数学北师大版七年级下册幂的运算专题复习

合集下载

数学北师大版七年级下册幂的概念复习

数学北师大版七年级下册幂的概念复习
2
-2 2 8
3
= 2 2 2 1 3 6 = 2 2
3 1 0
6
= 2
5
33

3
= 215
= -2
7
二:注意幂运算中的符号问题
1:判断对错并把错的改正过来
6 3 3 3 =3 = 2 4 6
⑴ ⑵
3 3 3 =3 =
x 3 x 1 目标: 已知 1 4 2 ,求 x 的值。
底数相同
解;
x 3 x 1 4 2
2 x 3 x 1 2 2 2 x 3 x 1
x 1
试:
n n 22 若 2 8 16 2 ,则 n 的值是多少?
六;典例剖析(三)
x y 已 知 2 x 5 y3 , 求的 4 3 2 值
一:概念复习
1:同底数幂的乘法法则: 2:同底数幂的除法法则: 3:幂的乘方法则: 4:积的乘方法则:
幂的运算法则汇总
m n m n a a a ma a aam 0 , . n 都 是 正 整 数 , 且 m n
m n m n ( a ) a (. m n 都 是 正 整 数 )
3 m 2 n
解;
m n a 2 , a 4
3 mn 2 3 m 2 n a a a
a
m 3
a
n 2
23 42
试:
128
已 知 x 9 , x 6 , x 4 , x 的 值 。
m n k
m 2 n 2 k
五;典例剖析(二)
知幂的关系,求指数
a b c a b c
2 m 3 n m n

