高中物理 知识点考点解析含答案 知识讲解 法拉第电磁感应定律 基础
50知识讲解 法拉第电磁感应定律 基础

50法拉第电磁感应定律【学习目标】1.通过实验过程理解法拉第电磁感应定律,理解磁通量的变化率tϕ∆∆,并能熟练地计算;能够熟练地计算平均感应电动势(E ntϕ∆=∆)和瞬时感应电动势(sin E BLv α=),切割情形)。
2.了解感生电动势和动生电动势产生机理。
3.熟练地解决一些电磁感应的实际问题。
4.理解并运用科学探究的方法。
【要点梳理】要点一、感应电动势在电磁感应现象中产生的电动势叫做感应电动势,产生感应电动势的那部分导体相当于电源。
要点诠释:(1)感应电动势的存在与电路是否闭合无关。
(2)感应电动势是形成感应电流的必要条件。
有感应电动势(电源),不一定有感应电流(要看电路是否闭合),有感应电流一定存在感应电动势。
要点二、法拉第电磁感应定律1.定律内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
2.公式:ФE nt ∆=∆。
式中n 为线圈匝数,Фt∆∆是磁通量的变化率,注意它和磁通量西以及磁通量的变化量21ФФФ∆=-的区别。
式中电动势的单位是伏(V )、磁通量的单位是韦伯(Wb ),时间的单位是秒(s )。
要点诠释:(1)感应电动势E 的大小决定于穿过电路的磁通量的变化率Фt∆∆,而与Ф的大小、Ф∆的大小没有必然的联系,和电路的电阻R 无关;感应电流的大小和E 及回路总电阻R 有关。
(2)磁通量的变化率Фt∆∆是Фt -图象上某点切线的斜率。
(3)公式ФE k t∆=⋅∆中,k 为比例常数,当E 、Ф∆、t ∆均取国际单位时,1k =,所以有ФE t∆=∆。
若线圈有n 匝,则相当于n 个相同的电动势Фt∆∆串联,所以整个线圈中电动势为ФE nt∆=∆。
(4)磁通量发生变化有三种方式:一是Ф∆仅由B 的变化引起,21||B B B ∆=-,B E nSt ∆=∆;二是Ф∆仅由S 的变化引起,21||S S S ∆=-,SE nB t∆=∆;三是磁感应强度B 和线圈面积S 均不变,而线圈绕过线圈平面内的某一轴转动,此时21||ФФE n t -=∆。
高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附答案解析

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附答案解析一、法拉第电磁感应定律1.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。
当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。
重力加速度为g ,求:(1)匀强电场的电场强度 (2)流过电阻R 的电流(3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgdqR(3)()B mgd R r t NQRS ∆+=∆ 【解析】 【详解】 (1)由题意得:qE =mg解得mg qE =(2)由电场强度与电势差的关系得:UE d=由欧姆定律得:U I R=解得mgdI qR=(3)根据法拉第电磁感应定律得到:E Nt∆Φ=∆ BS t t∆Φ∆=∆∆根据闭合回路的欧姆定律得到:()E I R r =+ 解得:()B mgd R r t NqRS∆+=∆2.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。
已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求:(1)磁通量变化率,回路的感应电动势。
(2)a 、b 两点间电压U ab 。
【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。
(完整版)第二讲 法拉第电磁感应定律考点分类精析(DOC)

第二讲 法拉第电磁感应定律知识点1、感应电动势和感应电流产生的条件的理解核心知识总结:1、在电磁感应现象中产生的电动势叫感应电动势。
2、对感应电动势的理解要注意以下几个方面:(1)不管电路是否闭合,只要穿过电路的磁通量发生变化,都产生感应电动势.(2)产生感应电动势的部分导体相当于电源,该部分导体的的电阻相当于内阻。
(3)要产生感应电流,电路必须闭合,感应电流大小不仅与感应电动势大小有关,还与闭合电路的电阻有关,即感应电流的大小为I 感=E 感/(R 外+r 内)。
