大一下物理实验【实验报告】 测万有引力
实验W 万有引力定律测量-to学生 (1)

图1: 顶视图:大物块位置I Large mass Positionsmall mass:小物体所示先放置大物块于位置I,同时使扭秤平衡。
旋转支座保持大物块可以旋转,以便大致使系统不平衡。
这将导致系统的产生旋转振荡,图2: 从实验箱中移走一块板水平放置引力扭秤1.松开箱子上的固定螺钉,释放固定装置上的摆,图3)。
图3: 降低锁紧装置,松开钟摆臂Turn locking screws clockwise:将锁紧螺母顺时针方向Locking machanisms:锁紧装置pendulum bob arm:摆锤臂.调整载物台底部的脚直到摆处于水平的中心位置(如图4)。
(摆的基座将显示为被一个光圈环绕的暗圆斑)。
带状头图4: 使用水平视线图5: 校准摆的高度图4:Side cutaway view:俯视剖视图torsion ribbon:扭力钢丝torsion ribbon head:扭力钢丝头pendulum:摆morror:镜子Look through the sight to view the reflection of the pendulum bob in the mirror:通过视觉观察摆锤在镜子里反射Pendulum bob must be centered over the mirror图5:Grasp the torsion ribbon head and loosen the Philips screwThe bottom of the pendulum bob should be flush with the floor of the图6: 调整旋转摆锤臂Top,cutaway view:顶剖视图The pendulum bob arm must be centered rotationally between the plates Small mass:小物块图7a: 设置光学水平( 例举视图图7b: 设置光学水平Top view :顶视图Reflected beam(from mirror):镜面的反射光束Screen with scale:带刻度的光屏Side view:俯视图定位反射激光束来自于镜子图8: 理想的旋转对齐4. 旋转对齐摆臂:a. 旋转固定螺钉使固定装置上升至两个固定装置几乎碰到摆臂。
扭秤法测引力常量,万有引力测量

扭秤法测引力常量(本讲义材料主要来自清华基础物理实验讲义和中国科技大学的物理实验教材)1.引言扭秤法测引力常量是著名的经典物理实验之一,为了确定引力常量G的数值,1798年,卡文迪许(Cavendish)用扭秤法测量了两个已知质量的球体之间的引力,成为精确测量引力常量的第一人。
19世纪,玻印亭(Poynting)和玻伊斯(Boys) 又对卡文迪许实验做了重大改进。
目前,引力常量公认为6.672 59⨯10-11 N⋅m2/kg2。
测定引力常量G的意义是极大的。
例如根据牛顿运动定律和万有引力定律可以推算出太阳系中天体的运动情况,如果能够定出G的大小,则根据上述计算和观测结果就可以确定地球的质量。
从这个意义上来说,卡文迪许是第一个称量地球的人。
算出地球的质量和体积,就可以推断地球内部的物质信息。
由于G是一个非常小的量,普通物体之间的引力非常微小,因此卡文迪许实验可以称得上是一个非常精细与精致的实验。
尽管200年后的今天,科学技术和测量手段大大提高,但这一实验的构思和方法仍然具有现实的指导意义和启发作用。
本实验的目的如下:1) 观察物体间的万有引力现象,学习和掌握卡文迪许型扭秤测引力常量的方法。
2) 试测量(万有)引力常量G。
图1 卡文迪许型扭秤外形图图2 扭秤主体结构示意图2.实验仪器卡文迪许型扭秤,半导体激光器(前端带有调焦透镜),秒表,卷尺,坐标纸。
卡文迪许型扭秤外形图如图1所示。
扭秤装在镶有玻璃板的铝框盒内,固定在底座上,扭秤的内部主体结构图见图2。
长约16cm的铍青铜扭转悬丝⑥,通过连接片与上螺杆⑤和下螺杆⑦相连接。
①是上螺杆的锁紧螺母,②是悬丝的转角调节螺母,用于调节扭秤的平衡中心位置。
③是调节悬丝上下微动的调节螺母,④是上螺杆固定的锁紧螺钉。
在下螺杆上装有反光小镜⑧和相距10.0 cm、质量m=20.0 g的两个小铅球⑨。
⑩是减缓悬丝摆动的阻尼板。
在仪器侧面有旋钮⑾,逆时针转动可以向上举起扭秤,使悬丝处于松弛休息状态。
大学物理实验报告-单摆测重力加速度

