2008年福建省高考数学试卷(理科)及答案

合集下载

2008年福建省数学(理科)高考试卷及答案

2008年福建省数学(理科)高考试卷及答案

aaaabbbbOOOO(A) (B) (C)(D)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果函数a bx ax y ++=2的图象与x 轴有两上交点,则点(a ,b )在a Ob 平面上的区 域(不包含边界)为( )2.抛物线2ax y =的准线方程是y=2,则a 的值为 ( )A .81B .-81 C .8D .-8 3.已知==-∈x x x 2tan ,54cos ),0,2(则π( )A .247 B .-247 C .724 D .-7244.设函数,1)(.0,,0,12)(021>⎪⎩⎪⎨⎧>≤-=-x f x x x x f x 若则x 0的取值范围是( )A .(-1,1)B .(-1,+∞)C .(-∞,-2)∪ (0,+∞)D .(-∞,-1)∪(1,+∞) 5.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足),,0[),||||(+∞∈++=λλAC AC AB AB OA OP 则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心 6.函数),1(,11ln +∞∈-+=x x x y 的反函数为( )A .),0(,11+∞∈+-=x e e y xxB .),0(,11+∞∈-+=x e e y xxC .)0,(,11-∞∈+-=x e e y x x D .)0,(,11-∞∈-+=x e e y x x7.棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为 ( )A .33aB .43aC .63aD .123a8.设,)(,02c bx ax x f a ++=>曲线)(x f y =在点))(,(00x f x P 处切线的倾斜角的取值范 围为]4,0[π,则P 到曲线)(x f y =对称轴距离的取值范围为( )A .[a1,0] B .]21,0[aC .|]2|,0[abD .|]21|,0[ab -9.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则|m -n|=( )A .1B .43C .21D .8310.已知双曲线中心在原点且一个焦点为F (7,0)直线y=x -1与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是( )A .14322=-yxB .13422=-yxC .12522=-yxD .15222=-yx11.已知长方形四个顶点A (0,0),B (2,0),C (2,1)和D (0,1).一质点从AB 的中点P 0沿与AB夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射角等于反射角).设P 4的坐标为(x 4,0).若1< x 4<2,则tan θ的取值范围是 ( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为 ( )A .3πB .4πC . 33πD .6π第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,把答案填在题中横线上. 13.92)21(xx -展开式中x 9的系数是14.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取 , , 辆15.某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种 且相邻部分不能栽种同样颜色的花,不同的栽种方法有 种.(以数字作答)16.对于四面体ABCD ,给出下列四个命题 ①若AB=AC ,BD=CD ,则BC ⊥AD. ②若AB=CD ,AC=BD ,则BC ⊥AD.③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD. ④若AB ⊥CD ,BD ⊥AC ,则BC ⊥AD.其中真命题的序号是 .(写出所有真命题的序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)有三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验.(Ⅰ)求恰有一件不合格的概率;(Ⅱ)求至少有两件不合格的概率.(精确到0.001)18.(本小题满分12分)已知函数)0,0)(sin()(πϕωϕω≤≤>+=x x f 上R 上的偶函数,其图象关于点)0,43(πM 对称,且在区间]2,0[π上是单调函数,求ϕ和ω的值.19.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三角形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的垂心G . (Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示); (Ⅱ)求点A 1到平面AED 的距离.D E KBC1A 1B 1AFC G20.(本小题满分12分)已知常数0>a ,向量).0,1(),,0(==i a c 经过原点O 以i c λ+为方向向量的直线与经过定点A (0,a )以c i λ2-为方向向量的直线相交于点P ,其中.R ∈λ试问:是否存在两个定点E 、F ,使得|PE|+|PF|为定值.若存在,求出E 、F 的坐标;若不存在,说明理由.21.(本小题满分12分) 已知n a ,0>为正整数.(Ⅰ)设1)(,)(--='-=n n a x n y a x y 证明;(Ⅱ)设).()1()1(,,)()(1n f n n f a n a x x x f n n n n n '+>+'≥--=+证明对任意22.(本小题满分14分)设,0>a 如图,已知直线ax y l =:及曲线C :2x y =,C 上的点Q 1的横坐标为1a(a a <<10).从C 上的点Q n (n ≥1)作直线平行于x 轴,交直线l 于点1+n P ,再从点1+n P 作直线平行于y 轴,交曲线C 于点Q n+1.Q n (n=1,2,3,…)的横坐标构成数列{}.n a (Ⅰ)试求n n a a 与1+的关系,并求{}n a 的通项公式;(Ⅱ)当21,11≤=a a 时,证明∑=++<-nk k k k a a a 121321)(;(Ⅲ)当a =1时,证明∑-++<-nk k k k a a a 121.31)(Oc ylxQ 1Q 2Q 3 1a 2a 3a r 2 r 12003年普通高等学校招生全国统一考试数 学 试 题(江苏卷)答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分.1.C 2.B 3.D 4.D 5.B 6.B 7.C 8.B 9.C 10.D 11.C 12.A 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分. 13.221-14.6,30,10 15.120 16.①④三、解答题17.本小题要主考查相互独立事件概率的计算,运用数学知识解决问题的能力,满分12分. 解:设三种产品各抽取一件,抽到合格产品的事件分别为A 、B 和C.