高级氧化技术

合集下载

高级氧化技术名词解释

高级氧化技术名词解释

高级氧化技术名词解释高级氧化技术是指可使煤在一定的条件下充分氧化,形成合格炉渣并脱硫、脱硝的技术。

高级氧化技术原理:通过高压氧气与煤炭的高温还原反应,煤中的有机物在常温常压下直接变为可燃气体,从而达到完全燃烧,这是解决煤炭燃烧污染环境的有效途径。

但目前普遍采用的高级氧化工艺存在能耗高、运行成本高、反应温度难控制、副产物对空气污染严重等问题。

因此研究一种新型高级氧化技术具有十分重要的意义。

目前,国内外高级氧化主要分为两类,即高压气流催化高级氧化和热载体加速的高级氧化技术。

我们发现,加速的高级氧化技术正逐渐成为今后新型高级氧化技术的主流。

高级氧化技术具有明显的节能、低温氧化及环保等特点,已成为当今世界高级氧化的研究热点。

目前,在国内外高级氧化研究中,主要研究的对象为烟煤、褐煤及无烟煤。

对焦煤、贫煤、瘦煤、贫瘦煤等炼焦煤由于不能进行高温干馏,其高级氧化技术还处于实验室阶段。

1、气流床加压高温干馏气流床加压高温干馏是一种近年来兴起的一种高级氧化技术。

该技术以大流量气体作为加热介质,在高温、高压下,烟煤、褐煤等固体或液体的煤料,在气流中加压,可在一定时间内将其氧化。

这种方式属于强化氧化,加热速度快,氧化产物易控制。

因此它也是近年来我国各煤炭科研单位开展最多的一种高级氧化方式。

2、高温干馏煤气利用湿法高温干馏煤气得到的混合气中的大部分可燃成分,均被高温干馏加热至350 ℃以上,部分固定碳得到高温干馏分解,使煤气中二氧化碳含量提高,减少了废气排放,同时有效降低煤气输送系统的阻力。

这项技术技术工艺简单,投资小,运行费用低,便于操作,比较适合于中国广大农村煤气化站点的使用。

3、空气/富氧高级氧化技术该技术的原理是:将氮气引入气流中,氮气迅速吸收煤气中的二氧化碳,达到脱碳效果,同时由于氧气不足,煤气中的一氧化碳和氢气等不完全燃烧产物在催化剂作用下被氧化,生成二氧化碳、水、氨和硫化氢等副产物。

该技术的关键在于催化剂的选择和煤气中残余煤气量的控制。

高级氧化技术

高级氧化技术

1.高级氧化技术的定义:利用强氧化性的自由基来降解有机污染物的技术,泛指反应过程有大量羟基自由基参与的化学氧化技术。

其基础在于运用催化剂、辐射,有时还与氧化剂结合,在反应中产生活性极强的自由基(一般为羟基自由基,·OH),再通过自由基与污染物之间的加合、取代、电子转移等使污染物全部或接近全部矿质化。

·OH反应是高级氧化反应的根本特点2.高级氧化方法及其作用机理是通过不同途径产生·OH自由基的过程。

·OH自由基一旦形成,会诱发一系列的自由基链反应,攻击水体中的各种有机污染物,直至降解为二氧化碳、水和其它矿物盐。

可以说高级氧化技术是以产生·OH自由基为标志3.高级氧化技术有什么特点?1)反应过程中产生大量氢氧自由基·OH2)反应速度快3)适用范围广,·OH几乎可将所有有机物氧化直至矿化,不会产生二次污染4)可诱发链反应5)可作为生物处理过程的预处理手段,使难以通过生物降解的有机物可生化性提高,从而有利于生物法的进一步降解;6)操作简单,易于控制和管理4.·OH自由基的优点1)选择性小,反应速度快;2)氧化能力强;3)处理效率高;5)氧化彻底5.高级氧化技术分为哪几类?1)化学氧化法:臭氧氧化/Fenton氧化/高铁氧化2)电化学氧化法3)湿式氧化法:湿式空气氧化法/湿式空气催化氧化法4)超临界水氧化法 5)光催化氧化法6)超声波氧化法7)过硫酸盐氧化法6.自由基与污染物反应的四种主要方式:氢抽提反应、加成反应、电子转移、(氧化分解)。

自由基反应的三个阶段:链的引发、链的传递、链的终止自由基反应具有无选择性,反应迅速的特点。

7. 产生羟基自由基的途径:Fe2+/H2O2、 UV/H2O2、 H2O2/O3、 UV/O3、UV/H2O2/O3、光催化氧化(TiO2光催化氧化反应机理:产生空穴和电子对),对有机物降解速率由快到慢依次为UV-Fenton、 Fenton、 O3/US、O3、O3/UV、UV/H2O2、UV。