北师大版七下数学知识点总结

北师大版七下数学知识点总结

北师大版七下数学知识点总结北师大版七年级下册数学知识点总结。

一、整式的乘除。

1. 同底数幂的乘法。

- 法则:a^m· a^n=a^m + n(m、n为正整数)。

例如2^3×2^4=2^3 + 4=2^7。

- 推广:a^m· a^n· a^p=a^m + n+p(m、n、p为正整数)。

2. 幂的乘方。

- 法则:(a^m)^n=a^mn(m、n为正整数)。

例如(3^2)^3=3^2×3=3^6。

3. 积的乘方。

- 法则:(ab)^n=a^nb^n(n为正整数)。

例如(2×3)^2=2^2×3^2=4×9 = 36。

4. 同底数幂的除法。

- 法则:a^m÷ a^n=a^m - n(a≠0,m、n为正整数且m>n)。

例如5^6÷5^3=5^6 - 3=5^3。

- 零指数幂:a^0=1(a≠0)。

- 负整数指数幂:a^-p=(1)/(a^p)(a≠0,p为正整数)。

5. 整式的乘法。

- 单项式乘单项式:系数相乘,同底数幂相乘。

例如3x^2·2x^3=(3×2)x^2 + 3=6x^5。

- 单项式乘多项式:m(a + b)=ma+mb。

例如2x(x + 3)=2x^2+6x。

- 多项式乘多项式:(a + b)(c + d)=ac+ad+bc+bd。

例如(x + 2)(x+3)=x^2+3x+2x + 6=x^2+5x + 6。

6. 整式的除法。

- 单项式除以单项式:系数相除,同底数幂相除。

例如6x^5÷2x^3=(6÷2)x^5 - 3=3x^2。

- 多项式除以单项式:(a + b)÷ m=(a)/(m)+(b)/(m)。

例如(4x^2+2x)÷2x =4x^2÷2x+2x÷2x = 2x + 1。

二、相交线与平行线。

1. 相交线。

北师大版七年级下册整式乘除——幂运算

北师大版七年级下册整式乘除——幂运算

幂运算【要点梳理】要点一、同底数幂的乘法性质(其中都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即(都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即(都是正整数).要点二、幂的乘方法则 (其中都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广: (,均为正整数)(2)逆用公式: ,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则(其中是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广: (为正整数).(2)逆用公式:逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如: 注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯. 要点四、同底数幂的除法法则+⋅=m n m n a a a ,m n mnpm n pa a a a++⋅⋅=,,m n p m n m n a a a +=⋅,m n ()=m nmna a,m n (())=m n pmnpa a0≠a ,,m n p ()()nmmnm n aa a ==()=⋅n n n ab a b n ()=⋅⋅nnnnabc a b c n ()nn na b ab =1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭同底数幂相除,底数不变,指数相减,即m n m na a a-÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 要点五、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式. 要点六、负整数指数幂任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1nnaa -=(a ≠0,n 是正整数).引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算性质仍然成立.m n m n a a a +=(m 、n 为整数,0a ≠); ()mm m ab a b =(m 为整数,0a ≠,0b ≠)()nm mn a a =(m 、n 为整数,0a ≠).要点诠释:()0na a -≠是n a 的倒数,a 可以是不等于0的数,也可以是不等于0的代数式.例如()1122xy xy -=(0xy ≠),()()551a b a b -+=+(0a b +≠). 要点七、科学记数法的一般形式(1)把一个绝对值大于10的数表示成10na ⨯的形式,其中n 是正整数,1||10a ≤<(2)利用10的负整数次幂表示一些绝对值较小的数,即10na -⨯的形式,其中n 是正整数,1||10a ≤<.用以上两种形式表示数的方法,叫做科学记数法.【典型例题】1、计算:(1); (2);(3).【变式1】下列计算正确的是( ) A .a 3•a 2=a B .a 3•a 2=a 5 C .a 3•a 2=a 6 D .a 3•a 2=a 9【变式2】计算:(1); (2)(为正整数);(3)(为正整数).【变式3】(x ﹣y )•(y ﹣x )2•(y ﹣x )3﹣(y ﹣x )6.234444⨯⨯3452622a a a a a a ⋅+⋅-⋅11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+5323(3)(3)⋅-⋅-221()()ppp x x x +⋅-⋅-p 232(2)(2)n⨯-⋅-n2、已知,求的值.【变式】10x =a ,10y =b ,则10x +y +2=( ) A .2ab B .a +b C .a +b +2 D .100ab3、计算:(1); (2); (3).4、已知,.求的值.【变式】已知,,求的值.5、指出下列各题计算是否正确,指出错误并说明原因:(1); (2); (3).【变式1】计算(ab 2)3的结果是( ) A .ab 5B .a 3b 5C .a 3b 6D .a 4b 52220x +=2x 2()m a 34[()]m -32()m a-2a x =3b x =32a bx +84=m 85=n 328+m n22()ab ab =333(4)64ab a b =326(3)9x x -=-【变式2】已知2x +3y ﹣1=0,求9x •27y 的值.【变式3】已知10x =5,10y =6,求103x +2y 的值.6、(﹣8)57×0.12555.【变式1】42020×(﹣0.25)2021的值为( ) A .4 B .﹣4C .0.25D .﹣0.25【变式2】(﹣)2021×(﹣2.6)2022=( )A .﹣1B .1C .﹣D .﹣2.6【变式3】运用公式简便计算:•(﹣)2020.7、计算:(1)83x x ÷; (2)3()a a -÷;(3)52(2)(2)xy xy ÷; (4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【变式1】计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-8、已知32m=,34n=,求129m n+-的值.【变式】已知以ma =2,na =4,ka =32.则32m n ka+-的值为 .9、下列计算中,正确的是( ) A .(0.1)﹣3=0.0001B .(2π﹣6.28)0=1C .(10﹣5×2)0=1D .(2021)﹣1=2021【变式1】计算:.【变式2】计算:()﹣2×3﹣1+(π﹣2020)0÷()﹣1.10、一粒米微不足道,平时总会在饭桌上不经意地掉下几粒米饭,甚至有些挑食的同学会把吃剩的米饭倒掉.针对这种浪费粮食的现象,老师组织同学们进行了实际测算,称得500粒大米重约10克.现在请你来计算:(1)一粒大米重约克?(2)按我国现有人口14亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(结果用科学记数法表示)(3)若贫困地区每名儿童每天需0.4千克大米,则(2)节约下来的大米供多少名贫困地区儿童生活一年?(结果用科学记数法表示)【变式1】下列各式正确的是()A.用科学记数法表示30800=3.08×105B.(﹣3)0=1C.用小数表示5×10﹣6=0.0000005D.【变式2】最小刻度为0.2nm(1nm=10﹣9m)的钻石标尺,可以测量的距离小到不足头发丝直径的十万分之一,这也是目前世界上刻度最小的标尺,用科学记数法表示这一最小刻度为()A.2×10﹣8m B.2×10﹣11m C.2×10﹣9m D.2×10﹣10m【随堂小练】1、已知2x=5,则2x+3的值是()A.8B.15C.40D.1252、下列各题的计算,正确的是()A.(a5)2=a7B.a5•a2=a10C.2a3﹣3a2=﹣a D.(﹣ab2)2=a2b43、目前发现的新冠病毒其直径约为0.00012毫米,将0.00012用科学记数法表示为()A.0.12×10﹣3B.1.2×10﹣4C.1.2×10﹣5D.12×10﹣34、计算:(1)(a﹣b)2•(b﹣a)3•(b﹣a);(2).5、(1)已知a m=3,a n=4,求a2m+3n的值;(2)已知9n+1﹣9n=72,求n的值.6、计算:.7、若a m=6,a n=2,求a2m﹣n的值.【巩固练习】1、已知2m=6,2n=3,则2m+n=()A.2B.3C.9D.182、下列计算正确的是( ) A .a 2•a 3=a 6 B .x 6÷x 3=x 2 C .(﹣xy 2)3=x 3y 6 D .(a 2)3=a 63、用小数表示下列各数: (1)8.5×310-(2)2.25×810-(3)9.03×510-4、计算:(1)﹣b 2×(﹣b )2×(﹣b 3) (2)(2﹣y )3×(y ﹣2)2×(y ﹣2)55、计算:.6、已知3a =4,3b =5,3c =8. (1)求3b +c 的值; (2)求32a ﹣3b的值.7、(1)若,求的值.(2)若,求、的值.3335n n x xx +⋅=n ()3915n ma b b a b ⋅⋅=m n。

