冯海林薄立军版《随机过程》课后部分习题答案
精品文档-随机过程——计算与应用(研究生)(冯海林)-泊松过程3

5 E[Yn ] 2 ,
E[Yn2
]
43 6
215 E[ X5 ] 25, D[ X5 ] 3
随机过程引论——西安电子科技大学数学与统计学院 冯海林
例4.3.2 设某保险公司发生的索赔次数是一个参数为
的泊松过程, k 表示保险公司第k次索赔的金额,k=1.2….
一般认为索赔额序列独立同分布且与泊松过程独立. 假设公司
验证: 过程M {N (t) , t 0}是参数为1的齐次泊松过程.
证明: 函 数 ( t ) 是 单 调 不 减 , 右 连 续 的 , 且 m ( ( t ) ) = t
所以过程M {N (t) , t 0}具有独立增量性.
P(N (t)
-
N (s)
k)
[m( (t)) m( (s))]k
E[ Ntge ]=1
证明:
E[
Ntge
Nsge ]=E[e ] (Nt Ns )ln( 1) (ts)
=e E[e ] Nsge
(t s)
Nts ln( 1)
=e (ts)E[( 1)Nts ]
=e (ts) ( 1)n [(t s)]n e(ts)
n0
n!
=e ( 1)(ts) [ ( 1)(t s)]n e e ( 1)(ts) ( 1)(ts) 1
泊松过程的推广
• 几何泊松过程
设N= {Nt,t≥0} 是参数为λ 的泊松过程,常数 定义
N e ge
Nt ln( 1) t
t
( 1)Nt et , t Βιβλιοθήκη 0称Nge{N
ge t
,
t
0}为几何泊松过程.
1 ,
随机过程引论——西安电子科技大学数学与统计学院 冯海林
随机过程第四版参考答案

随机过程第四版参考答案随机过程第四版参考答案随机过程是概率论中的一个重要概念,研究的是随机事件在时间上的演化过程。
它在现代科学和工程领域中有着广泛的应用,例如通信系统、金融市场和生物学等。
随机过程第四版是一本经典的教材,为学习者提供了理论和实践的结合,帮助读者更好地理解和应用随机过程。
在随机过程第四版中,作者首先介绍了随机过程的基本概念和性质。
随机过程可以分为离散时间和连续时间两种类型,而在每个时间点上的随机变量可以是离散型或连续型的。
通过对这些基本概念的介绍,读者可以建立起对随机过程的初步认识,并为后续的学习打下坚实的基础。
接下来,随机过程第四版详细讨论了不同类型的随机过程。
其中,最常见的两种类型是马尔可夫过程和泊松过程。
马尔可夫过程是一种具有马尔可夫性质的随机过程,即未来状态的概率只依赖于当前状态,而与过去的状态无关。
泊松过程则是一种连续时间的随机过程,其具有独立增量和平稳增量的特点。
通过对这些经典模型的介绍,读者可以更深入地了解随机过程的特性和应用。
随机过程第四版还涉及了随机过程的数学建模和分析方法。
在实际问题中,我们常常需要通过建立数学模型来描述随机过程的行为。
这些模型可以是基于统计数据的参数估计,也可以是基于物理规律的微分方程。
通过对这些数学方法的学习,读者可以了解如何将实际问题转化为数学模型,并通过数学分析来解决问题。
除了理论部分,随机过程第四版还包含了大量的例题和习题。
这些例题和习题涵盖了不同类型的随机过程和应用场景,帮助读者巩固所学知识,并提供了实践的机会。
通过解答这些例题和习题,读者可以更深入地理解随机过程的概念和性质,并培养解决实际问题的能力。
总的来说,随机过程第四版是一本权威且实用的教材,为学习者提供了理论和实践相结合的学习方式。
通过对随机过程的介绍、不同类型的讨论、数学建模和分析方法的学习,以及大量的例题和习题的解答,读者可以全面地了解和掌握随机过程的基本概念、性质和应用。
随机过程课后题答案