12种高级氧化技术

12种高级氧化技术

12种高级氧化技术
1、臭氧氧化法:利用臭氧(O3)进行氧化反应,处理工艺污染
物的有效性很高。

2、脱溴的氧化法:工艺污水中的挥发性有机物通过添加脱溴剂,形成
有机酸,然后利用活性氧氧化反应来去除。

3、活性炭吸附氧化法:利用活性炭对污染物吸附后,再用氧化剂氧化
来达到净化目的。

4、臭氧-活性炭联合处理:采用活性炭和臭氧联合处理,可以有效去
除水中有机污染物。

5、光催化氧化法:利用可见光引起的光催化反应去除水中有机污染物。

6、水热氧化法:利用水热反应氧化,对于微量的有机物有很好的处理
效果。

7、气相自由基氧化法:利用空气中的自由基氧化剂作用于有机物,从
而去除水中的有机成分。

8、激光氧化法:利用激光的能量使水中的有机物氧化反应而分解掉。

9、高压氧气技术:有机物被高压氧气作用,使其分解,从而达到处理
污染物的目的。

10、电化学氧化法:利用微弱电流作用于污染物,使其发生氧化反应
而被氧化分解。

11、超高温氧化:利用高温的气态氧化反应,有效处理污染物,是一
种快速的技术。

12、臭氧/过氧化氢混合处理:利用臭氧和过氧化氢的混合反应,可以
有效去除水中的有机污染物。

主流的高级氧化技术原理及优缺点

主流的高级氧化技术原理及优缺点

主流的高级氧化技术原理及优缺点
一、原理
高级氧化技术是一种通过产生强氧化剂来氧化降解有机物的方法。

其基本原理是利用高压电、紫外线、超声波等能量形式,将水分子分解产生羟基自由基(·OH)等强氧化剂,这些强氧化剂可以与有机物发生氧化反应,将其降解为无害的物质。

高级氧化技术根据其能量形式的不同,可以分为电化学氧化法、光化学氧化法、超声波氧化法等。

其中,电化学氧化法是最常用的一种,其原理是通过电解水产生羟基自由基,再利用这些自由基与有机物发生氧化反应。

光化学氧化法则利用光能将水分子分解产生羟基自由基,再利用这些自由基与有机物发生氧化反应。

超声波氧化法则利用超声波的能量将水分子分解产生羟基自由基,再利用这些自由基与有机物发生氧化反应。

二、优缺点
1.优点
(1)高效性:高级氧化技术可以快速有效地降解有机物,处理效率高。

(2)广谱性:高级氧化技术可以处理多种类型的有机物,包括难降解的有机物。

(3)环保性:高级氧化技术使用的是强氧化剂,可以将有机物降解为无害的物质,不会产生二次污染。

(4)灵活性:高级氧化技术可以根据不同的处理需求,选择不同的能量形式和操作条件。

2.缺点
(1)成本高:高级氧化技术需要使用高压电、紫外线、超声波等设备,设备投资和维护成本较高。

(2)处理难度大:对于某些难降解的有机物,高级氧化技术的处理效果可能不够理想。

(3)副产物问题:高级氧化技术产生的羟基自由基等强氧化剂可能会与水中其他物质发生反应,产生新的副产物。

(4)操作要求高:高级氧化技术的操作要求较高,需要专业的技术人员进行操作和维护。

高级氧化技术名词解释

高级氧化技术名词解释

高级氧化技术名词解释高级氧化技术又称为高温焚烧技术,主要是通过将污染物质在高温下直接氧化为二氧化碳和水。

高级氧化技术可适用于任何成分复杂、温度范围宽的有机废气。

①气氛控制与调节装置:保证燃烧产生的热量以一定的气体状态进入反应器内。

②焚烧炉体:焚烧炉体一般包括焚烧室和尾气吸收处理系统。

焚烧炉体有两种形式:其一是卧式设计,烟气从前端由炉顶入口进入,通过尾部排烟口引出;其二是立式设计,烟气通过设置在后端的吸烟室进入,经水冷或风冷后进入前端。

③锅炉与热交换器:用来储存燃料燃烧放出的热量,同时也作为热传递的介质。

④反应区:反应区是一个多空室结构的立式圆筒,燃烧室底部与反应区相连,燃料与高温烟气的混合物进入反应区。

⑤尾气吸收装置:通过布置在尾气吸收装置内的吸收剂,使废气中的CO2、 HCl、 SOx等物质发生化学反应,最终转化成CO2和H2O。

(3)二氧化碳?臭氧氧化技术:指高浓度二氧化碳在高温( 1000~1500 ℃)、高氧(纯度≥97%)条件下氧化去除有机物的工艺。

此法操作简便、经济安全,净化效率高,二次污染少,并具有一定的脱色能力。

不足之处是对高温易燃有机物氧化效率低,当温度≥1600 ℃,会引起聚合物降解,降低可靠性和寿命。

其他氧化技术还有氯化法、氯氧化法、氮氧化法、光催化氧化法、等离子体法等。

目前国内外研究、开发和应用较多的有氯氧化法、光催化氧化法和等离子体法等三种。