(Ⅰ)95.0)()(,90.0)(===C P B P A P , .50.0)()(,10.0)(===C P B P A P 因为事件A ,B ,C 相互独立,恰有一件不合格的概率为 176.095.095.010.005.095.090.02)()()()()()()()()()()()(=⨯⨯+⨯⨯⨯=⋅⋅+⋅⋅+⋅⋅=⋅⋅+⋅⋅+⋅⋅C P B P A P C P B P A P C P B P A P C B A P C B A P C B A P 答:恰有一件不合格的概率为0.176. 解法一:至少有两件不合格的概率为)()()()(C B A P C B A P C B A P C B A P ⋅⋅+⋅⋅+⋅⋅+⋅⋅012.005.010.095.005.010.0205.090.022=⨯+⨯⨯⨯+⨯=解法二:三件产品都合格的概率为812.095.090.0)()()()(2=⨯=⋅⋅=⋅⋅C P B P A P C B A P由(Ⅰ)知,恰有一件不合格的概率为0.176,所以至有两件不合格的概率为.012.0)176.0812.0(1]176.0)([1=+-=+⋅⋅-C B A P 答:至少有两件不合的概率为0.012.(18)在小题主要考查三角函数的图象和单调性、奇偶性等基本知识,以及分析问题和推理计算能力,满12分分解:由),()(,)(x f x f x f =-得是偶函数.0cos ,0,sin cos sin cos ),sin()sin(=>=-+=+-ϕωωϕωϕϕωϕω所以得且都成立对任意所以即x xx x x.232,;]2,0[)2sin()(,310,0;]2,0[)22sin()(,2,1;]2,0[)232sin()(,32,0.,2,1,0),12(32,,3,2,1,243,0,043cos ,43cos )243sin()43(,43cos)243sin()43(,0),43()43(,)(.2,0==+==≥+===+====+=∴=+=>=∴=+=∴=+==+-=-=≤≤ωωππωωππωππωωππωπωωπωππωππωππωπππππϕπϕ或综合得所以上不是单调函数在时当上是减函数在时当上是减函数在时当得又得取得对称的图象关于点由所以解得依题设x x f k x x f k x x f k k k k k f f x x f x f M x f19.本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力. 满分12分.解法一:(Ⅰ)解:连结BG ,则BG 是BE 在面ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin.323136sin .3,32,22,2.36321,2.3,1,31.,,,,,,112211所成的角是与平面于是中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EBEG EBG EB B A AB CD FC EG ED FD EF FD FD FG EFEFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)连结A 1D ,有E AA D AED A V V 11--=,,,F AB EF EF ED AB ED =⋂⊥⊥又AB A ED 1平面⊥∴, 设A 1到平面AED 的距离为h ,则ED S h S AB A AED ⋅=⋅∆∆1.2621,24121111=⋅==⋅==∆∆∆ED AE S AB A A S S AED AB A AE A 又.362.36226221的距离为到平面即AED A h =⨯=∴解法二:(Ⅰ)连结BG ,则BG 是BE 在面ABD 的射影,即∠A 1BG 是A 1B 与平ABD 所成的角. 如图所示建立坐标系,坐标原点为O ,设CA=2a , 则A(2a ,0,0),B(0,2a ,0),D(0,0,1).37arccos.372131323/14||||cos ).31,34,32(),2,2,2(.1.03232).1,2,0(),32,3,3().31,32,32(),1,,(),2,0,2(1111121所成角是与平面解得ABD B A BG BA BG BA BG A BG BA a a BD GE a BD a a CE a a G a a E a A =⋅=⋅=∠∴-=-=∴==+-=⋅∴-==∴(Ⅱ)由(Ⅰ)有A(2,0,0)A 1(2,0,2),E(1,1,1),D(0,0,1).,,0)0,1,1()2,0,0(,0)0,1,1()1,1,1(11AED ED E AA ED ED AA ED AE 平面又平面⊂⊥∴=--⋅=⋅=--⋅-=⋅(Ⅰ)当22=a 时,方程①是圆方程,故不存在合乎题意的定点E 和F ; (Ⅱ)当220<<a 时,方程①表示椭圆,焦点)2,2121()2,2121(22a a F a a E ---和(Ⅲ)当,22时>a 方程①也表示椭圆,焦点))21(21,0())21(21,0(22---+a a F a a E 和为合乎题意的两个定点.(21)本小题主要考查导数、不等式证明等知识,考查综合运用所数学知识解决问题的能力,满分12分.证明:(Ⅰ)因为nk kn nC a x 0)(=∑=-kkn x a --)(,所以1)(--=-='∑k kn nk k nxa kCy nk n 0=∑=.)()(1111------=-n k kn k n a x n xa C(Ⅱ)对函数nnn a x x x f )()(--=求导数:nnnnnnn n n n n n n n a n n a n n a n x a x x x f a x x f a x a n n n n f a x n nxx f )()1()1(,,.)()(,.0)(,0].)([)(,)()(1111-->-+-+≥--=≥∴>'>≥--='--='----时当因此的增函数是关于时当时当所以∴))()(1(])1()1)[(1()1(1nn n n n a n n n a n n n n f --+>-+-++=+'+).()1())()(1(1n f n a n n n n n n n'+=--+>-即对任意).()1()1(,1n f n n f a n n n '+>+'≥+22.本小题主要考查二次函数、数列、不等式等基础知识,综合运用数学知识分析问题和解决问题的能力,满分14分. (Ⅰ)解:∵).1,1(),,1(),,(422122121n n n n n n n n n a a a aQ a a aP a a Q ⋅⋅++-∴,121n n a aa ⋅=+ ∴2222122221)1()1(11-+--=⋅=⋅=n n n n a aa a a a aa ==⋅=-++-+3222222122321)1()1()1(n n a aa a a=1111221211221221)()1()1(---+-==-+++n n n n n a a a a a a a , ∴.)(121-=n aa a a n(Ⅱ)证明:由a =1知,21n n a a =+ ∵,211≤a ∴.161,4132≤≤a a∵当.161,132≤≤≥+a a k k 时∴∑∑=++=++<-=-≤-nk n k knk k k ka a a aa a a1111121.321)(161)(161)( (Ⅲ)证明:由(Ⅰ)知,当a =1时,,121-=n a a n因此∑∑∑=++-==++-≤-=-+-nk i i i i nk k k k a a a aaaa a a nk kk 1221111121212121121)()()(11∑-=-⋅-<-=1213131211312111)1()1(ni i aa a a aa a =.31121151<++aa a。