北师大版七年级数学下 第一章 幂的运算复习 (1)(共18张PPT)

北师大版七年级数学下 第一章 幂的运算复习 (1)(共18张PPT)
复习目标(1分钟)
1.掌握有关幂的性质及运算法则; 2.能熟练运用法则进行混合运算,解决实际问题。
复习指导(2分钟)
同底数幂的乘法运算法则:
am ·an = am+n
幂的乘方运(算m法,n都则是: 正整数)
(am)n= amn (m、n都是正整数)
积的乘方运算法则:
(ab)n = an·bn(m,n都是正整数)
A.-29x10
B.29x10
C.-29x9
D.29x9
6.三个单项式①-10x3y2,②-0.01x3,③yx3按次数由大到小 的排列是( )
A.①②③ B.③②① C.②③① D.①③②
7.式子-mn与(-m)n的正确判断是( ) A.当n为偶数时,这两个式子互为相反数 B.这两个式子是相等的 C.当n为奇数时,它们互为相反数 D.n为偶数时它们相等
A.a3
B.-a2
C.-a3
D.a2
3.设am=8,an=16,则am+n=( D )
A.24
B.32
C.64
D.128
4.下列运算正确的是( )
A.a5+a5=a10
B.a6×a4=a24
C.a0÷a-1=a
D.a4-a4=a0
5.观察下面的一列单项式:-x、2x2、-4x3、8x4、-16x5、… 根据其中的规律,得出的第10个单项式是( )
为17.则该多项式当x=1时的值是

38. 若a+b=0,则多项式a3+a2b-ab2-b3的值是

39. xa+b+c=35,xa+b=5,求xc的值.
40. 已知x3n=2,求x6n+x4n×x5n的值.