只要穿过回路的磁通量发生变化,就产生感应电动势;如果回路闭合,则可以产生感应电流.考题1、如图所示,在匀强磁场中,MP 、PQ 是两根平行的金属导轨,而ab 、cd 为串有电压表和电流表的两根金属棒,初两表外其余电阻不计,当两棒同时以相同速度向右运动时,用Uab 和Ucd 分别表示a 、b 间和c 、d 间的电势差,下列说法正确的有( )。
A.电压表无读数,电流表无读数 B 。
电压表有读数,电流表无读数 C.Uab>Ucd D. Uab=Ucd 答案:AC解析:此题考查对电磁感应现象的理解和对电压表、电流表示数的理解.两棒以相同速度向右运动时,因穿过面abcd 的磁通量不变,回路中没有感应电流,电流表和电压表均不会有读数。
Uab>0,Ucd 〈0 . 变式1-1、如图所示,在匀强磁场中放有与磁场方向垂直的金属线圈abcd ,在下列叙述中正确的是() A 、在线圈沿磁场方向平动过程中,线圈中有感应电动势,而无感应电流(以下简称有势无流) B 、在线圈沿垂直磁场方向平动过程中,线圈中有势无流。
C 、当线圈以bc 为轴转动时,线圈中有势有流。
D 、当线圈以cd 为轴转动时,线圈中无势无流.答案:C [ 线圈垂直于磁场方向水平平动时,线圈总电动势为零,电流为零。
线圈沿磁场方向平动,磁通量不变,也不切割磁感线,无电动势,无电流。
高考物理法拉第电磁感应定律习题知识归纳总结含答案解析

高考物理法拉第电磁感应定律习题知识归纳总结含答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为L=0.1 m,磁场间距为2L,一正方形金属线框质量为m=0.1 kg,边长也为L,总电阻为R=0.02 Ω.现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时bc边始终与磁场边界平行.当h=2L时,bc边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g取10 m/s2.(1)求磁感应强度B的大小;(2)若h>2L,磁场不变,金属线框bc边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度h;(3)求在(2)情形中,金属线框经过前n个磁场区域过程中线框中产生的总焦耳热.【答案】(1)1 T (2)0.3 m(3)0.3n J【解析】【详解】(1)当h=2L时,bc进入磁场时线框的速度===v gh gL222m/s此时金属框刚好做匀速运动,则有:mg=BIL又E BLv==IR R联立解得1mgR=BL v代入数据得:1TB=(2)当h>2L时,bc边第一次进入磁场时金属线框的速度022v gh gL =>即有0mg BI L <又已知金属框bc 边每次出磁场时都刚好做匀速运动,经过的位移为L ,设此时线框的速度为v′,则有'222v v gL =+解得:6m /s v '=根据题意可知,为保证金属框bc 边每次出磁场时都刚好做匀速运动,则应有2v v gh '==即有0.3m h =(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Q 0,则根据能量守恒有:'2211(2)22mv mg L mv Q +=+ 代入解得:00.3J Q =则经过前n 个磁场区域时线框上产生的总的焦耳热Q =nQ 0=0.3n J 。
2.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。
高考物理法拉第电磁感应定律-经典压轴题附答案解析

(2)在0~4s时间内通过电阻R的电荷量q;
(3)在0~5s时间内金属棒ab产生的焦耳热Q。
【答案】(1) (2) (3)
【解析】(1)棒进入磁场之前对ab受力分析由牛顿第二定律得
由匀变速直线位移与时间关系
则由匀变速直线运动速度与时间 Nhomakorabea系得金属棒受到的安培力
(2)由上知,棒进人磁场时 ,则金属棒作匀速运动,匀速运动时间
F安=BLI
根据闭合电路欧姆定律有:
I=
联立解得解得F安=4 N
所以克服安培力做功:
而Q=W安,故该过程中产生的焦耳热Q=3.2 J
(3)设线框出磁场区域的速度大小为v1,则根据运动学关系有:
而根据牛顿运动定律可知:
联立整理得:
(M+m)( -v2)=(M-m)g·2L
线框穿过磁场区域过程中,力F和安培力都是变力,根据动能定理有:
【答案】(1)1.2 V(2)3.2 J(3)0.9 J
【解析】
【详解】
(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:
因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:
Ueb= E=1.2 V.
