基于内容的视频检索
基于内容的视频检索技术在多媒体广告监测系统中的应用

替 代人 工进 行 多种 媒体 的广 告 监测 监管 , 工作 人员 将
从 繁琐 的重 复性 工 作 中解脱 出来 , 大大 降低 了工 作人
员 的工作 量 ; 同时在 电视 广告 的监测 中采 用基 于 内容 的视频 检索 技术 , 比采 用音 频 检索 技术 具 有更 高 的 相
检索 速度 、 准度 和识 别率 。 精
如 QI B C等 著 名 的 图 像 检 索 系 统 , 以 及 Vdo ieQ、
V sa ek等视 频 检索 系统 , 持 以 不 同 的底 层 特征 i le uS 支
( 色 、 状 、 理等 ) 草 图 、 颜 形 纹 、 图片 或视 频 片段 来 进 行 图 片和视 频查 询服 务 。
足 广 告 监 测 系统 对 识别 率 、精 准 度 和检 索 速 度 的要
基 于 内容 的视 频 检 索 需 要 构第 2 ) 9期 5
有 线 电视 技 术
尾 位置 与实 际广 告 的差距 。 检索 出 的广告 的长 度与 实
户群 , 成为 主要 的广 告 发布媒 体 。 悉 , 也 据 电视 广告 经
2 基 于 内容 的 视频 检 索 技 术 简 介
基 于 内容 的 视 频 检 索 问( otn— ae ie C net B sd V d o
R te a, B R) er vlC V ,是 指根 据 视 频 的 内容 和 上 下 文 关 i 系 , 没有 人 工 参 与 的情 况 下 , 在 自动提 取 并 描 述 视频 的特 征 和 内容 , 现对 视 频检 索 。C V 自身 的技术 实 BR
有 线 电视 技 术
电视节目制作与播出
—
一
_
相似视频检索原理的应用

相似视频检索原理的应用简介相似视频检索是一种基于内容的视频检索技术,它可以通过比较视频之间的视觉特征来确定视频的相似度。
随着视频数据的快速增长,相似视频检索在视频搜索、内容推荐、版权保护等领域都有着广泛的应用。
相似视频检索原理相似视频检索的原理主要分为三个步骤:预处理、特征提取和相似度计算。
预处理在进行相似视频检索之前,首先需要对视频进行预处理。
预处理的主要目的是确定视频的关键帧(Key Frame)以及提取关键帧所对应的特征。
关键帧是视频中最能代表整个视频内容的帧,通过提取关键帧,可以减少特征提取的计算量,并保证在相似视频检索中得到准确的结果。
特征提取特征提取是相似视频检索的核心步骤之一。
在特征提取中,需要从每个关键帧中提取视频的视觉特征。
常用的视觉特征包括颜色直方图、纹理特征、形状特征等。
通过提取这些特征,可以将视频表示为一个数值向量,可用于计算视频之间的相似度。
相似度计算相似度计算是相似视频检索的最后一步。
在相似度计算中,需要比较两个视频之间的相似程度。
常用的相似度计算方法包括欧氏距离、余弦相似度等。
通过计算视频之间的相似度,可以确定视频的相似度排名,并找到最相似的视频。
应用场景相似视频检索在多个领域都有着广泛的应用。
视频搜索相似视频检索可以用于视频搜索引擎,帮助用户快速找到与所需视频相似的视频。
用户只需要提供一个视频作为查询,系统就可以返回与该视频相似的视频列表,极大地方便了用户找到感兴趣的视频。
内容推荐相似视频检索还可以用于内容推荐系统中。
通过分析用户的历史观看记录和喜好,系统可以根据这些信息为用户推荐与其兴趣相似的视频。
这种个性化的推荐方式可以提高用户的观看体验,增加用户粘性。
版权保护利用相似视频检索技术,可以对视频进行版权保护。
当存在侵权行为时,版权方可以使用相似视频检索技术来查找和追踪侵权视频,保障自身合法权益。
视频分析相似视频检索还可以用于视频分析,比如视频监控领域。
通过对监控视频进行相似视频检索,可以快速找到与目标视频相似的视频片段,从而提供更准确的监控结果,帮助用户快速定位目标。
基于内容的视频检索