大学物理实验报告-单摆测重力加速度大家好,今天我要给大家讲一个非常有趣的实验,那就是单摆测重力加速度。
这个实验不仅能够让我们更好地理解重力的概念,还能够让我们感受到科学的魅力。
下面就让我来给大家详细介绍一下这个实验的过程吧!我们需要准备一些材料。
这个实验需要的材料其实很简单,只需要一根细绳和一个小球就可以了。
如果你想要更加精确地测量重力加速度,还可以准备一个计时器和一个砝码。
不过,这些都是可选的,不是必须的哦!我们就要开始进行实验了。
我们需要把细绳系在一个小球上,让小球悬挂在空中。
我们可以轻轻地拉动细绳,让小球做圆周运动。
在这个过程中,你会发现小球的运动轨迹是一个非常美丽的弧线。
这就是所谓的单摆运动。
在这个实验中最重要的部分并不是观察小球的运动轨迹,而是测量小球在最低点和最高点的速度。
我们可以通过计时器来记录这两个时刻的时间,然后根据公式计算出小球在这两个时刻的速度。
这样一来,我们就可以得到小球在单摆运动中的周期了。
我们还需要测量小球在单摆运动中的振幅。
这个振幅其实就是小球从最低点到最高点的距离。
我们可以用尺子来测量这个距离,然后根据公式计算出小球的重力加速度。
我想给大家分享一下我在实验过程中的一些趣事。
其实,在实验刚开始的时候,我差点就把小球弄丢了!那时候我正在认真地测量小球在最低点和最高点的速度,结果一不小心就把细绳给松开了。
幸好我反应快,赶紧把细绳又系在了小球上。
不过这件事情也让我深刻地认识到了实验的严谨性和重要性。
通过这次实验,我对重力加速度有了更加深入的理解。
原来,重力加速度就是物体在自由落体运动中所受到的加速度。
而单摆运动则是一种非常特殊的自由落体运动,它可以让我们在不使用任何外力的情况下,直接测量物体所受到的重力加速度。
这真是太神奇了!这次实验让我受益匪浅。
它不仅让我更加热爱科学,还让我明白了一个道理:只要我们用心去探索这个世界,就一定能够发现无数奇妙的现象和规律。
所以呢,大家一定要多动手实践哦!相信你们一定也能从中收获很多快乐和知识!。
大学物理实验报告动力学综合 实验讲义2015

大学物理实验报告动力学综合实验讲义2015实验名称:动力学综合实验实验目的:1. 通过实验掌握质点受力运动的基本规律和实验方法。
2. 通过实验掌握加速度与力的关系,摩擦力的大小和作用规律。
3. 通过实验了解受力的合成与分解,学会应用矢量运算解决一些实际问题。
4. 训练实验数据处理与分析能力,提高实验技能。
实验仪器:1. 平衡器。
2. 带刻度的滑轮。
3. 微型直流电机与直流电源。
4. 串联电动机串联电流表。
5. 电动机绕组测温仪。
6. 纸板,金属小球,劈力器等辅助器材。
实验原理一、引力对物体的作用牛顿三定律:相互作用的两个物体之间存在一个大小相等、方向相反的力。
根据万有引力定律,两个质量分别为m1,m2的物体,它们之间的引力F为:F=G(m1m2/d2)其中,G为引力常数,d为两个物体之间的距离。
牛顿第二定律:一个物体所受合外力等于物体的质量与加速度乘积。
设一个物体所受外力为F,物体的质量为m,物体所受加速度为a,则它们之间的关系为:F=ma当弹簧劈力对一物体(m1)作用时,它所受的劈力Fp与其拉伸x的关系为:Fp=kx其中,k为劈力系数,是弹簧的劲度系数。
经过实验证明,这个规律适用于任何拉伸距离x。
由此可得Fp随x的增大而线性增加。
当物体受到静摩擦力时,摩擦力Ff的大小是不超过物体受到的压强与μs(静摩擦系数)之积的。
即:Ff≤μsN如果物体加速度为0,则Ff = μsN,N为物体所受支持力。
物体所受的动摩擦力Ff与物体所受的化学作用力相同,大小等于物体所受的支持力Fa与μk(动摩擦系数)之积,即:Ff=μkFa当物体加速度与摩擦力的方向相同时,动摩擦力向反方向产生反作用力(如制动器,车轮制动等),使物体加速度减小或停止。
五、受力合成与分解受力合成指将多个受力作用于一个物体上的推力合成为一个合力的过程。
受力的作用方向可能是不同的,因此,在进行合力计算时,必须根据矢量的几何特性,按照两个矢量的起点相接,终点相连成一个新矢量。
万有引力常数精确测量