北师大七年级下册数学W1幂的运算复习

北师大七年级下册数学W1幂的运算复习

第一周周末学案 幂的运算学号_______ 姓名________【知识要点】1.同底数幂的乘法法则:同底数幂相乘,底数 ,指数。

用公式表 。

2.幂的乘方法则:幂的乘方,底数 ,指数 。

用公式表示为 。

3.积的乘方法则:积的乘方,把积的每一个因式 ,再把所得的积。

用公式表示为 。

4.同底数幂的除法法则:同底数幂相除,底数 ,指数。

用公式表示为 。

5.我们规定:a 0= ,a -n = 。

【基础演练】 1、 计算:(2013湖北黄冈)-(-3)2=p 2·(-p )·(-p)5=(-2x 3y 4)3=(x 4)3=_______ (a m )2=________, m 12=( )2=( )3=( )4。

2、(1)若a m·a m=a 8,则m= (2)若a 5·(a n )3=a 11,则n=3、用科学记数法表示:(1)0.00000730=(2)-0.00001023=4、一种细菌的半径为3.9×10-5m,用小数表示应是m.氢原子中电子和原子核之间的距离为0.00000000529厘米。

用科学记数法表示这个距离为 5、已知a m=3, a n=9, 则a3m-2n= .6、用小数或分数表示下列各数. (1)2-5(2)1.03×10-4(3)2)23(-(4)(-3)-47、(2013湖南株洲)下列计算正确的是( )A. B. C. D.8、(2013山东烟台)下列各运算中,正确的是( )A .BC .D .9、如果(),990-=a ()11.0--=b ,235-⎪⎭⎫⎝⎛-=c ,那么c b a ,,三数的大小为A.c b a >>B.b a c >>C.b c a >>D.a b c >>10、已知(a x·a y )5=a 20(a >0,且a ≠1),那么x 、y 应满足( ) A x+y=15 B x+y=4 C xy=4 D y=11、填空(1). 104×107=______,(-5)7×(-5)3=_______,b 2m·b4n-2m=_________。

北师大版七年级数学下册《同步考点解读-专题训练》专题1.2幂的除法运算(知识解读)(原卷版+解析)

北师大版七年级数学下册《同步考点解读-专题训练》专题1.2幂的除法运算(知识解读)(原卷版+解析)

专题1.2 幂的除法运算(知识解读)【学习目标】1. 掌握正整数幂的除法运算性质,能用文字和符号语言正确地表述这些性质,并能运用它们熟练地进行运算.2. 运用同底数幂的除法法则解决一下实际问题.3.理解零次幂的性质及有关综合运算。