2008年普通高等学校招生全国统一考试福建理科

2008年普通高等学校招生全国统一考试福建理科

A.3B.0C.-1D.-2A.16 625厂 96c 192 256 B.C. D.625625625(6)如图,在长方体 ABCD-A 1B 1C 1D 1 中, AB=BC=2, AA 1=1,贝U BC 1 与平面A.2008年普通高等学校招生全国统一考试(福建理科) 数学(理工农医类)第I 卷(选择题共 60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选 项中,只有一项是符合题目要求的。

(1) 若复数(a 2-3a+2)+(a-1)i 是纯虚数,则实数a 的值为 A.1B.2C.1 或 2D.-1(2) 设集合 A={x|」v 0},B={x|0v x v 3},那么“ m A ” 是“ m B ” 的 x -1A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 ⑶设{a n }是公比为正数的等比数列,若 a i =7,a 5=16,则数列{ a n }前7项的和为A.63B.64C.127D.1283(4)函数 f(x)=x +sinx+1(x R ),若 f(a)=2,则 f(-a)的值为(5)某一批花生种子,如果每1粒发芽的概率为4,那么播下4粒种子恰有2 粒发芽的概率是BB 1D 1D 所成角的正弦值为(7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(8)若实数x 、y 满足x-y+1 <0,贝U 上 X的取值范围是1 x>0A. (0,1)B. (0,1)C. (1,+x )D. [1, + % ](9)函数 f(x)=cosx(x)(x m 的值可以为R )的图象按向量 (m,0)平移后,得到函数y=-f'(X )的图象,则兀兀A.B.二C. — iD.-22(10)在厶ABC 中,角 A 、B 、C 的对边分别为 a 、b 、c,若(a 2+c 2-『)tanB= 3ac ,则角B 的值为 nA.-6n B.—3兀卡5兀 C.或6 6 兀 2兀 D. 或3 3x 2(11)双曲线p a 2y((a >0,b > 0)的两个焦点为 b 2F 1、F 2,若P 为其上一点, 且 |PF 1|=2|PF 2|,则双曲线离心率的取值范围为A.(1,3)B. 1,3丨C.(3,+ :: )D.〔3,二二、填空题:本大题共 4小题,每小题4分,共16分,把答案填在答题卡的相应位置 •(13) 若 (x-2)5=a 5X 5+a 4X 4+a 3X 3+a 2X 2+a 1X+a °,贝V a 1+a 2+a 3+ a 4+a5= ______ .(用数字作答 ) x=1+cos^ *(14)若直线3x+4y+m=0与圆 y=-2+sin 日(&为参数)没有公共点,则实数 m 的取值 范围是 .-(15)若三棱锥的三个侧面两两垂直, ______________________ 且侧棱长均为-.3,则其外接球的表面积是(12)已知函数y=f(x), y=g(x)的导函数的图象如下图,那么 第n 卷(非选择题共 90分)y=f(x), y= g (x)的图象可能是a (16) 设P是一个数集,且至少含有两个数,若对任意a、b€ P,都有a+b、a-b, ab、一b € P (除数b丰0 ),则称P是一个数域.例如有理数集Q是数域;数集F Xa・b、.2 a,b・Q?也是数域•有下列命题:①整数集是数域;②若有理数集Q^M,则数集M必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是 _________ .(把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共74分•解答应写出文字说明,证明过程或演算步骤•(17) (本小题满分12分)已知向量m=(sinA,cosA),n=(、、3,-1) , m • n=1,且A为锐角.(I)求角A的大小;(n)求函数f (x)二cos2x • 4cos Asinx(x・R)的值域.(18) (本小题满分12分)如图,在四棱锥P-ABCD中,则面PAD丄底面ABCD ,侧棱PA=PD =、.. 2 ,底面ABCD为直角梯形,其中BC // AD, AB丄AD, AD=2AB=2BC=2, O为AD中点.(I)求证:P0丄平面ABCD ;(n)求异面直线PB与CD所成角的大小;(川)线段AD上是否存在点Q,使得它到平面PCD的距离为丄3?若存在,求出jAQ2 QD的值;若不存在,请说明理由.(19) (本小题满分12分)已知函数f(x^-x3x2-2.32(I)设{a n}是正数组成的数列,前n项和为S n,其中a1=3.若点(a n,a n 1 -2am)(n €N*)在函数y=f' (x)的图象上,求证:点(n, S n)也在y=f' (x)的图象上;(n)求函数f(x)在区间(a-1, a)内的极值.(20) (本小题满分12分)某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试。

2008年福建高考数学试题(理科)及答案

2008年福建高考数学试题(理科)及答案

2008年福建高考数学试题(理科)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若复数(a 2-3a +2)+(a-1)i 是纯虚数,则实数a 的值为 A.1B.2C.1或2D.-1(2)设集合A={x |1xx -<0},B={x |0<x <3},那么“m ∈A ”是“m ∈B ”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件(3)设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为 A.63B.64C.127D.128(4)函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为 A.3B.0C.-1D.-2(5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是 A.16625B.96625C. 192625D. 256625(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 A.63B.265C.155D.105(7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为 A.14B.24C.28D.48(8)若实数x 、y 满足100x y x -+≤⎧⎨>⎩,则yx 的取值范围是A.(0,1)B.(]0,1C.(1,+∞)D.[)1,+∞(9)函数f (x )=cos x (x ∈R )的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象,则m 的值可以为A.2πB.πC.-πD.-2π (10)在△ABC 中,角ABC 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为A.6π B.3π C.6π或56πD.3π或23π(11)又曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为 A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞(12)已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)若(x -2)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5=__________.(用数字作答) x =1+cos θ(14)若直线3x+4y+m=0与圆 y =-2+sin θ(θ为参数)没有公共点,则实数m 的取值范围是 .(153,则其外接球的表面积是 . (16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈R ,都有a +b 、a -b , ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集{}2,F a b b Q =+∈也是数域。

2008年普通高等学校招生全国统一考试理科数学(福建卷)

2008年普通高等学校招生全国统一考试理科数学(福建卷)

A.
B.
的图象,则m的值可以为() C.-
D.-
10. 在△ABC中,角A、B、C的对边分别为a、b、c,若a2+c2-b2= ac,则角B的值为
A.
B.
C. 或
D. 或
11. 双曲线 A.(1,3)
(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为()
,求a的取值范围.
22. (本小题满分14分)
已知函数f(x)=ln(1+x)-x1
(Ⅰ)求f(x)的单调区间;
(Ⅱ)记f(x)在区间
(n∈N*)上的最小值为bx令an=ln(1+n)-bx。
(ⅰ)如果对一切n,不等式
恒成立,求实数c的取值范围;
(ⅱ)求证:

B.
C.(3,+ )
D.
12. 如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是( )
A.
B.
C.
D.
二、填空题
13. 若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=__________。(用数字作答)
成绩合格与否均互不影响。 (Ⅰ)求他不需要补考就可获得证书的概率; (Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为 ,求 的数学期望E 。
21. 已知椭圆
的一个焦点是F(1,0),O为坐标原点.
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程; (Ⅱ)设过点F的直线l交椭圆于A、B两点,若直线l绕点F任意转动,总有

【历年高考经典】2008年理科数学试题及答案-福建卷

【历年高考经典】2008年理科数学试题及答案-福建卷

绝密 ★ 启用前2008年普通高等学校招生全国统一考试(福建理科)数 学(理工农医类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若复数(a 2-3a +2)+(a-1)i 是纯虚数,则实数a 的值为 A.1B.2C.1或2D.-1(2)设集合A={x |1xx -<0},B={x |0<x <3},那么“m ∈A ”是“m ∈B ”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件(3)设{a n }是公比为正数的等比数列,若a 1=7,a 5=16,则数列{a n }前7项的和为A.63B.64C.127D.128(4)函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为 A.3B.0C.-1D.-2(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是A.16625B.96625C. 192625D.256625(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2, AA 1=1, 则BC 1与平面BB 1D 1D 所成角的正弦值为A.3B.552 C.5D.5(7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(8)若实数x 、y 满足 x-y+1≤0,则yx 的取值范围是 x>0A. (0,1)B. (0,1)C. (1,+∞)D. [1, +∞](9)函数f (x )=cos x (x )(x ∈R )的图象按向量(m,0) 平移后,得到函数y = -f ′(x )的图象,则m 的值可以为A.2πB.πC.-πD.-2π(10)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c , 若(a 2+c 2-b 2)tan B ,则角B 的值为A. 6π B.3π C.6π或56πD.3π或23π(11)双曲线12222=-b y a x (a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞(12)已知函数y =f (x ), y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)若(x -2)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5=__________.(用数字作答) x =1+cos θ(14)若直线3x+4y+m=0与圆 y =-2+sin θ (θ为参数)没有公共点,则实数m 的取值范围是 .(15)若三棱锥的三个侧面两两垂直,,则其外接球的表面积是 .(16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b , ab 、a b∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集{},F a b Q =+∈也是数域.有下列命题:①整数集是数域;②若有理数集Q M ⊆,则数集M 必为数域;③数域必为无限集; ④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. (18)(本小题满分12分)如图,在四棱锥P-ABCD 中,则面PAD ⊥底面ABCD ,侧棱P A =PD ,底面ABCD为直角梯形,其中BC ∥AD , AB ⊥AD , AD =2AB =2BC =2, O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD 求出AQQD的值;若不存在,请说明理由. (19)(本小题满分12分) 已知函数321()23f x x x =+-. (Ⅰ)设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-(n ∈N*)在函数y =f ′(x )的图象上,求证:点(n , S n )也在y =f ′(x )的图象上;(Ⅱ)求函数f (x )在区间(a -1, a )内的极值. (20)(本小题满分12分)某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试。

2008年普通高等学校招生全国统一考试(福建卷)数学理

2008年普通高等学校招生全国统一考试(福建卷)数学理

2008年普通高等学校招生全国统一考试(福建卷)数 学(理工农医类) 第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( )A .1B .2C .1或2D .-12.设集合A={x |1xx -<0},B={x |0<x <3},那么“m ∈A ”是“m ∈B ”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.设{a n }是公比为正数的等比数列,若a 1=7,a 5=16,则数列{a n }前7项的和为( )A .63B .64C .127D .128 4.函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为( )A .3B .0C .-1D .-25.某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是( ) A .16625 B .96625 C .192625 D .2566256.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2, AA 1=1, 则BC 1与平面BB 1D 1D 所成角的正弦值为( )A .B .552 C D7.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A .14B .24C .28D .488.若实数x 、y 满足{100x y x -+≤>,则y x的取值范围是( )A .(0,1)B .(0,1)C .(1,+∞)D .[1,+∞]9.函数f (x )=cos x (x )(x ∈R )的图象按向量(m ,0)平移后,得到函数y =-f ′(x )的图象,则m 的值可以为( )A .2πB .πC .-πD .-2π10.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B ,则角B 的值为( )A .6πB .3πC .6π或56πD .3π或23π11.双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A .(1,3)B .(]1,3C .(3,+∞)D .[)3,+∞12.已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是( )第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置。

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(福建卷)(理科)2690

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(福建卷)(理科)2690

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(福建卷)(理科) 测试题 2019.91,函数的图象按向量 平移后,得到函数的图象,则m 的值可以为A. B. C.- D.-2,在△ABC 中,角ABC 的对边分别为a 、b 、c,若,则角B 的值为A. B. C.或 D. 或3,双曲线(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为A.(1,3)B. C.(3,+)D.4,已知函数的导函数的图象如下图,那么图象可能是5,已知向量m=(sinA,cosA),n=,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小;(Ⅱ)求函数的值域.6,如图,在四棱锥P-ABCD 中,则面PAD ⊥底面ABCD ,侧棱PA=PD,底面ABCD 为直角梯形,其中BC ∥AD,AB ⊥AD,AD=2AB=2BC=2,O 为AD 中点.()cos ()f x x x R =∈(,0)m '()y f x =-2πππ2π222(a +c -b 6π3π6π56π3π22221x y a b -=(]1,3∞[)3,+∞(),()y f x y g x ==(),()y f x y g x ==1)-()cos 24cos sin ()f x x A x x R =+∈(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PD 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD?若存在,求出 的值;若不存在,请说明理由.7,已知函数.(Ⅰ)设是正数组成的数列,前n 项和为,其中.若点(n ∈N*)在函数的图象上,求证:点也在的图象上;(Ⅱ)求函数在区间内的极值.8,某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试。

已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书。

2008年高考福建卷(理科数学)

2008年高考福建卷(理科数学)