第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
《随机过程》课后习题解答

( k 0, 2, n )
1 为一特征函数,并求它所对应的随机变量的分布。 1 t2
n n i
f (t
i 1 k 1
tk )i k
5
=
i 1 k 1
n
n
i k
1 (ti tk )
2
i 1 k 1
n
n
e jti e jti e jti {1 ( jtk )(1 jtk )} n n e jtk e e i k jti = i 1 k 1 e n(1 jtk ) e
1 n n n j ( ti tk ) l ] i k = [e n i 1 k 1 l 1
(2) (3)
其期望和方差; 证明对具有相同的参数的 b 的 分布,关于参数 p 具有可加性。
解 (1)设 X 服从 ( p , b ) 分布,则
f X (t ) e jtx
0
b p p 1 bx x e dx ( p )
bp ( p)
x
0
p 1 ( jt b ) x
i k
1 M 2
0
ti t k } ) ( M 1max{ i , j n
且 f (t ) 连续 f (0) 1 (2) f (t )
f (t ) 为特征函数
1 1 1 1 1 [ ] 2 2 1 t 1 ( jt ) 2 1 jt 1 jt
3
fZ(k)() t (1 )kk! jk (1 jt)(k1)
E (Z k ) 1 (k ) f Z (0) ( 1) k k ! k j
n
随机过程习题解答第1,2章

习题11. 令X(t)为二阶矩存在的随机过程,试证它是宽平稳的当且仅当EX(s)与E[X(s)X(s+t)]都不依赖s.证明:充分性:若X(t)为宽平稳的,则由定义知EX(t)=μ, EX(s)X(s+t)=r(t) 均与s 无关必要性:若EX(s)与EX(s)X(s+t)都与s 无关,说明EX(t)=常数, EX(s)X(s+t)为t 的函数2. 记1U ,...,n U 为在(0,1)中均匀分布的独立随机变量,对0 < t , x < 1定义I( t , x)=⎩⎨⎧>≤,,,,t x t x 01并记X(t)=),(11∑=nk k U t I n ,10≤≤t ,这是1U ,...,n U 的经验分布函数。
试求过程X (t )的均值和协方差函数。
解: EI ()k U t ,= P ()t U k ≤= t , D()),(k U t I = EI ()kU t ,-()2),(kU t EI= t -2t = t(1-t)j k ≠, cov ()),(),(j k U s I U t I ,=EI(t,k U )I(s,j U )-EI(t, k U )EI(s, j U ) = st -st=0k = j , cov ()),(),(j k U s I U t I ,= EI(t,k U )I(s,j U )-st = min(t,s)-stEX(t)=),(11∑=n k k U t EI n =∑=nk t n 11= tcov ())(),(s X t X =()()),(),,(cov 1),(),,(cov 1212j k jk n k k k U s I U t I n U s I U t I n ∑∑≠=+=[]∑=nk st t s n12),min(1-=()st t s n-),min(13.令1Z ,2Z 为独立的正态分布随机变量,均值为0,方差为2σ,λ为实数,定义过程()t Sin Z t Cos Z t X λλ21+=.试求()t X 的均值函数和协方差函数,它是宽平稳的吗?Solution: ()221,0~,σN Z Z . 02221==EZ EZ .()()221σ==Z D Z D ,()0,21=Z Z Cov ,()0=t EX ,()()()()()[]s Sin Z s Cos Z t Sin Z t Cos Z E s X t X Cov λλλλ2121,+⋅+=[]s t C o s S i n Z Z s t S i n C o s Z Z s t S i n S i n Z s t C o s C o s Z E λλλλλλλλ12212221+++=()02++=s t S i n S i n s t C o s C o s λλλλσ =()[]λσs t Cos -2(){}t X 为宽平稳过程.4.Poisson 过程()0,≥t t X 满足(i )()00=X ;(ii)对s t >,()()s X t X -服从均值为()s t -λ的Poisson 分布;(iii )过程是有独立增量的.试求其均值函数和协方差函数.它是宽平稳的吗?Solution ()()()()t X t X E t EX λ=-=0,()()t t X D λ= ()()()()()s t s X t EX s X t X Cov λλ⋅-=,()()()()()ts s EX s X s X t X E 22λ-+-= ()()()()ts s EX s X D 220λ-++= ()ts s s 22λλλ-+= ()t s s λλλ-+=1 显然()t X 不是宽平稳的.5. ()t X 为第4题中的Poisson 过程,记()()()t X t X t y -+=1,试求过程()t y 的均值函数和协方差函数,并研究其平稳性. Solution ()λλ=⋅=1t Ey , ()()λ=t y DCov(y(t),y(s))=Ey(t)y(s)-Ey(t)y(s)=E(x(t+1)-x(t))(x(s+1)-x(s))-λ2(1)若s+1<t, 即s≤t-1,则Cov(y(t),y(s))=0-λ2=-λ2(2)若t<s+1≤t+1, 即t>s>t-1, 则Cov(y(t),y(s))=E[x(t+1)-x(s+1)+x(s+1)-x(t)][x(s+1)-x(t)+x(t)-x(s)] -λ2=E(x(t+1)-x(s+1))(x(s+1)-x(t))+E(x(t+1)-x(s+1))(x(t)-x(s))+E(x(s+1)-x(t))+E(x(s+1)-x(t))(x(t)-x(s))- λ2=λ(s+1-t)= λ-λ(t-s)- λ2(3) 若t<s<t+1Cov(y(t),y(s))= E [x(t+1)-x(s)+x(s)-x(t)] [x(s+1)-x(t+1)+x(t+1)-x(s)]- λ2 =(x(t+1)-x(s))(x(s+1)-x(t+1))+E(x(t+1)-x(s))(x(t+1)-x(s))+E(x(s)-x(t))(x(s+1)-x(t+1))+E(x(s)-x(t))(x(t+1)-x(s))- λ2=0+λ(t+1-s)+0-λ2=λ+λ(t-s)- λ2(4) 若s>t+1 Cov(y(t),y(s))=0-λ2=-λ2由此知,故方差只与t-s有关,与t,s无关故此过程为宽平稳的。
随机过程习题详解