(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:
对棒2: 安
解得:
(2)对棒1和2的系统,动量守恒,则最后稳定时:
解得:
(3)对棒2,由动量定理: ,其中
解得:
(4)由 、 、
联立解得:
又
解得:
则稳定后两棒的距离:
8.如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L=1m,导轨平面与水平面成 =30角,上端连接 的电阻.质量为m=0.2kg、阻值 的金属棒ab放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d=4m,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向上.
高考物理法拉第电磁感应定律习题知识点及练习题含答案解析

高考物理法拉第电磁感应定律习题知识点及练习题含答案解析一、高中物理解题方法:法拉第电磁感应定律1.研究小组同学在学习了电磁感应知识后,进行了如下的实验探究(如图所示):两个足够长的平行导轨(MNPQ 与M 1P 1Q 1)间距L =0.2m ,光滑倾斜轨道和粗糙水平轨道圆滑连接,水平部分长短可调节,倾斜轨道与水平面的夹角θ=37°.倾斜轨道内存在垂直斜面方向向上的匀强磁场,磁感应强度B =0.5T ,NN 1右侧没有磁场;竖直放置的光滑半圆轨道PQ 、P 1Q 1分别与水平轨道相切于P 、P 1,圆轨道半径r 1=0.lm ,且在最高点Q 、Q 1处安装了压力传感器.金属棒ab 质量m =0.0lkg ,电阻r =0.1Ω,运动中与导轨有良好接触,并且垂直于导轨;定值电阻R =0.4Ω,连接在MM 1间,其余电阻不计:金属棒与水平轨道间动摩擦因数μ=0.4.实验中他们惊奇地发现:当把NP 间的距离调至某一合适值d ,则只要金属棒从倾斜轨道上离地高h =0.95m 及以上任何地方由静止释放,金属棒ab 总能到达QQ 1处,且压力传感器的读数均为零.取g =l 0m /s 2,sin37°=0.6,cos37°=0.8.则:(1)金属棒从0.95m 高度以上滑下时,试定性描述金属棒在斜面上的运动情况,并求出它在斜面上运动的最大速度;(2)求从高度h =0.95m 处滑下后电阻R 上产生的热量; (3)求合适值d .【答案】(1)3m /s ;(2)0.04J ;(3)0.5m . 【解析】 【详解】(1)导体棒在斜面上由静止滑下时,受重力、支持力、安培力,当安培力增加到等于重力的下滑分量时,加速度减小为零,速度达到最大值;根据牛顿第二定律,有:A 0mgsin F θ-=安培力:A F BIL = BLvI R r=+ 联立解得:2222()sin 0.0110(0.40.1)0.63m /s 0.50.2mg R r v B L θ+⨯⨯+⨯===⨯(2)根据能量守恒定律,从高度h =0.95m 处滑下后回路中上产生的热量:22110.01100.950.0130.05J 22Q mgh mv ==⨯⨯-⨯⨯=-故电阻R 产生的热量为:0.40.050.04J 0.40.1R R Q Q R r ==⨯=++ (3)对从斜面最低点到圆轨道最高点过程,根据动能定理,有:()221111222mg r mgd mv mv μ--=-① 在圆轨道的最高点,重力等于向心力,有:211v mg m r =②联立①②解得:221535100.10.5m 220.410v gr d g μ--⨯⨯===⨯⨯2.如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L =1m ,导轨平面与水平面成θ=30︒角,上端连接 1.5R =Ω的电阻.质量为m =0.2kg 、阻值0.5r =Ω的金属棒ab 放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d =4m ,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向上.(1)若磁感应强度B=0.5T ,将金属棒释放,求金属棒匀速下滑时电阻R 两端的电压; (2)若磁感应强度的大小与时间成正比,在外力作用下ab 棒保持静止,当t =2s 时外力恰好为零.求ab 棒的热功率;(3)若磁感应强度随时间变化的规律是()0.05cos100B t T π=,在平行于导轨平面的外力F 作用下ab 棒保持静止,求此外力F 的最大值。
法拉第电磁感应定律(含答案解析)

8 电动势的论述,正确的是( )
老师 8182 3.1-9 9 A.图甲中回路产生的感应电动势恒定不变 亮 4 B.图乙中回路产生的感应电动势一直在变大 8 C.图丙中回路在 0〜t0 时间内产生的感应电动势大于 t0〜2t0 时间内产生的感应电动势 许 2 D.图丁回路产生的感应电动势先变小再变大
3.1-8
A.恒为nS(B2-B1)
B.从
0
nS(B2-B1) 均匀变化到
t2-t1
t2-t1
7.