①焚烧:有的采用直接燃烧的方法,有的采用先将有机物分散在油、乳化液或水中,再送入焚烧炉的方法。

②燃烧室及反应区:焚烧室的焚烧温度一般在700 ℃以上,废气在焚烧室内停留时间约15秒~1分钟,然后进入高温分解区。

③燃烧及辅助装置:根据设计要求,在焚烧炉体内设置燃烧器、导流器、预热器、回转供料器等装置。

废气高温氧化工艺主要是利用废气中所含二氧化碳,在高温下氧化为无害气体,不需另外增加投资,且回收利用热能,但是能耗较高。

近年来,利用高温焚烧技术处理城市有机废气的方法正逐步得到重视。

(完整)高级氧化技术

(完整)高级氧化技术

高级氧化技术高级氧化技术(AOPs)是基于羟基自由基(·OH)的特殊化学性质,化学活性高且氧化无选择性,可以促进有毒有害生物难有机物的氧化分解,最终矿化,达到污染物的无害化处置的氧化技术。

其高氧化还原电位相对于常见的氧化剂,如表1-1所示[1]。

高级氧化技术主要是基于一系列产生羟基自由基的物化过程。

Fenton(1894)发现Fe2+和H202发生化学反应产生·OH,·OH通过电子转移等途径可使水中的有机污染物矿化为二氧化碳和水[2]。

Weiss(1935)得到了臭氧(03)在水体中可与氢氧根离子(OH-)反应生成羟基自由基(·OH )[3],随后,Taube和Bray(l945)在实验中发现H2O2在水溶液中会离解成HO2-离子,诱发产生羟基自由基[4]。

利用物理的方法,例如超声辐射(Ultrasonic Irradiation)、水力设备(阀、小孔(orifice)和文氏管(venturi)等)、电子束辐射(Electron Beam,EB)等,诱发产生羟基自由基(·OH)[5,6]。

还有超临界水氧化(Supercritical Water Oxidation,SWO)、湿式氧化(Wet Air Oxidation,WAO)或催化湿式氧化(Catalytic Wet Air Oxidation,CWAO)等[7]。

20世纪70年代,Fujishima和Honda等发现光催化可产生·OH,从而揭开了光催化高级氧化技术研究的新领域[8]。

最近,混合型高级氧化技术(Hybrid Advanced Oxidation Ploeesses,HAOPs)成为研究的热点,其结合各种高级氧化技术的优点,弥补不足之处,成为高效的面向实际工程应用发展的新型高级氧化技术。

主要形式如下:超声/ H2O2 (或03)、03/ H2O2、超声光化学氧化(Sono- photochemical Oxidation)、光Fenton技术、催化高级氧化或结合生物氧化工艺、耦合氧化工艺,如SONIWO(SonoChemical Degradation followed by Wet Air Oxidation)等[9]。

高级氧化技术概述课件

高级氧化技术概述课件
分类
根据产生强氧化剂的方法不同,高级 氧化技术可分为电化学氧化法、光化 学氧化法、湿式氧化法等。
原理与特点
原理
高级氧化技术通过产生羟基自由基(·OH)等强氧化剂,将有机污染物氧化成 低毒或无毒的小分子物质,甚至完全矿化成二氧化碳和水。
特点
高级氧化技术具有处理效率高、适用范围广、可矿化有机物等优点,但也存在 设备成本高、能耗高等缺点。
废水处理
高级氧化技术在废水处理中的应用主要包括有机废水、重金属废水以及 放射性废水的处理。通过强氧化作用,可以有效分解有机物,降低废水 中有机污染物的含量,使废水达到排放标准。
具体方法包括臭氧氧化、芬顿反应、光催化氧化等。这些方法能够提高 废水的可生化性,为后续的生物处理提供有利条件。
高级氧化技术还可以与生物处理技术结合,形成组合工艺,进一步提高 废水处理效果。
高级氧化技术概述 课件
目 录
• 高级氧化技术简介 • 高级氧化技术种类 • 高级氧化技术应用实例 • 高级氧化技术发展现状与趋势 • 高级氧化技术在实际应用中的优
化策略 • 高级氧化技术的前景展望
01
高级氧化技术简介
定义与分类
定义
高级氧化技术(Advanced Oxidation Processes,简称AOPs )是一种通过产生强氧化剂来处理有 机污染物的技术。
疗废物等。
高级氧化技术可以用于固体废物的减量 化和资源化。通过高温焚烧、湿式氧化 等工艺,可以将固体废物中的有害物质 转化为无害物质,同时实现废物的减量
化和资源化利用。
在固体废物处理中,高级氧化技术还可 以与其他技术结合,如生物处理、物理 处理等,形成组合工艺,进一步提高处
理效果。
04
高级氧化技术发展现状与 趋势