IBM公司的QBIC系统
意大利Plermo大学开发的JAKOB 美国哥伦比亚大学研究实现VideoQ系统 Virage公司的Virage Search Engine 美国哥伦比亚大学图像和高级电视实验室开 发的VisualSeek系统 由UIUC开发的MARS
5
国内外研究现状:国内
23
纹理特征
20世纪70年代初Haralick等人提出了纹理特征的共生矩阵 表示法,即利用纹理在灰度级的空间相关性,先根据图 像像素间的方向和距离构造一个共生矩阵,再从中提出 有意义的统计数据作为纹理的特征表示。 缺点:这些统计特征没有和人在视觉上对纹理特征的感 知之间建立对应。
24
运动特征
20
关键技术
视频镜头检测技术
关键帧提取技术
视频特征提取技术 视频浏览和检索
21
3.视频特征提取技术
视频分割成镜头后就要对各个镜头进行特 征提取,得到一个尽可能充分反映镜头内容的 特征空间,这个特征空间将作为视频聚类和检 索依据
颜色特征 纹理特征 运动特征
22
颜色特征
颜色是图像最显著的特征,与其它特征相比, 颜色特征计算简单、性质稳定,对于旋转、 平移、尺度变化都不敏感,表现出很强的鲁 棒性。 颜色特征包括颜色直方图、主要颜色、平均 亮度等。
33
任然存在的问题
如何定义是否两个视频相似,仍然是尚未 解决的问题,限制了检索系统的应用范围。而 且由于视频内容的复杂性,不同用户在检索过 程中,即使对同一部视频,其注重的角度也有 可能不同,因此接受用户的反馈意见,当用户 对查询结果不满意时可以优化查询结果,突出 用户的需要。
概述基于内容的视频检索的镜头分割技术

概述基于内容的视频检索的镜头分割技术随着经济社会的快速发展和科学技术的飞速进步,视频等多媒体格式的信息量越来越大,来源也更为广泛。
视觉成为人类接受外界信息的重要来源,其中,图像视频信息是视觉信息的主要表达方式,它所包含的信息量也是海量的,远远超过了文本、图片等数据格式。
图像视频在具体、生动、确切、高效等方面有许多优点,由于这些特点就使得人类最重要的通信方式主要为基于视频信息的通信方式和以视频格式传输或携带的信息通信方式。
这种视频信息方式更形象、更生动、更直观,更能够贴近或者还原于实际。
计算机传统上存储数据的方式是基于文本的。
视频数据信息已成为我们日常生活中不可或缺的重要内容,但由于它携带的信息量较大,也成为阻碍其发展的瓶颈,如何提高视频资源的检准率、检全率,其现实意义将非常重大,视频检索的第一步就是镜头。
1 镜头分割在基于内容的视频检索中作用为构建视频资源数据库,首先应对保存的视频文件进行结构化处理。
视频内容有四个层次,按从高到低的结构顺序,依次为视频序列、场景、镜头、帧。
帧是指在数据和数字通信中,按某一标准预先确定的若干比特或字段组成的特定的信息结构。
镜头是构成视觉语言的基本单位。
它是叙事和表意的基础。
在影视作品的前期拍摄中,镜头是指摄像机从启动到静止这期间不间断摄取的一段画面的总和;在后期编辑时,镜头是两个剪辑点间的一组画面;在完成片中,一个镜头是指从前一个光学转换到后一个光学转换之间的完整片段。
场景是指电影、戏剧作品中的各种场面,由人物活动和背景等构成。
连续的图像变化每秒超过24帧(frame)画面以上时,根据视觉暂留原理,人眼无法辨别单幅的静态画面;看上去是平滑连续的视觉效果,这种连续的画面叫做视频。
视频序列由数个视频场景组成,通常指单独的某个视频文件或者视频片段。
场景通常由一个或者多个镜头构成。
镜头由多个连续的图像帧构成。
图像帧指单幅静态的图像,是构成视频文件的最小单位。
在播放视频时,定格时的每一个画面就是一个图像帧。
基于内容的视频检索技术

2关键技术 . 镜头分割视频流 中的镜头 ,是 由时间连续的视频祯
