铸坯内部裂纹 (19)2.3.2 皮下裂纹 (19)2.3.3 中间裂纹 (20)2.3.4 矫直裂纹 (21)2.3.5 压下裂纹 (21)2.3.6 断面裂纹----中心线裂纹 (22)2.3.7三角区裂纹 (23)2.3.8角部附近的裂纹 (24)2.3.9白点及发纹 (25)2.3.10铸坯中心偏析、疏松和缩孔 (25)2.3.11铸坯内部夹渣(杂) (26)3连铸坯星状缺陷 (27)3.1 鼓肚变形 (27)3.2 菱形变形 (28)3.3 圆铸坯变形 (29)致谢 (30)摘要连铸坯质量决定着最终产品的质量。
从广义来说所谓的连铸坯质量是得到严格产品所允许范围以内,叫合格产品。
连铸坯的合格产品主要是取决于连铸坯的表面质量、内部质量、星状缺陷。
本论文分别从这几个方面来论述产生连铸坯质量问题的原因,并对常见质量问题进行分析,并在此基础上提出控制措施。
关键词:连铸坯、质量、缺陷、控制1连铸坯纯净度与产品质量1.1纯净度与质量的关系纯净度是指钢中非金属夹杂物的数量、形态和分布。
与模铸相比,连铸的工序环节多,浇注时间长,因而夹杂物的来源范围广,组成也较为复杂;夹杂物从结晶器液相穴内上浮比较困难,尤其是高拉速的小方坯夹杂物更难于排除。
夹杂物的存在破坏了钢基体的连续性和致密性。
大于50um的大型夹杂物往往伴有裂纹出现,造成连铸坯倍结构不合格,板材分层,并损坏冷轧钢板的表面等,对钢危害很大。
夹杂物的大小、形态和分布对钢质量的影响也不小,如果夹杂物细小,呈球状,弥散分布,对钢的质量影响比集中存在要小些;当夹杂物大,呈偶然性分布,数量虽少对钢质量的危害也较大。
例如:从深冲钢板冲裂废品的检验中发现,裂纹处存在着100-300um不规则Cao-Al2O3和Al2O3的大型夹杂物。
再如,由于连铸坯皮下有Al2O3夹杂物的存在,轧成的汽车薄板薄棉出现黑线缺陷,导致薄板表面涂层不良。
1.2提高纯净度的措施提高钢的纯净度就应在钢液进入结晶器之前,从各工序着手尽量减少对钢液的污染,并最大限度促使夹杂物从钢液中排除。
为此应采取一下措施:(1)无渣出钢。
转炉应挡渣出钢:电炉采用偏心炉底出钢,组织钢渣进入盛钢桶。
(2)根据钢种的需要选择合适的精炼处理方式,以纯净钢液,改善夹杂物的形态。
(3)采用无氧化浇注技术。
经过精炼处理后的钢液氧含量已降到20X10一下:在盛钢桶→中间罐→结晶器均采用保护浇注:中间罐使用双层渣覆盖剂,钢液与空气隔绝,避免钢液的二次氧化。
(4)充分发挥中间罐冶金净化器的作用。
采用吹Ar搅拌,改善钢液流动状况,消除中间罐死区:加大中间罐容量和加深熔池深度,延长钢液在中间罐停留时间,促进夹杂物上浮,进一步净化钢液。
(5)连铸系统选用耐火度高,融损小,高质量的耐火材料,以减少钢中外来夹杂物。
(6)充分发挥结晶器的钢液净化器和铸坯表面质量控制器的作用。
选用的浸入式水口应有的合理的开口形状和角度,控制注流的运动,促进夹杂物的上浮分离:并辅以性能良好的保护渣,吸收溶解上浮夹杂物净化钢液。
2连铸坯质量通常衡量铸坯质量标准如下:连铸坯几何形状质量;连铸坯表面质量;连铸坯内部质量;连铸坯洁净程度。
2.1 连铸坯的几何形状质量连铸坯几何形状缺陷不仅是铸坯外观形状问题,还与铸坯表面裂纹、内部裂纹等密切相关。