高级氧化技术

高级氧化技术

05
高级氧化技术的发展趋势 与展望
技术创新与改进
高效催化剂的研发
通过改进催化剂的活性、选择性和稳定性,提高高级氧化技术的 处理效率。
反应条件的优化
深入研究反应机理,探索最佳的反应温度、压力、pH值等条件, 降低能耗和资源消耗。
新型反应器的设计
设计新型的反应器结构,实现高效混合、传热和传质,提高反应速 率和去除效率。
02
高级氧化技术的原理
电化学氧化法
原理
利用电化学反应产生强氧化剂,如羟 基自由基(·OH),对有机物进行氧 化分解。
应用
电化学氧化法常用于处理含有难降解 有机物的废水,如印染废水、制药废 水等。
优势
电化学氧化法具有处理效率高、操作 简单、无二次污染等优点。
挑战
电化学氧化法需要消耗电能,运行成 本较高,且对电极材料和反应条件要 求较高。
推动其在工业和市政领域的应用和推广。
THANKS
感谢观看
高级氧化技术的实际应用
工业废水处理
工业废水处理
难降解有机物处理
高级氧化技术能够有效地处理工业废水中 的有毒有害物质,如重金属、有机污染物 等,降低其对环境的影响。
高级氧化技术能够将难降解有机物氧化成 低毒或无毒的小分子物质,降低其对生态 系统的危害。
含油废水处理
酸碱废水处理
高级氧化技术能够有效地处理含油废水, 去除其中的油类物质,提高废水的可生化 性。
高级氧化技术能够调节废水的酸碱度,使 其达到排放标准,减少对水体的酸碱污染 。
有机废气处理
有机废气处理
高级氧化技术能够有效地处理有机废气 ,如苯、甲苯、二甲苯等,降低其对大
气环境的影响。
恶臭气体处理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高级氧化技术
高级氧化技术(AOPs)是基于羟基自由基(·OH)的特殊化学性质,化学活性高且氧化无选择性,可以促进有毒有害生物难有机物的氧化分解,最终矿化,达到污染物的无害化处置的氧化技术。

其高氧化还原电位相对于常见的氧化剂,如表1-1所示[1]。

高级氧化技术主要是基于一系列产生羟基自由基的物化过程。

Fenton(1894)发现Fe2+和H202发生化学反应产生·OH,·OH通过电子转移等途径可使水中的有机污染物矿化为二氧化碳和水[2]。

Weiss(1935)得到了臭氧(03)在水体中可与氢氧根离子(OH-)反应生成羟基自由基(·OH )[3],随后,Taube和Bray(l945)在实验中发现H2O2在水溶液中会离解成HO2-离子,诱发产生羟基自由基[4]。

利用物理的方法,例如超声辐射(Ultrasonic Irradiation)、水力设备(阀、小孔(orifice)和文氏管(venturi)等)、电子束辐射(Electron Beam,EB)等,诱发产生羟基自由基(·OH)[5,6]。

还有超临界水氧化(Supercritical Water Oxidation,SWO)、湿式氧化(Wet Air Oxidation,WAO)或催化湿式氧化(Catalytic Wet Air Oxidation,CWAO)等[7]。

20世纪70年代,Fujishima和Honda等发现光催化可产生·OH,从而揭开了光催化高级氧化技术研究的新领域[8]。

最近,混合型高级氧化技术(Hybrid Advanced Oxidation Ploeesses,HAOPs)成为研究的热点,其结合各种高级氧化技术的优点,弥补不足之处,成为高效的面向实际工程应用发展的新型高级氧化技术。