C.恒为-nS(B2-B1) t2-t1
D.从
0
nS(B2-B1) 均匀变化到-
t2-t1
8 (多选)穿过闭合回路的磁通量 Φ 随时间 t 变化的图象分别如图 3.1-9 甲、乙、丙、丁所示,下列关于回路中产生的感应
y t 【注意】
B a 产生感应电动势的那部分导体相当于电源,感应电动势即该电源的电动势。
h 3.1.1.2.3
ΔΦ
c 3.1-1
Φ
ΔΦ
Δt
3.1-1
/We 磁通量 Φ
Wb
表示某时刻或某位置时穿过某一面积
的磁感线条数的多少
Q 磁通量的变化量 QΔΦ
Wb
表示在某一过程中穿过某一面积磁通 量变化的多少
Φ=B·S⊥ ΔΦ=Φ2-Φ1
W (1) S 闭合后,通过 R2 的电流大小;
QQ/ (2) S 闭合后一段时间又断开,则 S 切断后通过 R2 的电量是多少?
3.1-7
第3⻚
3
3.1.3.2
6. 如图 3.1-8 为无线充电技术中使用的受电线圈示意图,线圈匝数为 n,面积为 S。若在 t1 到 t2 时间内,匀强磁场平行于 线圈轴线向右穿过线圈,其磁感应强度大小由 B1 均匀增加到 B2,则该段时间线圈两端 a 和 b 之间的电势差 φa-φb( )
人教版高中物理选择性必修第2册 第06讲 法拉第电磁感应定律(解析版)

第06讲 法拉第电磁感应定律课程标准课标解读通过实验,理解法拉第电磁感应定律。
1.掌握法拉第电磁感应定律,能够运用法拉第电磁感应定律定量计算感应电动势的大小。
2.能够运用E =Blv 或E =Blvsin θ计算导体切割磁感线时产生的感应电动势。
3.了解动生电动势的概念,通过克服安培力做功把其他形式的能转化为电能。
知识点01 电磁感应定律 1.感应电动势在电磁感应现象中产生的电动势叫作感应电动势,产生感应电动势的那部分导体相当于电源.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E =n ΔΦΔt,其中n 为线圈的匝数.(3)在国际单位制中,磁通量的单位是韦伯(Wb),感应电动势的单位是伏(V).知识精讲目标导航【知识拓展1】1.磁通量Φ、磁通量的变化量ΔΦ及磁通量的变化率ΔΦΔt的比较:2.公式E =n ΔΦΔt的理解感应电动势的大小E 由磁通量变化的快慢,即磁通量变化率ΔΦΔt决定,与磁通量Φ、磁通量的变化量ΔΦ无关.【即学即练1】电吉他中电拾音器的基本结构如图所示,磁体附近的金属弦被磁化,因此弦振动时,在线圈中产生感应电流,电流经电路放大后传送到音箱发出声音,下列说法不正确的是( )A .选用铜质弦,电吉他仍能正常工作B .取走磁体,电吉他将不能正常工作C .增加线圈匝数可以增大线圈中的感应电动势D .弦振动过程中,线圈中的电流方向不断变化 【答案】A【解析】A .铜不可以被磁化,则选用铜质弦,电吉他不能正常工作,A 错误,符合题意;B .取走磁体,就没有磁场,弦振动时不能切割磁感线产生感应电流,电吉他将不能正常工作,B 正确,不符合题意;C .根据ΔΔE ntΦ=可知,增加线圈匝数可以增大线圈中的感应电动势,C 正确,不符合题意;D .弦振动过程中,磁场方向不变,但磁通量有时变大,有时变小,据楞次定律可知,线圈中的电流方向不断变化,D 正确,不符合题意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