形状缺陷的种类随铸坯形状和大小而异,常见的几何形状缺陷有鼓肚、菱变、凹陷及梯形缺陷。
2.1.1 铸坯形状缺陷类型*铸坯鼓肚缺陷,*铸坯菱变或脱方缺陷,*梯形坯,*表面凹陷2.1.2 铸坯形状缺陷产生原因及防止措施2.1.3 铸坯鼓肚是由于浇注温度高,拉速快,足辊和夹持辊开口度选择不当、夹持辊弯曲及零段水和一段水冷却强度弱等原因引起的,还与钢种有关。
为了防止铸坯鼓肚,应采用密节辊;足辊和夹持辊开口度应选择好;增加零段水和一段水的冷却强度。
2.1.4 铸坯菱变主要是由于结晶器液面波动大、结晶器变形、结晶器水缝偏差较大以及水口不对中和冷却不均匀等原因引起的。
为了防止铸坯菱变,应采用结晶器液面自动控制;防止结晶器变形;控制好管式结晶器水缝误差;水口安装要对中及冷却要均匀。
2.1.5 铸坯变成梯形坯是由于铸坯厚,弧形半径小,矫直压力过大引起的,多产生在超低头铸机。
为了防止梯形坯的产生,应采用高温多点矫直。
2.2 连铸坯表面质量铸坯表面缺陷有:铸坯表面振痕缺陷,表面裂纹(纵裂纹、横裂纹、角部纵横裂纹、网状裂纹和星状裂纹),表面夹杂(渣),表面气孔。
表面凹陷,重结和重皮及表面渗碳等。
2.2.1 连铸坯表面振痕连铸坯表面振痕是由于伸入式水口保护渣工艺引起的。
通常在正常情况下(振痕深度≤0.7mm),对铸坯表面质量没有影响。
但控制不当给铸坯表面带来许多缺陷,特别是不锈钢和高强度钢。
2.2.2 振痕形成机理a、由弯月面顶端溢流造成的;b、由初生的弯月面薄壳反弯造成的;c、由二次弯月面形成的。
2.2.3 振痕对铸坯质量的影响*增加铸坯表面横裂纹、角部横裂纹及矫直裂纹;*增加铸坯表面夹杂(渣);*振痕处易产生网状裂纹及穿钢现象;*振痕处晶粒粗大易产生晶间裂纹;*增加不锈钢铸坯剥皮量或修磨量,从而减少成材率。
2.2.4 影响振痕深度的因素a.振动参数对振痕形状和深度有重要影响。
其中振幅、频率、负滑脱时间及振动方式最为重要;b.结晶器保护渣的耗量、粘度、保温性能及表面性能等有着重要影响;c.钢的凝固特性对振痕有着重要影响,特别是当钢中碳含量和钢中Ni/Cr比影响最突出。
当钢中碳含量为0.1%左右,Ni/Cr≈0.55左右,铸坯表面振痕最深。
2.2.5 减少振痕深度的措施a.采用小振幅(s)、高频率(f)及减少负滑脱时间(t N),可以有效的减少振痕的深度;b.采用非正弦振动方式可以减少振痕的深度,这是因为非正弦振动其负滑脱时间t N比正弦振动短;c.采用渣耗量低,粘度高的保护渣,可以使振痕深度变浅。
d.采用保温性能好和能增加弯月面半径的保护渣可以减少振痕深度;e.提高不锈钢、钢液的过热度,尤其是含钛和含铝的不锈钢对减少该钢表面振痕深度是有效的。
f.提高结晶器进出冷却水的温差,对减少振痕深度是有利的。
2.2.6 铸坯表面裂纹铸坯表面纵裂纹种类有:*表面纵裂纹;*角部纵裂纹;*表面横裂纹及角部横裂纹;*星状裂纹(或称铜裂);*网状裂纹或微裂纹2.2.7 表面纵裂纹铸坯表面纵裂纹是铸坯最主要表面缺陷,对铸坯质量影响极大,特别是板坯和圆坯最为突出,报废量和整修量很大。
据重钢240×1400mm断面1998年统计纵裂纹占表面缺陷94%。