4.掌握用科学计数法表示较小的数。

5.了解负整数指数幂的意义,并进行有关的运算。

【知识点梳理】知识点1:幂的除法运算口诀:同底数幂相除,底数不变,指数相减。

a m÷a n=a(m-n)(a≠0,m,n均为正整数,并且m>n)知识点2:零指数a0=1 (a≠0)知识3:科学记数法科学记数法:有了负指数幂后,绝对值小于 1 的数,也能写成a⨯10-n 的形式,其中n是正整数,1≤ a <10 ,这叫科学记数法.注:对于一个绝对值小于 1 的数,如果小数点后至第一个非0 数字前有m 个0,则10d 的指数n=m+1.知识点4:负整数幂当n 是正整数时,1nnaa-=(0a≠,n是正整数)【典例分析】【考点1 幂的除法运算】【典例1】计算a6÷a3,正确的结果是()A.3B.a3C.a2D.3a 【变式1-1】计算m3÷m3结果是()A.m6B.m C.0D.1【变式1-2】计算(﹣a)12÷(﹣a)3的结果为()A.a4B.﹣a4C.a9D.﹣a9【典例2】已知x a=3,x b=5,则x a﹣b=()A.B.C.D.15【变式2-1】已知3m=12,3n=4,则3m﹣n的值为()A.3B.4C.6D.8【变式2-2】若5a=3,5b=12,则5b﹣a=.【典例3】已知3m=6,9n=2,求32m﹣4n的值.【变式3-1】已知a m=4,a n=8,求a3m﹣2n的值.【变式3-2】(1)已知3a=4,3b=5,求32a﹣3b的值;(2)若3x+2y﹣3=0,求8x•4y.【典例4】计算:a2•(﹣a4)3÷(a3)2.【变式4-1】计算:(1)a•a2•a3;(2)(﹣2ab)2;(3)(a3)5;(4)(﹣a)6÷(﹣a)2÷(﹣a)2.【变式4-2】计算:(x2)3•x3﹣(﹣x)2•x9÷x2.【变式4-3】计算题:(1)(a2)3•(a2)4÷(a2)5;(2)(5a2+2a)﹣4(2+2a2).【考点2 零指数】【典例5】(一1)0等于()A.﹣1B.0C.1D.无意义【变式5-1】若(x﹣1)0有意义,那么x的取值范围是()A.x>1B.x<1C.x≠1D.x为任意数【变式5-2】计算(﹣5)0的结果是()A.1B.﹣5C.0D.﹣【考点3:科学计数法】【典例6】(2022•海曙区校级模拟)我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000022米.用科学记数法表示0.000000022为()A.22×10﹣10B.2.2×10﹣10C.2.2×10﹣9D.2.2×10﹣8【变式6-1】(2019•烟台一模)碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米【变式6-2】(2020•汇川区模拟)世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1【考点4:负指数整数幂】【典例7】(2022春•元宝区校级期末)计算()﹣2的结果是()A.﹣9B.9C.D.﹣【变式7-1】(2022春•北碚区校级期末)()﹣2值为()A.B.﹣C.D.﹣【典例8】(2022•南陵县自主招生)计算.【变式8-1】(2022春•兰州期末)计算:()﹣1﹣(﹣3﹣3.14)0+(﹣)﹣2.【变式8-2】(2022春•城固县期末)计算:(﹣)﹣3+(﹣3)0﹣(﹣1)﹣2.【变式8-3】(2022春•西安期末)计算:﹣(﹣1)﹣1.专题1.2 幂的除法运算(知识解读)【学习目标】1. 掌握正整数幂的除法运算性质,能用文字和符号语言正确地表述这些性质,并能运用它们熟练地进行运算.2. 运用同底数幂的除法法则解决一下实际问题.3.理解零次幂的性质及有关综合运算。

专题1.1 幂的运算【八大题型】(举一反三)(北师大版)(解析版)

专题1.1 幂的运算【八大题型】(举一反三)(北师大版)(解析版)

关系是�
�(填“<”或“>”).
【答案】<
【详解】解:参照题目中比较大小的方法可知,
【变式
1-2】(2023
春·上海杨浦·七年级统考期中)用简便方法计算:−
35
×
(

2 3
)5
×
(

5)6
【答案】500000
【分析】根据积的乘方即可求出答案.
【详解】原式=
35
×
(
2 3
)5
×
56
=
(3
×
2 3
5

×
56
= 25 × 55 × 5
=
(2
×
5
5)
×
5
= 5 × 105
= 500000
【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
【题型 1 利用幂的运算法则进行简便运算】 【例 1】(2023 春·河北保定·七年级校联考期末)用简便方法计算:
第1页 共 24页
(1) 4 2019 ×
5
−1.25 2020;
(2) −9 3 ×
−2 3×
3
1 3
3.
【答案】(1)54
(2)8
【分析】(1)先将小数化为分数,再根据同底数幂的运算法则进行计算即可;
专题 1.1 幂的运算【八大题型】
【北师大版】
【题型 1 利用幂的运算法则进行简便运算】 ...........................................................................................................1 【题型 2 利用幂的运算法则求式子的值】 ...............................................................................................................4 【题型 3 利用幂的运算法则比较大小】 ...................................................................................................................6 【题型 4 利用幂的运算法则整体代入求值】 .........................................................................................................10 【题型 5 利用幂的运算法则求字母的值】 .............................................................................................................12 【题型 6 利用幂的运算法则表示代数式】 .............................................................................................................14 【题型 7 幂的混合运算】 ......................................................................................................................................... 17 【题型 8 新定义下的幂的运算】 ............................................................................................................................. 19