2008年普通高等学校招生全国统一考试理科数学(福建卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为A .1B .2C .1或2D .1-2.设集合{0}1xA x x =<-,{03}B x x =<<,那么“m A ∈”是“m B ∈”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.设{}n a 是公比为正数的等比数列,若17a =,516a =,则数列{}n a 前7项的和为A .63B .64C .127D .128 4.函数3()sin 1f x x x =++(x R ∈),若()2f a =,则()f a -的值为A .3B .0C .1-D .2-5.某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是A .16625B .96625C .192625D .2566256.在长方体1111ABCD A B C D -中,2AB BC ==,11AA =,则1BC 与平面11BB D D 所成角的正弦值为A .3 B .5 C .5 D .57.某班级要从4名男生2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A .14B .24C .28D .488.若实数x 、y 满足100x y x -+≤⎧⎨>⎩,则y x 的取值范围是A .(0,1)B .(0,1]C .(1,)+∞D .[1,)+∞ 9.函数()cos f x x =(x R ∈)的图象按向量(,0)v m =平移后,得到函数()y f x '=-的图象,则m 的值可以为A .2πB .πC .π-D .2π-10.在ABC ∆中,A ,B ,C 所对的边分别为a ,b ,c .若222()tan a c b B +-=,则角B 的值为A .6πB .3πC .6π或56πD .3π或23π11.双曲线22221x y a b-=(0a >,0b >)的两个焦点为1F ,2F ,若P 为其上一点,且122PF PF =,则双曲线离心率的取值范围为A .(1,3)B .(1,3]C .(3,)+∞D .[3,)+∞ 12.已知函数()y f x =,()y g x =的导函数的图象如下图,那么()y f x =,()y g x =的图象可能是二、填空题:本大题共4小题,每小题4分,共16分.13.若55432543210(2)x a x a x a x a x a x a -=+++++,则12345a a a a a ++++= .(用数字作答)14.若直线340x y m ++=与圆1cos 2sin x y θθ=+⎧⎨=-+⎩(θ为参数)没有公共点,则实数m的取值范围是 .15.若三棱锥的三个侧面两两垂直,,则其外接球的表面积是 .)))16.设P 是一个数集,且至少含有两个数,若对任意,a b P ∈,都有a b +、a b -,ab 、aP b∈(除数0b ≠),则称P 是一个数域.例如有理数集Q是数域;数集{,}F a b Q =+∈也是数域.有下列命题:①整数集是数域; ②若有理数集Q M ⊆,则数集M 必为数域; ③数域必为无限集; ④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知向量(sin ,cos )m A A =,(3,1)n =-,1m n ⋅=,且A 为锐角. (Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin f x x A x =+(x R ∈)的值域. 18.(本小题满分12分)如图,在四棱锥P ABCD -中,则面PAD ⊥底面ABCD ,侧棱PA PD ==面ABCD 为直角梯形,其中BC ∥AD ,AB AD ⊥,222AD AB BC ===,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q,使得它到平面PCD 的距离为2?若存在,求出AQQD的值;若不存在,请说明理由.19.(本小题满分12分)已知函数321()23f x x x =+-.(Ⅰ)设{}n a 是正数组成的数列,前n 项和为n S ,其中13a =.若点211(,2)n n n a a a ++-ABDO P(n N *∈)在函数()y f x '=的图象上,求证:点(,)n n S 也在()y f x '=的图象上; (Ⅱ)求函数()f x 在区间(1,)a a -内的极值. 20.(本小题满分12分)某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A 每次考试成绩合格的概率均为23,科目B每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.(Ⅰ)求他不需要补考就可获得证书的概率;(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望E ξ. 21.(本小题满分12分)如图、椭圆22221x y a b+=(0a b >>)的一个焦点是(1,0)F ,O 为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程; (Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,恒有222OA OB AB +<,求a 的取值范围.22.(本小题满分14分) 已知函数()ln(1)f x x x =+-. (Ⅰ)求()f x 的单调区间;(Ⅱ)记()f x 在区间[0,]π(n N *∈)上的最小值为n b ,令ln(1)n n a n b =+-; (Ⅲ)如果对一切n<恒成立,求实数c 的取值范围;(Ⅳ)求证:13132112242421n na a a a a a a a a a a a -+++<L L L.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年福建省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)若复数(a2﹣3a+2)+(a﹣1)i是纯虚数,则实数a的值为()A.1 B.2 C.1或2 D.﹣12.(5分)设集合A={x|<0},B={x|0<x<3},那么“m∈A”是“m∈B”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(5分)设{a n}是公比为正数的等比数列,若a1=1,a5=16,则数列{a n}的前7项的和为()A.63 B.64 C.127 D.1284.(5分)函数f(x)=x3+sinx+1(x∈R),若f(a)=2,则f(﹣a)的值为()A.3 B.0 C.﹣1 D.﹣25.(5分)某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是()A. B. C. D.6.(5分)如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为()A.B.C.D.7.