法拉第电磁感应定律编稿:张金虎 审稿:李勇康【学习目标】1.通过实验过程理解法拉第电磁感应定律,理解磁通量的变化率tϕ∆∆,并能熟练地计算;能够熟练地计算平均感应电动势(E ntϕ∆=∆)和瞬时感应电动势(sin E BLv α=),切割情形)。
2.了解感生电动势和动生电动势产生机理。
3.熟练地解决一些电磁感应的实际问题。
4.理解并运用科学探究的方法。
【要点梳理】要点一、感应电动势在电磁感应现象中产生的电动势叫做感应电动势,产生感应电动势的那部分导体相当于电源。
要点诠释:(1)感应电动势的存在与电路是否闭合无关。
(2)感应电动势是形成感应电流的必要条件。
有感应电动势(电源),不一定有感应电流(要看电路是否闭合),有感应电流一定存在感应电动势。
要点二、法拉第电磁感应定律1.定律内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
2.公式:ФE nt ∆=∆。
式中n 为线圈匝数,Фt∆∆是磁通量的变化率,注意它和磁通量西以及磁通量的变化量21ФФФ∆=-的区别。
式中电动势的单位是伏(V )、磁通量的单位是韦伯(Wb ),时间的单位是秒(s )。
要点诠释:(1)感应电动势E 的大小决定于穿过电路的磁通量的变化率Фt∆∆,而与Ф的大小、Ф∆的大小没有必然的联系,和电路的电阻R 无关;感应电流的大小和E 及回路总电阻R 有关。
(2)磁通量的变化率Фt∆∆是Фt -图象上某点切线的斜率。
(3)公式ФE k t∆=⋅∆中,k 为比例常数,当E 、Ф∆、t ∆均取国际单位时,1k =,所以有ФE t∆=∆。
若线圈有n 匝,则相当于n 个相同的电动势Фt∆∆串联,所以整个线圈中电动势为ФE nt∆=∆。
(4)磁通量发生变化有三种方式:一是Ф∆仅由B 的变化引起,21||B B B ∆=-,B E nSt ∆=∆;二是Ф∆仅由S 的变化引起,21||S S S ∆=-,SE nB t∆=∆;三是磁感应强度B 和线圈面积S 均不变,而线圈绕过线圈平面内的某一轴转动,此时21||ФФE n t -=∆。
要点三、导体做切割磁感线运动时的感应电动势的表达式:sin E Blv θ= 应用公式sin E Blv θ=时应注意:(1)当0θ=︒或180θ=︒时,0E =,即导体运动的方向和磁感线平行时,不切割磁感线,感应电动势为零。
当90θ=︒时,E Blv =,即当导体运动的方向跟导体本身垂直又和磁感线垂直时,感应电动势最大。
(2)如果v 是某时刻的瞬时速度,则E 也是该时刻的瞬时感应电动势;若v 为平均速度,则E 也为平均感应电动势。
(3)若导线是曲折的,则l 应是导线的有效切割长度,即导线两端点在v 、B 所决定平面的垂线上的长度。
如图甲所示的三种情况下感应电动势相同;如图乙所示的半径为r 的圆弧形导体垂直切割磁感线时,感应电动势2E blv Brv =≠。
(4)公式中B 和导体本身垂直,v 和导体本身垂直,θ是v 和B 的夹角。
要点四、反电动势当电动机通电转动时,线圈中会产生削弱电源电动势的感应电动势,这个电动势通常称为反电动势。
要点诠释:(1)反电动势的作用是阻碍线圈的转动。
(2)反电动势阻碍转动的过程,是电路中电能向其他形式的能转化的过程。
(3)如果电动机工作时由于机械阻力过大而停止转动,这时没有了反电动势,电阻很小的线圈直接接在电源两端,电流会很大,很容易烧毁电动机。
(4)由于反电动势的存在,使回路中的电流EI R<,所以在有反电动势工作的电路中,不能用闭合电路的欧姆定律直接计算电流。