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

《整式的乘除》全章复习与巩固【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n na a -=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;需灵活地双向应用运算性质.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.2.单项式乘以多项式单项式与多项式相乘,就是根据分配率用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项包含前面的“+”“-”号.根据多项式的乘法,能得出一个应用广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除单项式相除、把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数和与这两个数差的积,等于这两个数的平方差. 要点诠释:1.在这里,a b ,既可以是具体数字,也可以是单项式或多项式.2.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是三项,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算1、已知:2m +3n =5,则4m •8n =( )A .16B .25C .32D .64 【解答】解:4m •8n =22m •23n =22m +3n =25=32,故选:C .2.下列各式正确的有( )①x 4+x 4=x 8;②﹣x 2•(﹣x )2=x 4;③(x 2)3=x 5;④(x 2y )3=x 3y 6;⑤(﹣3x 3)3=﹣9x 9;⑥2100×(﹣0.5)99=﹣2;A .1个B .2个C .3个D .4个【解答】解:①x 4+x 4=2x 4,此计算错误;②﹣x 2•(﹣x )2=﹣x 4,此计算错误;③(x 2)3=x 6,此计算错误;④(x 2y )3=x 6y 3,此计算错误;⑤(﹣3x 3)3=﹣27x 9,此计算错误;⑥2100×(﹣0.5)99=2×299×(﹣0.5)99=2×(﹣0.5×2)99=2×(﹣1) =﹣2,此计算正确;故选:A .3、阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a 2=2,b 3=3,比较a 、b 的大小(4)比较312×510与310×512的大小【解答】解;(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511, ∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961;(3)∵a 2=2,b 3=3,∴a 6=8,b 6=9,∵8<9,∴a 6<b 6,∴a <b ;(4)∵312×510=(3×5)10×32,310×512=(3×5)10×52,又∵32<52,∴312×510<310×512.类型二、整式的乘除法运算1、要使()()621x a x -+的结果中不含x 的一次项,则a 等于( )A.0B.1C.2D.3【答案】D ;【解析】先进行化简,得:,要使结果不含x 的一次项,则x 的一次项系数为0,即:62a -=0.所以3a =.【总结升华】代数式中不含某项,就是指这一项的系数为0.2.如图,一个边长为(m +2)的正方形纸片剪去一个边长为m 的正方形,剩余的部分可以拼成一个长方形,若拼成的长方形的一边长为2,则另一边长为 2m +2 .【解答】解:设另一边长为x ,根据题意得,2x =(m +2)2﹣m 2,解得x =2m +2.故答案为:2m +2.3.如图,现有A ,C 两类正方形卡片和B 类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片5张.【解答】解:长为3a+2b,宽为a+b的长方形的面积为:(3a+2b)(a+b)=3a2+5ab+2b2,∵A类卡片的面积为a2,B类卡片的面积为ab,C类卡片的面积为b2,∴需要A类卡片3张,B类卡片5张,C类卡片2张,故答案为:5.类型三、乘法公式1.如果x2﹣2(m+1)x+4是一个完全平方公式,则m=.【解答】解:∵x2﹣2(m+1)x+4是一个完全平方公式,∴﹣2(m+1)=±4,则m=﹣3或1.故答案为:﹣3或1.2、用简便方法计算:(1)1002﹣200×99+992(2)2018×2020﹣20192 (3)计算:(x﹣2y+4)(x+2y﹣4)【解答】解:(1)1002﹣200×99+992=1002﹣2×100×(100﹣1)+(100﹣1)2=[100﹣(100﹣1)]2=12=1;(2)2018×2020﹣20192=(2019﹣1)(2019+1)﹣20192=20192﹣1﹣20192=﹣1.(3)原式=x2﹣(2y﹣4)2=x2﹣4y2+16y﹣16;3.图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称抽)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是()A.ab B.a2+2ab+b2C.a2﹣b2D.a2﹣2ab+b2【解答】解:图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a +b ,∴正方形的面积为(a +b )2,∵原矩形的面积为4ab ,∴中间空的部分的面积=(a +b )2﹣4ab =a 2﹣2ab +b 2.故选:D .4、已知222246140x y z x y z ++-+-+=,求代数式2012()x y z --的值.【思路点拨】将原式配方,变成几个非负数的和为零的形式,这样就能解出,,x y z .【答案与解析】解:222246140x y z x y z ++-+-+= ()()()2221230x y z -+++-= 所以1,2,3x y z ==-=所以20122012()00x y z --==.【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.类型四、综合类大题1.在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):证明上述速算方法的正确性.【解答】解:(1)图(1)所表示的代数恒等式:(x+y)•2x=2x2+2xy,图(2)所表示的代数恒等式:(x+y)(2x+y)=2x2+3xy+y2图(3)所表示的代数恒等式:(x+2y)(2x+y)=2x2+5xy+2y2.(2)几何图形如图所示:拓展应用:(1)①几何模型:②用文字表述57×53的速算方法是:十位数字5加1的和与5相乘,再乘以100,加上个位数字3与7的积,构成运算结果;即57×53=(50+10)×50+3×7=6×5×100+3×7=3021;十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;故答案为十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;2.阅读下列材料并解决后面的问题材料:对数的创始人是苏格兰数学家纳皮尔(J.Npler,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣﹣1783)才发现指数与对数之间的联系,我们知道,n个相同的因数a相乘a•a…,a记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28,即log28=3一般地若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b,即log a b=n.如34=81,则4叫做以3为底81的对数,记为log381,即log381=4.(1)计算下列各对数的值:log24=,log216=,log264=(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是;(3)拓展延伸:下面这个一股性的结论成立吗?我们来证明log a M+log a N=log,a MN(a>0且a≠1,M>0,N>0)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m•a n=a m+n=M•N,∴log a MN=m+n,又∵log a M=m,log a N=n,∴log a M+log a N=log a MN(a>0且a≠1,M>0,N>0)(4)仿照(3)的证明,你能证明下面的一般性结论吗?log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)计算:log34+log39﹣log312的值为.【解答】解:(1)log24=log222=2,log216=log224=4,log264=log226=6;故答案为:2,4,6;(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是:log24+log216=log264;(4)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m÷a n=a m﹣n=,∴log a=m﹣n,又∵log a M=m,log a N=n,∴log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)log34+log39﹣log312,=log3,=log33,=1,故答案为:1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂的运算专题复习教学设计
成都玉林中学李霞一.教材分析
《幂的运算》是义务教育课程标准北师大版实验教科书七年级(下)第一章《整式的乘除》第1-3节的内容。