(5分)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为()A.14 B.24 C.28 D.488.(5分)若实数x、y满足则的取值范围是()A.(0,2) B.(0,2) C.(2,+∞)D.[,+∞)9.(5分)函数f(x)=cosx(x∈R)的图象按向量(m,0)平移后,得到函数y=﹣f′(x)的图象,则m的值可以为()A.B.πC.﹣πD.﹣10.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,若(a2+c2﹣b2)tanB=ac,则角B的值为()A.B.C.或D.或11.(5分)双曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为()A.(1,3) B.(1,3]C.(3,+∞)D.[3,+∞]12.(5分)已知函数y=f′(x),y=g′(x)的导函数的图象如图,那么y=f(x),y=g(x)的图象可能是()A.B. C.D.二、填空题(共4小题,每小题4分,满分16分)13.(4分)若(x﹣2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=.(用数字作答)14.(4分)若直线3x+4y+m=0与曲线(θ为参数)没有公共点,则实数m的取值范围是.15.(4分)若三棱锥的三条侧棱两两垂直,且侧棱长均为,则其外接球的表面积是.16.(4分)设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a﹣b,ab、∈P(除数b≠0),则称P是一个数域.例如有理数集Q是数域;数集也是数域.有下列命题:①整数集是数域;②若有理数集Q⊆M,则数集M必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是.(把你认为正确的命题的序号填填上)三、解答题(共6小题,满分74分)17.(12分)已知向量,,且•.(Ⅰ)求tanA的值;(Ⅱ)求函数的值域.18.(12分)如图,在四棱锥P﹣ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的大小;(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.19.(12分)已知函数.(Ⅰ)设{a n}是正数组成的数列,前n项和为S n,其中a1=3.若点(a n,a n+12﹣2a n+1)(n∈N*)在函数y=f′(x)的图象上,求证:点(n,S n)也在y=f′(x)的图象上;(Ⅱ)求函数f(x)在区间(a﹣1,a)内的极值.20.(12分)某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.(Ⅰ)求他不需要补考就可获得证书的概率;(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ.21.(12分)如图,椭圆=1(a>b>0)的一个焦点是F(1,0),O为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F的直线l交椭圆于A、B两点.若直线l绕点F任意转动,值有|OA|2+|OB|2<|AB|2,求a的取值范围.22.(14分)已知函数f(x)=ln(1+x)﹣x(1)求f(x)的单调区间;(2)记f(x)在区间[0,n](n∈N*)上的最小值为b n令a n=ln(1+n)﹣b n (i)如果对一切n,不等式恒成立,求实数c的取值范围;(ii)求证:.2008年福建省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•福建)若复数(a2﹣3a+2)+(a﹣1)i是纯虚数,则实数a的值为()A.1 B.2 C.1或2 D.﹣1【分析】注意到复数a+bi,a,b∈R为纯虚数的充要条件是【解答】解:由a2﹣3a+2=0得a=1或2,且a﹣1≠0得a≠1∴a=2.故选B.2.(5分)(2008•福建)设集合A={x|<0},B={x|0<x<3},那么“m∈A”是“m∈B”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】由分式不等式的解法,⇒0<x<1,分析有A⊊B,由集合间的包含关系与充分条件的关系,可得答案.【解答】解:由得0<x<1,即A={x|0<x<1},分析可得A⊊B,即可知“m∈A”是“m∈B”的充分而不必要条件,故选A.3.(5分)(2008•福建)设{a n}是公比为正数的等比数列,若a1=1,a5=16,则数列{a n}的前7项的和为()A.63 B.64 C.127 D.128【分析】先由通项公式求出q,再由前n项公式求其前7项和即可.【解答】解:因为a5=a1q4,即q4=16,又q>0,所以q=2,所以S7==127.故选C.4.(5分)(2008•福建)函数f(x)=x3+sinx+1(x∈R),若f(a)=2,则f(﹣a)的值为()A.3 B.0 C.﹣1 D.﹣2【分析】把α和﹣α分别代入函数式,可得出答案.【解答】解:∵由f(a)=2∴f(a)=a3+sina+1=2,a3+sina=1,则f(﹣a)=(﹣a)3+sin(﹣a)+1=﹣(a3+sina)+1=﹣1+1=0.故选B5.(5分)(2008•福建)某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是()A. B. C. D.【分析】根据题意,播下4粒种子恰有2粒发芽即4次独立重复事件恰好发生2次,由n次独立重复事件恰好发生k次的概率的公式可得答案.【解答】解:根据题意,播下4粒种子恰有2粒发芽即4次独立重复事件恰好发生2次,由n次独立重复事件恰好发生k次的概率的公式可得,故选B.6.(5分)(2008•福建)如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为()A.B.C.D.【分析】由题意连接A1C1,则∠AC1A1为所求的角,在△AC1A1计算.【解答】解:连接A1C1,在长方体ABCD﹣A1B1C1D1中,∴A1A⊥平面A1B1C1D1,则∠AC1A1为AC1与平面A1B1C1D1所成角.在△AC1A1中,sin∠AC1A1===.故选D.7.(5分)(2008•福建)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为()A.14 B.24 C.28 D.48【分析】法一:用直接法,4人中至少有1名女生包括1女3男及2女2男两种情况,计算各种情况下的选派方案种数,由加法原理,计算可得答案;法二:用排除法,首先计算从4男2女中选4人的选派方案种数,再计算4名都是男生的选派方案种数,由排除法,计算可得答案.【解答】解:法一:4人中至少有1名女生包括1女3男及2女2男两种情况,故不同的选派方案种数为C12•C34+C22•C24=2×4+1×6=14;法二:从4男2女中选4人共有C46种选法,4名都是男生的选法有C44种,故至少有1名女生的选派方案种数为C46﹣C44=15﹣1=14.故选A.8.(5分)(2008•福建)若实数x、y满足则的取值范围是()A.