结合起来 ,以描述 视频节 目中有语 义意义 的事件 或活 动。这个工作称为镜头聚类。 ( ) 于分割的方法 。从一般 的角度来看 ,镜头 1 基 聚类也可看作一个视频分 割问题 、与镜 头的时域分割不 同,这里不是也不能完全按 时间轴进行 切割 ,因为镜头 聚类 中镜头并不一定在播放 时间上连续 。可 以凭借助突 变或渐变检测将视频分成一 系列镜头 ,再根据 内容的相 关性结合镜头形成 聚类 。 ( 下转9 页 ) 6
随着多媒体技术的发展和信息高速公路的出现 ,数 字视频的存储和传输技术都取得了重大 的进展 。视频检
索就是要从大量的视频数据 中找到所需 的视频 片断 。传
统 的视频检索只能通过快进和快退 顺序的方 法人工查 找 ,因而是一件非常繁琐耗时的工作 ,这显然已无法满 足多媒体数据库的要求 。用户往往希望只要给出例子或 特征描述 ,系统就能 自动地找到所需 的视频片断点 ,即
基站 1 间的距 离 ;d2 之 0 是基站0 与基站2 间的距 离 ;d 之 。 是车载终端与基站0 之间的距离 ;d是车载终端与基站 1 l 之 间的距离 ;d是车 载终端 与基站2 间的距 离 。根据 2 之
效集成各种物流要素 的物流信息平台 ,可以为物流服务 供应商 、货物制造商和货 主提供统一高效 的沟通界面 ,
二 、内容
1视频数据 .
11 频 数 据 的 结 构 . 视
图像方式则采用基于运动 向量的参数模型 ,利用图像技
术获取运动 向量 ,从而建立模 型。 ( )局部运动 向量 2 检测。视频 中的局部运动指场景中的 目标运动 ,它可看
描述视频( 包括描述 它的元数据 ) 可从 以下3 方面 个
基于内容的视频检索与关键技术简述

基于内容的视频检索与关键技术简述作者:马晨晨周政龙门来源:《新学术论丛》2013年第04期1.引言随着多媒体技术的发展和信息高速公路的出现,数字视频的存储和传输技术都取得了重大的进展。
如何能在海量的视频中找到需要的资料,是视频检索要解决的问题。
传统的视频检索只能通过快进和快退等顺序的方法人工查找,因而是一件非常繁琐耗时的工作,这显然已无法满足多媒体数据库的要求。
用户往往希望只要给出例子或特征描述,系统就能自动地找到所需的视频片断点,即实现基于内容的视频检索。
2.基于内容的视频检索基于内容的视频检索(Content Based Video Retrieval, CBVR)指根据视频的内容及上下文关系,对大规模视频数据库中的视频数据进行检索。
主要特点:直接从视频数据中提取信息线索,它是一种近似匹配,在没人工参与的情况下自动提取并描述视频的特征和内容。
它融合了图像理解、模式识别、计算机视觉等技术。
基于内容的视频检索的过程是先将视频流通过镜头边界检测分割为镜头,并在镜头内选关键帧,再提取镜头的运动特征和关键帧中的视觉特征,作为一种检索机制存入视频数据库,最后根据用户提交的查询按一定特征进行视频检索,将检索结果按相似性程度交给用户,用户可优化查询结果,系统会依用户意见灵活优化检索结果。
特征的提取和检索算法的优劣决定了系统的效率和性能。
3.关键技术视频包含着丰富的内容。
一般对视频采用分层的表达方式表示视频。
一个视频可以表示为场景、镜头、帧几个层次。
帧是视频最基本组成单元,镜头边界检测是视频层次化的基础。
3.1镜头边界检测实现基于内容的视频检索首先要将视频数据自动地分割为镜头,称为镜头边界检测或场景转换检测。
镜头的切换有突变和渐变,突变表现为在相邻两帧之间发生的突变性的镜头转换。
(1)基于像素的镜头检测方法利用视频两帧对应像素之差的绝对值之和作为帧间差,当大于某个阈值m时,则认为有镜头的切换。
缺点是对噪声和物体运动敏感,易造成误识别。
基于内容的视频检索技术研究

对 内 容 的描 述 不 是 一 种 准 确 的 描 述 ,因 此 , B R采 用 相 似 性 匹 CV 配 的方 法 逐 步 求 精 , 以获 得 查 询 结果 , 即不 断 减 小 查 询 结 果 的 范 围 , 直
3 基 于边 缘 的 方 法 ) 由 于在 镜 头 切 变 时新 旧边 缘 应 在 不 同 的 位置 , 以 可先 提 取 两 幅 所