科学研究方法--万有引力常数G 的自由落体法精确测量我们从伽利略的自由落体实验到牛顿自然哲学数学原理的发表,感受微积分带给我们的方向,到经典物理大厦的倒塌,爱因斯坦的相对论的产生,到如今的拓扑学和计算机的出现,这每一次的看似新知识的出现,都出现着新的科学研究方法的变革,认识世界的方法,认识客观世界的基本思维方法。
现在我们真实的感受下科学研究方,我们客观的认识一下研究新事物的一种思维方法。
万有引力常数G 是一个与理论物理、天体物理和地球物理等密切相关的物理学基本常数, 它的精确测量在引力实验乃至整个实验物理学中占据着特殊地位. 尽管两个多世纪以来科学家们为此竭尽全力, 但G 的测量精度仍然是物理学基本常数中最差的. 现在我们认识实验室测量万有引力常数G 。
测G 的困难在过去的200 多年中, 人们在万有引力常数G 的测量过程中付出了极大的努力, 但引力常数G 测量精度的提高却非常缓慢, 几乎是每一个世纪才提高一个数量级. 这一领域的研究进展之所以如此缓慢,其原因是众所周知的. 首先, 万有引力是自然界四种基本相互作用力中最微弱的。
例如, 一个电子与一个质子之间的电磁相互作用约是它们之间的万有引力相互作用的1039倍。
微弱的引力信号极易被其他干扰信号所湮没, 因此在实验中必须克服电磁力、地面振动、温度变化等因素对实验的干扰, 测量必须在一些采取特别措施的实验室进行。
其次, 万有引力是不可屏蔽的, 因此检验质量必然会受到除了实验专门设置的吸引质量以外的其他物体的引力干扰, 比如实验仪器、实验背景质量、实验人员等. 另外, 移动的质量体, 如实验室附近驶过的车辆以及行人都会给实验带来引力扰动. 即使在十分偏僻安静的实验室,云层气压、雨雪等天气的变化等都会干扰测量结果。
第三, 到目前为止, 还没发现G 与任何其他基本常数之间存在确定的联系, 因此不可能用其他基本常数来间接确定G 值, 只能根据牛顿万有引力定律。
万有引力与天体运动研究报告小结

万有引力与天体运动研究报告小结示例文章篇一:《万有引力与天体运动研究报告小结》嘿,你知道吗?咱们生活的这个宇宙啊,就像一个超级神秘又超级有趣的大游乐场,而万有引力和天体运动呢,就像是这个游乐场里最刺激、最神秘的游乐项目。
咱先来说说万有引力吧。
牛顿发现万有引力的时候,那可真是一个超级伟大的时刻,就好像在黑暗中突然点亮了一盏超级亮的灯。
我就想啊,牛顿当时肯定是个超级爱思考的人。
你看啊,苹果从树上掉下来,这事儿在咱平常人眼里,那就是个再平常不过的事儿了,说不定还会想,这苹果熟了不掉下来才怪呢。
可是牛顿他老人家就不一样啊,他就琢磨着,为啥这苹果是往地上掉,而不是往天上飞呢?这一琢磨可不得了,就琢磨出了万有引力这个大宝贝。
万有引力就像是宇宙中的一条看不见的绳子。
你想啊,咱们地球上的东西,不管是大的像山,还是小的像一粒沙子,都被这条看不见的绳子给拴着呢。
而且这绳子的力量可神奇了,它不是乱拴的。
质量越大的东西,它拴得就越紧。
就好比是两个大力士在拔河,力气大的那个肯定能把力气小的那个拉得更靠近自己。
在宇宙里也是一样,像地球这么大质量的星球,就把咱们人啊、动物啊、还有那些花花草草,都紧紧地拽在自己身上。
要是没有万有引力,咱们估计就像气球一样,到处乱飞了。
那可就乱套了,说不定早上一睁眼,人就飘到外太空去了,想想都可怕。
再说说天体运动吧。
那些天体在宇宙里就像是一群舞者,各自有着自己独特的舞步。
行星绕着恒星转,就像孩子围着妈妈转一样。
拿咱们地球来说吧,地球就绕着太阳这个大火球转啊转。
我就常常在想,地球在转的时候,会不会也有累的时候呢?哈哈,这当然是开玩笑啦。
地球的这种运动可是非常有规律的,它就这么一圈又一圈地转着,带来了白天和黑夜,带来了春夏秋冬。
其他的行星也一样啊。
它们在万有引力的作用下,有条不紊地进行着自己的运动。
你看木星,那可是个大家伙,它也乖乖地按照自己的轨道运行。
这就好比是在一个超级大的舞池里,每个舞者都知道自己的位置,都知道自己该怎么跳,谁也不会乱了脚步。
大学物理重力加速度的测定实验报告范文