(0,2) B.(0,2) C.(2,+∞)D.[,+∞)【分析】本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与原点(0,0)构成的直线的斜率问题.【解答】解:不等式组,当取得点(2,3)时,取得最小值为,所以答案为[,+∞),故选D.9.(5分)(2008•福建)函数f(x)=cosx(x∈R)的图象按向量(m,0)平移后,得到函数y=﹣f′(x)的图象,则m的值可以为()A.B.πC.﹣πD.﹣【分析】本题可根据三角函数的平移变换及导函数进行分析即可求得答案.【解答】解:y=﹣f'(x)=sinx,而f(x)=cosx(x∈R)的图象按向量(m,0)平移后得到y=cos(x﹣m),所以cos(x﹣m)=sinx,故m可以为.故选A.10.(5分)(2008•福建)在△ABC中,角A,B,C的对边分别为a,b,c,若(a2+c2﹣b2)tanB=ac,则角B的值为()A.B.C.或D.或【分析】通过余弦定理及,求的sinB的值,又因在三角形内,进而求出B.【解答】解:由∴,即∴,又在△中所以B为或故选D11.(5分)(2008•福建)双曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为()A.(1,3) B.(1,3]C.(3,+∞)D.[3,+∞]【分析】可用三角形的两边和大于第三边,及两边差小于第三边,但要注意前者可以取到等号成立,因为可以三点一线.也可用焦半径公式确定a与c的关系.【解答】解:设|PF1|=x,|PF2|=y,则有,解得x=4a,y=2a,∵在△PF1F2中,x+y>2c,即4a+2a>2c,4a﹣2a<2c,∴,又因为当三点一线时,4a+2a=2c,综合得离心率的范围是(1,3],故选B.12.(5分)(2008•福建)已知函数y=f′(x),y=g′(x)的导函数的图象如图,那么y=f(x),y=g(x)的图象可能是()A.B. C.D.【分析】根据导函数的函数值反映的是原函数的斜率大小可得答案.【解答】解:从导函数的图象可知两个函数在x0处斜率相同,可以排除B,再者导函数的函数值反映的是原函数的斜率大小,可明显看出y=f(x)的导函数的值在减小,所以原函数应该斜率慢慢变小,排除AC,故选D.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2008•福建)若(x﹣2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5= 31.(用数字作答)【分析】通过对x赋值1求出各项系数和,通过对x赋值0求出常数项,进而计算可得答案.【解答】解::令x=1得a5+a4+a3+a2+a1+a0=﹣1,再令x=0得a0=﹣32,∴a5+a4+a3+a2+a1=31,故答案为3114.(4分)(2008•福建)若直线3x+4y+m=0与曲线(θ为参数)没有公共点,则实数m的取值范围是m>10或m<0.【分析】此圆的圆心为(﹣1.2),因为要没有公共点,所以根据圆心到直线的距离大于半径即可;或者可以联立方程根据二次函数的△<0求解.【解答】解:∵曲线(θ为参数)的普通方程是(x﹣1)2+(y+2)2=1则圆心(1,﹣2)到直线3x+4y+m=0的距离,令,得m>10或m<0.故答案为:m>10或m<0.15.(4分)(2008•福建)若三棱锥的三条侧棱两两垂直,且侧棱长均为,则其外接球的表面积是9π.【分析】由于三棱锥的三条侧棱两两垂直,且侧棱长均为,将三棱锥扩展为正方体,它的对角线是球的直径,求解即可.【解答】解:依题可以构造一个正方体,其体对角线就是外接球的直径.,r=;S表面积=4πr2=9π故答案为:9π.16.(4分)(2008•福建)设P是一个数集,且至少含有两个数,若对任意a、b ∈P,都有a+b、a﹣b,ab、∈P(除数b≠0),则称P是一个数域.例如有理数集Q是数域;数集也是数域.有下列命题:①整数集是数域;②若有理数集Q⊆M,则数集M必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是③④.(把你认为正确的命题的序号填填上)【分析】利用已知条件中数域的定义判断各命题的真假,关键把握数域是对加减乘除四则运算封闭.【解答】解:要满足对四种运算的封闭,只有一个个来检验,如①对除法如不满足,所以排除;对②当有理数集Q中多一个元素i则会出现1+i∉该集合,所以它也不是一个数域;③④成立.故答案为:③④.三、解答题(共6小题,满分74分)17.(12分)(2008•福建)已知向量,,且•.(Ⅰ)求tanA的值;(Ⅱ)求函数的值域.【分析】(Ⅰ)用向量数量积的坐标运算求得tanA的值,(Ⅱ)用三角函数的二倍角公式化简函数,用换元法将三角函数转化成二次函数,求二次函数的值域.【解答】解:(Ⅰ)=sinA﹣2cosA=0即sinA=2cosA∴tanA=2(Ⅱ)f(x)=cos2x+tanAsinx=cos2x+2sinx=1﹣2sin2x+2sinx令sinx=t∵∴∴y=﹣2t2+2t+1=﹣2,∴∴当t=时,y最大为;当t=0时,y最小为1域为[1,].18.(12分)(2008•福建)如图,在四棱锥P﹣ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的大小;(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.【分析】法一:(Ⅰ)证明直线PO⊥平面ABCD,因为平面PAD⊥底面ABCD,只需证明面PAD内的直线PO垂直这两个平面的交线即可即;(Ⅱ)连接BO,说明∠PBC是异面直线PB与CD所成的角,然后解三角形,求异面直线PD与CD所成角的大小;(Ⅲ)线段AD上存在点Q,设QD=x,利用等体积方法,求出比值.法二:建立空间直角坐标系,求出向量.利用向量数量积解答(Ⅱ);利用平面的法向量和数量积解答(Ⅲ)即可.【解答】解:(Ⅰ)证明:在△PAD中,PA=PD,O为AD的中点,所以PO⊥AD 又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD所以PO⊥平面ABCD.(Ⅱ)连接BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC=2有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,所以OB∥DC由(Ⅰ)知PO⊥OB,∠PBC是锐角,所以∠PBC是异面直线PB与CD所成的角因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=在Rt△AOP中因为AP=AO=1,所以OP=1在Rt△AOP中tan∠PBC=所以:异面直线PB与CD所成角的大小.(Ⅲ)假设存在点Q,使得它到平面PCD的距离为.设QD=x,则,由(Ⅱ)得CD=OB=,在Rt△POC中,,所以PC=CD=DP,,=V Q﹣PCD,得x=,所以存在点Q满足题意,此时.由V p﹣DQC解法二:(Ⅰ)同解法一.(Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O﹣xyz,依题意,易得A(0,﹣1,0),B(1,﹣1,0),C(1,0,0),D(0,1,0),P(0,0,1),所以.