31 .. 光 流 检 测 法 2 张 宏 江 等人 还 提 出 了光 流 检测 法 . 方 法 的 原 理 是 镜 头 切换 时 无 该 我们 知道 传 统 的 视频 检 索 技 术 主 要包 括 镜 头 检 测 、 键 帧 提 取 或 关 而镜 头运 动 应 适 合 某 种特 定 的光 流 类 型 。 它 能 将 渐 变切 换 与 镜 镜头集类 、 征库的建立以及匹配算法等 , 特 主要 提 取 视 频 特 征 传 统 的 光 流 , 但 方 法 是先 对 视 频 完 全解 码 , 分 割 镜 头并 提 取 关 键 帧 , 后 提 取 特 征 , 头 的运 动 区分 开 来 . 计 算 复杂 且 在 光 照 变 化 很 大情 况 下 检 测失 败 再 最 .. 这 样 就会 产 生计 算 量 比 较 大 , 响 视 频 检 索 效 率 , 对 特 征 的描 述 也 313 基 于 模 型 的 方 法 影 而
便 将 直 2时 图。 频 可 以先 分 为 场 景 , 景 可 以分 为 镜 头 , 是 视 频最 基 本 组 成 单 问时 , 认 为 潜 在 渐 变 开 始 , 差 值 开 始 累加 , 到 累 加 和 大 于 d 视 场 帧 当帧 间差 小 于 d 1时认 为 渐 变 结 束 。 这种 方 法 对 渐 变 检测 元 。 将视 频 分 为 场 景 的处 理 叫做 场 景 检测 , 场 景 分 为 镜 头 的 操 作 叫 认 为 有 渐 变 , 将 有 较 好 的 效果 . 对 镜 头 的 缓慢 运 动仍 可 能 会 造 成误 识 别 。 但 镜 头 分 割 , 头 分 割 是 视频 层 次 化 的 基 础 。 镜 Y oB L提 出 了一种 滑 动窗 口检 测 法 。先 以待 检 的 帧 作为 中心 开 e
基于内容的视频检索技术

基于内容的视频检索技术综述[摘要]随着多媒体技术及计算机网络技术的迅速发展,多媒体已广泛地应用于如公共信息业、广告、教育、医学、商业及娱乐等多个领域。
数字视频的传播也变得越来越容易,数字电视、多媒体广播、视频会议已经开始逐步走入人们的日常生活中,视频也己经逐渐成为人类信息传播的主流载体之一。
当今,人们面临的问题已不再是视频内容的匮乏,而是面对浩如烟海的视频信息,如何快速、有效地找到自己需要的内容,已经成为了迫切的需求。
故本文分析了现有的视频检索理论框架,对以文字信息为主要特征的视频检索系统关键技术进行了研究。
[关键词] 基于内容的检索;视频检索技术;检索系统随着多媒体技术和网络技术的飞速发展,视频在多个领域得到广泛地应用。
对这些海量的而且包含大量非结构化信息的数据进行组织、表达、管理、查询和检索成为迫切的需求。
因此基于内容的视频检索成为近年来研究的热点。
1、研究背景自 20 世纪 90 年代以来,随着多媒体技术及计算机网络技术的迅速发展,多媒体已广泛地应用于如公共信息业、广告、教育、医学、商业及娱乐等多个领域。
数字视频的传播也变得越来越容易,数字电视、多媒体广播、视频会议已经开始逐步走入人们的日常生活中,视频己经逐渐成为人类信息传播的主流载体之一。
当今人们面临的问题已不再是视频内容的匮乏,而是面对浩如烟海的视频信息,如何快速、有效地找到自己需要的内容,已经成为迫切的需求。
当用户希望从浩瀚的视频数据库中检索感兴趣的资源时,却发现传统的基于关键词的数据库检索方法难以实现。
其主要原因在于:一方面,在许多情况下很难用一个或多个关键词来充分描述视频中的丰富信息,而且这种描述也存在很大的主观性;另一方面,用户很难将其需求清晰地表达出来,而且这种表达和媒体自身的描述也存在很大差异。
为了实现对视频等多媒体信息的有效检索,人们开始研究视频中包涵的“内容”。
因此,基于内容的视频检索技术应运而生,并成为一个新的研究领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于内容的视频检索技术