大学物理重力加速度的测定实验报告范文一、实验任务精确测定银川地区的重力加速度二、实验要求测量结果的相对不确定度不超过5%三、物理模型的建立及比较初步确定有以下六种模型方案:方法一、用打点计时器测量所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.方法二、用滴水法测重力加速度调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面重力加速度的计算公式推导如下:取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知:ncosα-mg=0 (1)nsinα=mω2x (2)两式相比得tgα=ω2x/g,又tgα=dy/dx,∴dy=ω2xdx/g,∴y/x=ω2x/2g. ∴g=ω2x2/2y..将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g.方法四、光电控制计时法调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.方法五、用圆锥摆测量所用仪器为:米尺、秒表、单摆.使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得:g=4π2n2h/t2.将所测的n、t、h代入即可求得g值.方法六、单摆法测量重力加速度在摆角很小时,摆动周期为:则通过对以上六种方法的比较,本想尝试利用光电控制计时法来测量,但因为实验室器材不全,故该方法无法进行;对其他几种方法反复比较,用单摆法测量重力加速度原理、方法都比较简单且最熟悉,仪器在实验室也很齐全,故利用该方法来测最为顺利,从而可以得到更为精确的值。
大学物理重力加速度的测定实验报告范文实验报告

大学物理重力加速度的测定实验报告实验目的本实验旨在通过测定自由落体运动的时间和位移数据,计算出地球上的重力加速度,并了解测量误差的处理方法。
实验原理自由落体运动是指物体在没有任何外力作用下,从静止开始自由运动的情况。
在实验中,我们会利用自由落体运动的情况来测定重力加速度。
自由落体运动的路程与时间之间的关系可以用以下公式表示:$d=\\frac{1}{2}gt^2$其中,d代表物体下落的位移,g代表重力加速度,t代表下落的时间。
通过测量下落的时间和位移,我们可以计算出重力加速度g。
实验材料和设备•自由落体实验器•计时器•尺子或直尺实验步骤1.在实验室内设置自由落体实验器,保证垂直下落的物体不受任何干扰,并且与测量尺子垂直。
2.调整实验器,使得下落物体从计时器的触发器处开始运动。
3.用计时器测量下落物体的时间,并记录数据。
4.用尺子或直尺测量下落物体的位移,并记录数据。
5.根据测量数据计算出重力加速度g。
6.重复以上步骤多次,取平均值作为最终结果。
实验数据及结果以下是三次测量的时间和位移数据:时间(s)位移(m)0.463 1.110.472 1.150.455 1.08根据上表数据可以计算出平均重力加速度:$g=\\frac{2d}{t^2}=9.83m/s^2$实验误差分析和处理实验中可能会出现一些误差,如气流扰动、实验器调整不好、计时误差等。
这些误差都会影响实验结果的准确性和精度。
为了降低误差,我们可以采取以下措施:1.尽可能减小气流的扰动,将实验器摆放在通风较好的地方。
2.调整实验器,使其最大限度地减小位移误差。
3.多次测量,并计算平均值。
根据实验数据的误差分析,我们可以得出结论:在本次实验中,测定的重力加速度为9.83m/s2,该值与实际值9.81m/s2比较接近,实验结果较为准确。
结论通过本次实验,我们了解了物理实验中的基本原理、方法和步骤,掌握了重力加速度的计算方法,并学会了处理实验误差的方法,这些对于我们进行物理实验和科学研究都是非常重要的。