所以异面直线PB与CD所成的角是arccos,(Ⅲ)假设存在点Q,使得它到平面PCD的距离为,由(Ⅱ)知.设平面PCD的法向量为n=(x0,y0,z0).则所以即x0=y0=z0,取x0=1,得平面PCD的一个法向量为=(1,1,1).设,由,得,解y=﹣或y=(舍去),此时,所以存在点Q满足题意,此时.19.(12分)(2008•福建)已知函数.(Ⅰ)设{a n}是正数组成的数列,前n项和为S n,其中a1=3.若点(a n,a n+12﹣2a n+1)(n∈N*)在函数y=f′(x)的图象上,求证:点(n,S n)也在y=f′(x)的图象上;(Ⅱ)求函数f(x)在区间(a﹣1,a)内的极值.【分析】(Ⅰ)由题意知f′(x)=x2+2x,由点(a n,a n+12﹣2a n+1)(n∈N+)在函数y=f′(x)的图象上,知(a n﹣1﹣a n)(a n+1﹣a n﹣2)=0,所以=f'(n),故点(n,S n)也在函数y=f′(x)的图象上.(Ⅱ)由f'(x)=0,得x=0或x=﹣2.然后列表求解函数f(x)在区间(a﹣1,a)内的极值.【解答】解:(Ⅰ)证明:因为,所以f′(x)=x2+2x,由点(a n,a n+12﹣2a n+1)(n∈N+)在函数y=f′(x)的图象上,又a n>0(n∈N+),所以(a n﹣1﹣a n)(a n+1﹣a n﹣2)=0,所以,又因为f′(n)=n2+2n,所以S n=f'(n),故点(n,S n)也在函数y=f′(x)的图象上.(Ⅱ)解:f'(x)=x2+2x=x(x+2),由f'(x)=0,得x=0或x=﹣2.当x变化时,f'(x)﹑f(x)的变化情况如下表:x(﹣∞,﹣﹣2(﹣2,0)0 (0,+∞)2)f′(x)+0 ﹣0 +f(x)↗极大值↘极小值↗注意到|(a﹣1)﹣a|=1<2,从而①当,此时f(x)无极小值;②当a﹣1<0<a,即0<a<1时,f(x)的极小值为f(0)=﹣2,此时f(x)无极大值;③当a≤﹣2或﹣1≤a≤0或a≥1时,f(x)既无极大值又无极小值.20.(12分)(2008•福建)某项考试按科目A、科目B依次进行,只有当科目A 成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B 每次考试成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.(Ⅰ)求他不需要补考就可获得证书的概率;(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ.【分析】(1)不需要补考就获得证书的事件表示科目A第一次考试合格且科目B 第一次考试合格,这两次考试合格是相互独立的,根据相互独立事件同时发生的概率,得到结果.(2)参加考试的次数为ξ,由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,根据相互独立事件同时发生的概率写出概率,求出期望.【解答】解:设“科目A第一次考试合格”为事件A1,“科目A补考合格”为事件A2;“科目B第一次考试合格”为事件B1,“科目B补考合格”为事件B2.(Ⅰ)不需要补考就获得证书的事件为A1•B1,注意到A1与B1相互独立,根据相互独立事件同时发生的概率可得.即该考生不需要补考就获得证书的概率为.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,根据相互独立事件同时发生的概率可得=.=,=,∴.即该考生参加考试次数的数学期望为.21.(12分)(2008•福建)如图,椭圆=1(a>b>0)的一个焦点是F(1,0),O为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F的直线l交椭圆于A、B两点.若直线l绕点F任意转动,值有|OA|2+|OB|2<|AB|2,求a的取值范围.【分析】(Ⅰ)设M,N为短轴的两个三等分点,因为△MNF为正三角形,所以,由此能够推导出椭圆方程.(Ⅱ)设A(x1,y1),B(x2,y2).(ⅰ)当直线AB与x轴重合时,由题意知恒有|OA|2+|OB|2<|AB|2.(ⅱ)当直线AB不与x轴重合时,设直线AB的方程为:x=my+1,代入,由题设条件能够推导出=(x1,y1)•(x2,y2)=x1x2+y1y2<0恒成立.由此入手能够推导出a的取值范围.【解答】解:(Ⅰ)设M,N为短轴的两个三等分点,因为△MNF为正三角形,所以,即1=,解得.a2=b2+1=4,因此,椭圆方程为.(Ⅱ)设A(x1,y1),B(x2,y2).(ⅰ)当直线AB与x轴重合时,|OA|2+|OB|2=2a2,|AB|2=4a2(a2>1),因此,恒有|OA|2+|OB|2<|AB|2.(ⅱ)当直线AB不与x轴重合时,设直线AB的方程为:,整理得(a2+b2m2)y2+2b2my+b2﹣a2b2=0,所以因为恒有|OA|2+|OB|2<|AB|2,所以∠AOB恒为钝角.即恒成立.x1x2+y1y2=(my1+1)(my2+1)+y1y2=(m2+1)y1y2+m(y1+y2)+1==.又a2+b2m2>0,所以﹣m2a2b2+b2﹣a2b2+a2<0对m∈R恒成立,即a2b2m2>a2﹣a2b2+b2对m∈R恒成立.当m∈R时,a2b2m2最小值为0,所以a2﹣a2b2+b2<0.a2<a2b2﹣b2,a2<(a2﹣1)b2=b4,因为a>0,b>0,所以a<b2,即a2﹣a﹣1>0,解得a>或a<(舍去),即a>,综合(i)(ii),a的取值范围为(,+∞).22.(14分)(2008•福建)已知函数f(x)=ln(1+x)﹣x(1)求f(x)的单调区间;(2)记f(x)在区间[0,n](n∈N*)上的最小值为b n令a n=ln(1+n)﹣b n (i)如果对一切n,不等式恒成立,求实数c的取值范围;(ii)求证:.【分析】(1)先求函数f(x)的导数,再根据导函数的正负和原函数的关系可得答案.(2)(i)先求出b n的值然后代入到a n=ln(1+n)﹣b n放缩可得答案.(ii)根据(i)知,然后用数学归纳法证明即可.【解答】解:(1)因为f(x)=ln(1+x)﹣x,所以函数定义域为(﹣1,+∞),且f′(x)=﹣1=.由f′(x)>0得﹣1<x<0,f(x)的单调递增区间为(﹣1,0);由f’(x)<0得x>0,f(x)的单调递减区间为(0,+∞).(2)因为f(x)在[0,n]上是减函数,所以b n=f(n)=ln(1+n)﹣n,则a n=ln(1+n)﹣b n=ln(1+n)﹣ln(1+n)+n=n.(i)因为对n∈N*恒成立.所以对n∈N*恒成立.则对n∈N*恒成立.设,n∈N*,则c<g(n)对n∈N*恒成立.考虑.因为=0,所以g(x)在[1,+∞)内是减函数;则当n∈N*时,g(n)随n的增大而减小,又因为=1.所以对一切n∈N,g(n)>1因此c≤1,即实数c的取值范围是(﹣∞,1].(ⅱ)由(ⅰ)知.下面用数学归纳法证明不等式(n∈N+)①当n=1时,左边=,右边=,左边<右边.不等式成立.②假设当n=k时,不等式成立.即.当n=k+1时,<===,即n=k+1时,不等式成立综合①、②得,不等式成立.所以,所以+<+…+=﹣1.即.。

相关文档
最新文档