1、什么是基于内容的视频检索技术
视频检索技术区别于传统的基于关键字检索的主要特点体现在,它是以图像处理、模式识别、计算机视觉、图像理解等领域的知识为基础,借鉴认知科学、人工智能、数据库管理及人机交互、信息检索等技术领域的知识与数据表示方法,通过引入新的媒体数据表示、数据模型,以及有效的检索算法和友好的人机界面,实现基于内容的视频检索功能。
视频检索技术相对于传统的基于文本的检索方法有两个突出特点:突破了传统的基于表达式检索的局限性,直接对视频的内容进行分析,完全由计算机自动实现提取特征和语义的过程,避免了人工描述的主观性,利用这些内容建立特征索引,实现基于内容的检索;采用相似性匹配的方法进行查询。
2、需要使用哪些技术
一、视频镜头检测技术。
由于视频内容丰富,不易建立索引,可以将其从大到小划分为视频、场景、镜头及关键帧4个层次,其中,镜头是视频检索的基本单位,是摄像机一次操作所拍摄的图像序列。
对视频建立索引,首先要将视频分割为镜头。
镜头检测即找到镜头与镜头之间的切换,并找到切换前后的差异。
镜头切换包括渐变和突变,针对不同的情况需使用不同的检测技术。
二、关键帧提取技术。
检测出镜头之后,要进行镜头关键帧的提取。
镜头关键帧是反映镜头主要内容的一帧或几帧图像,因而需要它描述准确且存储数据量尽量小,计算不宜太复杂。
3、基于内容的视频检索技术的现状
基于内容的视频检索系统大致分为索引、查询和检索3个模块。
索引模块运用镜头检测、关键帧提取、视频聚类、特征提取等技术对视频信息进行预处理,从而建立视频特征索引,以此作为视频检索的基础和依据;查询模块主要负责实现人机交互,并能通过用户的反馈信息对检索逐步求精;检索模块主要实现视频特征索引与用户提交的查询条件的相似度计算、特征匹配,并根据相关度排序后提交用户查询结果。
用户行为的知识是提高检索系统性能的一个渠道,包括用户熟知的主题、用户提出的确切问题和用户的行为。
记录用户行为特征还可以帮助用户在检索过程中获得更好的检索结果。
解决的关键问题:构造视频检索系统,需要解决好两个关键问题。
一是如何提取出视频的内容特征,二是索引的方法。
要提取内容特征,首先对镜头进行切割,先检测突变,后检测渐变。
检测突变,采用直方图法来计算帧间差;检测渐变,采用基于模型的方法计算,对各种镜头之间的切换建立数学模型,自顶向下地进行镜头切换检测。
因此视频切割拟采用直方图与基于模型的方法实现。
分离出镜头后,就要确定出每个镜头中的一个或几个关键帧。
在帧间差很小的情况下,可使用每个镜头的第一帧作为关键帧;若帧间差相对大些,可计算所有帧的平均值来作为代表帧。
接着进行内容特征的提取。
首先,关键帧是一幅静态图像,因此可按照图像内容检索方式提取形状、颜色和纹理等特征作为底层特征。
其次提取关键对象特征,包括对象的运动、颜色、纹理、形状等特征。
这些特征可满足用户按场景或对象进行查找,若要满足用户按视频语义或内容来检索,就需要将视频聚类、合并,对视频进行高层次抽象,将内容上有关联的镜头进行组合来描述视频语义。
对于索引方法,由于视频数据库信息量大,因此索引方法直接影响搜索准确率及效率。
5、基于内容的视频检索技术的未来展望
基于内容的视频检索对语义特征的提取尤为重要,因为人对视频的理解主要是在语义层次上进行。
语义特征自动提取的好与坏,将直接影响视频检索的质量和效率,而底层特征与高层语义之间又存在巨大鸿沟,基于高层语义的描述目前还无法由计算机自动建立。
这是目前研究的热点之一。
其次用户与基于内容的视频检索系统之间的交互及通过信息反馈实现系统的自适应也是未来研究的一个重点。
如何从反馈中积累经验,调整系统的适应能力还需要进一步研究和探索。
最后,由于视频信息包含图形、图像和声音信息,对视频及视频中媒体信息的综合检索将更符合人类检索信息的思维和习惯,这也是未来研究的方向。