要点五、区别磁通量Ф、磁通量的变化量Ф∆、磁通量的变化率Фt∆∆ (1)物理意义不同:磁通量西表示某时刻或某位置时穿过某一面积的磁感线条数的多少;磁通量的变化量Ф∆表示在某一过程中穿过某一面积的磁通量变化的多少;磁通量的变化率Фt∆∆表示穿过某一面积的磁通量变化的快慢。
(2)穿过一个平面的磁通量大,磁通量的变化量不一定大,磁通量的变化率也不一定大;穿过一个平面的磁通量的变化量大,磁通量不一定大,磁通量的变化率也不一定大;穿过一个平面的磁通量的变化率大,磁通量和磁通量的变化量都不一定大。
(3)感应电动势E 的大小决定于穿过电路的磁通量的变化率Фt∆∆,而与Ф的大小、Ф∆的大小没有必然的联系,与电路的电阻R 无关。
要点六、公式ФE n t∆=∆和sin E Blv θ=的区别与联系 1.区别(1)研究对象不同:ФE n t∆=∆的研究对象是一个回路;sin E Blv θ=的研究对象是在磁场中运动的一段导体。
(2)适用范围不同:ФE nt∆=∆具有普遍性,无论什么方式引起Φ的变化都适用;sin E Blv θ=只适用于一段导线切割磁感线的情况。
(3)条件不同:ФE n t∆=∆不一定是匀强磁场;E Blv =中的l 、v 、B 应取两两互相垂直的分量,可采用投影的办法。
(4)物理意义不同:ФE n t∆=∆求的是t ∆时间内的平均感应电动势,E 与某段时间或某个过程相对应;sin E Blv θ=求的是瞬时感应电动势,E 与某个时刻或某个位置相对应。
2.联系(1)sin E Blv θ=是由ФE nt∆=∆在一定条件下推导出来的。
(2)只有B 、l 、v 三者大小、方向均不变时,在出时间内的平均感应电动势才和它在任意时刻产生的瞬时电动势相同。
(3)公式sin E Blv θ=中的v 若代入v ,则求出的E 为平均感应电动势。
要点七、电磁感应现象中感应电荷量的计算方法 设感应电动势的平均值用E 来表示,在t ∆的时间内 ФE n t∆=∆,E I R =,则Фq I t nR∆=⋅∆=.其中Ф∆对应某过程中磁通量的变化,R 为电路的总电阻,n 为回路的匝数。
用Фq nR∆= 可求一段时间内通过某一导体横截面的电荷量。
要点八、导体棒在匀强磁场中转动产生感应电动势的求法如图所示,长为l 的导体棒ab 以a 为圆心、以角速度ω在磁感应强度为B 的匀强磁场中匀速转动,则棒ab 切割磁感线,产生电动势。
其电动势的大小可 从两个角度分析:(1)棒上各点速度不同,其平均速度为12v l ω=,利用E Blv =知,棒上电动势大小为21122E Bl l Bl ωω=⋅=。
(2)如果经过时间t ∆,则棒扫过的面积为22122t S l l t ωπωπ∆∆=⋅=∆,磁通量的变化量212ФB S Bl t ω∆=⋅∆=∆, 由棒上的电动势大小为ФE nt∆=∆知, 棒上的电动势大小为212E Bl ω=.要点九、线圈匝数n 在解题中的正确使用 在磁场和电磁感应习题中,常遇到线圈是单匝还是n 匝的题设条件,到底什么情况下选用n ,什么情况下不要选用n ,下面总结这方面的选用规律。
(1)不选用匝数n在直接应用公式求磁通量Ф中、磁通量的变化量Ф∆、磁通量的变化率Фt∆∆时,匝数n 不必选用,即Ф、Ф∆、Фt∆∆的大小不受线圈匝数n 的影响。
(2)要选用匝数n求感应电动势时要选用线圈匝数n ,不论是定义式ФE nt∆=∆,还是切割式E nBLv =,每一匝线圈(或线圈的一部分)相当于一个电源,线圈匝数越多,意味着串联的电源越多,说明E 与线圈匝数相关。