主要形式如下:超声/ H2O2 (或03)、03/ H2O2、超声光化学氧化(Sono- photochemical Oxidation)、光Fenton技术、催化高级氧化或结合生物氧化工艺、耦合氧化工艺,如SONIWO(SonoChemical Degradation followed by Wet Air Oxidation)等[9]。

1.1Fenton反应
芬顿反应(Fenton Reactions)是二价铁离子跟双氧水反应生成羟基自由基的过程。

其中涉及到诸多单元反应,主要反应如下:
光芬顿反应(Photo-Fenton Reactions)是在波长小于400nm的紫外光照射下发生的复杂的光化学反应,其中包括了三价铁离子转化到二价铁离子的光化学反应,促使这个反应过程加速[10]:
因此,光芬顿体系要优于单纯的芬顿体系,其将加速污染物的氧化,达到矿化污染物的目的。

1.2臭氧氧化
臭氧在水中会分解成含氧自由基,但是直接氧化速率低,且选择性较高。

但是在碱性的溶液中(pH值较高)时,氢氧根加速臭氧的分解,产生羟基自由基[11~13]。

主要过程如下:
1.3双氧水氧化
过氧化氢(H202)作为一种氧化剂,被广泛地用于工业废水处理、气体洗涤与消毒杀菌,且操作简单。

过氧化氢在水体中会自发分解成HO2-离子,而HO2-离子是产生羟基自由基的引发剂[10]。

而在紫外光(λ<400nm)的照射下,即UV/ H202体系,双氧水被加速分解产生羟基自由基[14]
1.4臭氧/过氧化氢氧化
臭氧与双氧水联用技术,其产羟基自由基的速率均远高于单独的臭氧与双氧水氧化技术。

主要发生了Peroxone反应[15,16]:
此项工艺在较高的pH值对经基自由基产生效率有利,按(1-13)化学反应式的化学计量比投加臭氧与双氧水,使此工艺性能优化。

1.5超生氧化
超声波氧化技术是声化学(Sonochemistry)技术在污染物(尤其是对于难降解污染物)净化方面的实际应用技术。

超声波在液相中的波长在10~0.015m范围内(频率:15KHz一10MHz),产生空穴效应(Cavitation),即微小气泡(空化核),在毫秒间产生、发展到湮灭,释放出局部能量[17]。

目前,主要有两种理论解释这种物理化学现象[18]:热点理论和放电理论归。

热点理论认为,超声波辐射液体时产生超声空化现象,使液体中存在许多被绝热且高温、高压、寿命极短的微气泡(即热点),这热点提供了一种非常特殊的物理化学环境,类似超临界状态。

而放电理论认为,空化气泡内产生一定量的电荷,在一定条件下通过微放电而发光,同时产生羟基自由基,有利于化学反应的进行。

简单的反应式表达如下:
1.6电子束辐射
以γ射线或高能电子束(0.5~2MeV)为辐射手段的辐射技术(EB)在废气治理,废水处理、污泥处置与消毒方面的应用己达到初步土业化水平。

辐射源主要分为电子加速器和60Co辐射源。

在射线作用下,水及水体中污染物被分解,其中水的辐射会产生水合一电子(e aq-)、离
子、激发态粒子、·OH和·H自由基等活性中间体,这些物种具有较高的反应活性,可氧化分解水中的污染物而达到净化效果[19~21]。

1.7光催化氧化
当典型光催化剂纳米TiO2半导体受到波长小于387.5nm的紫外光的照射时,电子就可以从价带激发转移到导带,同时在价带产生相应的空穴,即生成电子-空穴对[22~24]。

部分的导带电子和价带空穴又能重新复合,并以热能形式释放。

当存在合适的俘获剂或表面缺陷态时,电子和空穴的重新复合会得到抑制,在它们复合之前,就会在TiO2表面发生氧化还原反应。

在光催化半导体中,大多数光催化氧化反应是直接或间接的利用空穴的氧化能力。

空穴具有很强的化学反应活性,是携带量子的主要成分,一般与表面吸附的H2O或OH-离子反应形成羟基自由基:
在光电催化反应中,产生了羟基自由基,超氧离子自由基以及HO2·自由基,这些氧化性很强的自由基能够将各种有机物直接或间接矿化为C02,H2O等无机小分子,对光催化氧化起决定性作用[25],而且h vb+也可以直接氧化有机物[26]。

如上所述,高级氧化技术,还包括跟电化学联系的电化学氧化、电催化氧化和光电催化氧化等[27],但均以产生高氧化活性的无选择性的羟基自由基为目的的物化方法,跟本论文关联不大,在此不加赘述。

相关文档
最新文档