含碳在0.12%左右的中碳钢板坯纵裂纹最为严重,此外随着板坯宽度的增加和拉速的提高,其纵裂纹数量急剧增加,同时板坯纵裂纹产生在结晶器上部,多数分布在板坯中部(即水口附近)。
a、纵裂纹类型*铸坯表面沟槽纵裂纹。
这种裂纹在铸坯表面纵向沟槽内,裂纹通常又长、又宽、又深,严重时引起漏钢事故发生;*铸坯表面平纵裂。
这种裂纹与表面一样平(或凹下很浅),而且直,长度较短(50~200mm左右),其深度和宽度在1~2mm范围内;*结晶器划痕引起铸坯表面纵裂纹。
b、铸坯表面纵裂纹产生原因铸坏表面纵裂纹产生的条件,一是由于初生坯壳生长不均匀;二是由于传热速度快(温度梯度大和传热不均匀);纵裂纹产生在结晶器由上部和水口附近。
似隐纹(未裂开)形成存在,随着铸坯下行时隐裂纹裂开成为开放式的纵裂纹。
同样钢种板坯比方坯纵裂要多。
*与钢种密切相关,特别是碳的含量在0.09~0.14%纵裂纹最为严重,或者说亚包晶钢最为严重;*结晶器内液面波动大,使弯月处传热不均匀,从而使初生坯壳生长不均匀引起纵裂纹产生;*铸机对中(或对弧)不良和夹持辊开口度过大,使铸坯发生鼓肚,造成纵裂纹的产生;*保护渣性能选择不当,这是板坯表面纵裂纹产生的最重要原因,尤其是保护渣的传热性能;*结晶器振动参数选择不当,尤其是S、f、t N、N S和N SR的选择较为重要,因为这些参数对传热均匀性有影响;*钢水质量对纵裂纹影响较大,尤其是过热度、可浇性及成分控制(C、S、P、Mn/S)最为重要。
同时不能忽视钢中Cu和As的含量对纵裂纹的影响;*伸入水口尺寸选择不当和使用不当都能使铸坯表面纵裂纹增加;*结晶器状况不良,如安装精度差、结晶器变形和结晶器锥度选择不当等都会引发表面纵裂纹;*中间包塞捧吹Ar过大和冲棒操作增加纵裂纹的产生。
*拉坯速度选择不当及变化频繁都会引起纵裂的产生。
c.控制铸坯表面纵裂纹的措施*严格控制钢水的质量,如浇注温度、可浇性和成份,其中C、S、P、Mn/S及Cu和As含量,通常将S和P控制0.02%左右,优质钢在0.01%以下;Mn/S≥25,最好大于30,S+P+As≤0.075;*采用结晶器液面自动控制对减少纵裂纹是很有效的;*铸机应保持良好状态,板坯采用密节辊铸机,尤其铸机对中(对弧)和夹持辊开口度的精度非常重要。
板坯要求小于±0.5mm方坯,控制在±1mm如宝钢板坯铸机对中精度大于0.5mm时,纵裂纹增多;*选择性能良好的板坯结晶器保护渣是当今控制板坯纵裂纹最经济,最有效的手段,是控制纵裂特效“药”;*选择合理的振动参数不仅能保持结晶器内传热均匀,而且保持工艺的顺利,从而减少纵裂纹;*采用恒速浇注对减少纵裂纹是有益的。
*严防塞棒吹Ar过大和“冲棒”操作,否则将会增加表面纵裂纹;*选择合理的一冷和二冷制度,即采用“弱冷”。
2.2.8 铸坯角部纵裂纹a、角部纵裂纹产生原因*板坯窄面支撑不当,造成窄面鼓肚,如窄面有6~12mm鼓肚,伴随角部纵裂纹产生,甚至导致漏钢;*结晶器锥度选择不当——锥度过小;*窄面冷却水不足,产生鼓肚;*结晶器转角半径选择不当;*水口在结晶器偏流(即不对中);b、防止角部纵裂纹的措施*调整窄面足辊间隙使其向内1~2mm,限制鼓肚;*选择合适的锥度(1.0%/m);*控制好侧边水量,不使窄面产生鼓肚;*选择合适的结晶器转角半径;*水口要对中不应偏流。