(3)灵活选用匝数n凡是涉及线圈电阻的问题时要因题而异,灵活选用匝数n 。
因为电阻与导线长度成正比,线圈匝数不同,导线总长度L 也就不同。
所以,当题意明确线圈的总电阻时,不必选用匝数n ,若题意明确每一匝线圈的电阻时,求线圈总电阻值要选用匝数n 。
【典型例题】类型一、法拉第电磁感应定律的理解和应用 例1.下列几种说法中正确的是( )A .线圈中磁通量变化越大,线圈中产生的感应电动势一定越大B .线圈中磁通量越大,线圈中产生的感应电动势一定越大C .线圈放在磁场越强的位置,线圈中产生的感应电动势一定越大D .线圈中磁通量变化越快,线圈中产生的感应电动势一定越大【答案】D 【解析】本题考查对法拉第电磁感应定律的理解,关键是抓住感应电动势的大小和磁通量的变化率成正比。
感应电动势的大小和磁通量的大小、磁通量变化量的大小以及磁场的强弱均无关系,它由磁通量的变化率决定,故选D 。
【总结升华】正确区分Ф、Ф∆、Фt∆∆这几个物理量是理解法拉第电磁感应定律的关键。
举一反三【变式】一闭合圆形线圈放在匀强磁场中,线圈的轴线与磁场方向成30︒角,磁感应强度随时间均匀变化。
在下列方法中能使线圈中感应电流增加一倍的是 ( ) A .把线圈匝数增大一倍 B .把线圈面积增大一倍C .把线圈半径增大一倍D .把线圈匝数减少到原来的一半【答案】C【解析】本题综合考查法拉第电磁感应定律、闭合电路欧姆定律和电阻定律,关键是写出感应电流的表达武。
设感应电流为I ,电阻为R ,匝数为n ,线圈半径为r ,线圈面积为S ,导线横截面积为S '。
由法拉第电磁感应定律知cos30ФBS E nnt t∆∆︒==∆∆, 由闭合电路欧姆定律知E I R=, 由电阻定律知2'n rRSπρ⋅=,其中Bt∆∆、ρ、S'均为恒量,所以,I r∝,故选C。
【总结升华】该类题目一般采用表达式法,即先推导某物理量(该题的感应电流,)的最终字母表达式,由表达式确定原因、措施和相关因素。
例2.如图甲所示的螺线管,匝数1500n=匝,横截面积220 cmS=,电阻1.5Ωr=,与螺线管串联的外电阻13.5ΩR=,225ΩR=,方向向右穿过螺线管的匀强磁场的磁感应强度按图乙所示规律变化,试计算电阻2R的电功率。
【思路点拨】首先由B t-图象求Bt∆∆,继而由法拉第电磁感应定律求出螺线管中产生的感应电动势;将电磁感应问题转化为电路问题。
【答案】1.0W【解析】本题考查法拉第电磁感应定律及电路的有关计算,解题关键是能由B t-图象求Bt∆∆。
由图乙知,螺线管中磁感应强度B均匀增加,其变化率为62T / s2T / s2Bt∆-==∆,由法拉第电磁感应定律知螺线管中产生的感应电动势4150020102V 6.0VФBE n n St t-∆∆==⋅=⨯⨯⨯=∆∆由闭合电路欧姆定律知螺线管回路的电流为126A0.2A1.5 3.525EIr R R===++++,电阻R2消耗的功率为2222(0.2)25W 1.0WP I R==⨯=。
【总结升华】由法拉第电磁感应定律求出感应电动势后,就可将电磁感应问题转化为电路问题,运用电路有关知识求解。
类型二、导体切割磁感线产生感应电动势的分析计算例3.在水平方向的匀速磁场中,将一导体棒以初速度0v 水平抛出,设整个过程中,棒始终平动且不计空气阻力,试分析金属棒在运动过程中产生电动势大小的变化情况,并画出电动势随时间变化的图线。