对 x 求导得 X (t ) 的一维概率密度
f ( x; t ) f Y (
均值函数 相关函数
ln x 1 ) t xt
,t
0
0
m X (t ) E[ X (t )] E[e Y t ]
e yt f ( y )dy
R X (t1 , t 2 ) E[ X (t1 ) X (t 2 )] E[e Y t1 e Y t 2 ] E[e Y ( t1 t2 ) ] e y ( t1 t2 ) f ( y )dy
0
1
2.3 若从 t
0 开始每隔
所以, R XY (t , t
2.7 设随机过程 X (t )
为 1,求随机过程 X (t ) 的协方差函数。 解 根据题意, EX
EY EZ 0, DX EX 2 DY EY 2 DZ EZ 2 1
m X (t ) E[ X (t )] E[ X Yt Zt 2 ] EX tEY t 2 EZ 0
t 1 时, X (1) 的分布列为
X (1)
P
-1
2
1 2
1 2
一维分布函数
0, 1 F (1, x) , 2 1,
x 1 1 x 2 x2
(2)由于 X (
1 1 )与X (1) 相互独立,所以 ( X ( ), X (1)) 的分布列为 2 2
X (1) X (1 / 2)
C X (t1 , t 2 ) E[ X (t1 ) m X (t1 )][ X (t 2 ) m X (t 2 )]
(完整版)随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
精品文档-随机过程——计算与应用(研究生)(冯海林)-维纳过程 1

随机过程引论
Introduction to Stochastic Process
RW (s,t ) E[WsWt ] E[(Ws W0 )(Wt Ws Ws )]
独立性
E[(Ws W0 )(Wt Ws )] E[Ws ]2
又由于
(W t 1 ,W t2 ,
,W t n ) (W t 1 ,W t2 W t1 ,
1 1 1
0
1
1
, W t n W ) t n 1
0
0
1
0
0
1
所以 ( W t 1 , W t 2 , , W t n ) 是n维正态变量.
所以W是正态过程.
西安电子科技大学 —数学与统计学院 冯海林
E [ e ] j ( ( u 1 u 2 u n ) Y1 ( u 2 u 3 u n ) Y 2 u n Y n )
E [ e ] E [ e j ( u 1 u 2 u n ) Y1 ] j ( u 2 u 3 u n ) Y 2 E [ e ] j u n Y n
随机过程引论
Introduction to Stochastic Process
所 以 F (t 1,t 2 ; x 1, x 2 ) = P ( ≤ x 1, ≤ x 2 )
x1
P(
≤
x
2
-y
,
dy
)
x1
P(
≤
x
2
-y
)P(
dy
)
x1
x 2 y
t 2
t 1
(