本节课是在“同底数幂的乘除法”、“幂的乘方与积的乘方”之后,是一节复习提高课。

通过教师引导,学生自主探究,熟悉“幂的运算法则”常见运用和灵活运用。

二.学情分析
学生前面已经学过了“有理数及其运算”和“整式的加减”,对于运算的顺序和符号已经了然于心。

但幂的运算法则是全新的,需要学生认真理解公式的推理过程,关注公式之间的内在联系和公式成立的条件。

同时,幂的运算法则的用法灵活多变,对同学们既是挑战,也触动同学们的好奇、好胜的心理,激发他们的兴趣,使他们主动去探索知识。

三.目标分析
●教学目标
1.知识与技能目标
⑴熟练掌握幂的运算法则,能准确的进行幂的基本运算;
⑵会灵活使用幂的运算法则,掌握运算法则的正向运用、逆向运用和综合运用.
2.能力目标
⑴培养学生的探究能力,提高学生的数学思维能力;
⑵培养学生知识总结的能力和严谨的学习态度.
3.情感目标
⑴鼓励学生积极参与课堂探讨,共同解决难题,树立学生学好数学的自信心;
⑵通过学生观察、分析、动手、推断、归纳领会新知识.
●教学重点
幂的运算法则的理解与运用.
●教学难点
幂的运算法则的灵活运用.
四.教法学法
●教学方法
“引导----探究----发现----应用”教学模式
●学法指导
指导学生自主探究,合作交流,培养学生知识总结,自主学习的能力
●课前准备
多媒体,学案。

相关文档
最新文档