微分中值定理的证明题[1](1)

合集下载

微分中值定理例题

微分中值定理例题

理工大学微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理()()1.()0,(0)0,f x f f f ϕξξξξζξξξ'' <=>><≤[][]''''''[]<<≤1212121212121221112111211221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζϕ''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。

12n 12n 12n 11221122n 0011000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n nni i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >∀⋯⋯∈<<1++⋯+=++⋯+≤⋯=<=>α.'''=+-+∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 0011110000111()()()()().x 2!()()()()()(()()().)nn ni i i i i i i nni nniiiiiii i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======⎛⎫''-'-≥+-<<'≥+-===- ⎪⎝⎭∑∑∑∑∑∑∑注:x()3.)tan.2F ,F 2(0)0,(0)0,((cos02F f xf F F f ππξξπξξππππππξ [0]0'∈=[0]0=∴===[0]∈设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续,在(,)内可导,且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cossin F cos sin 0222222cos0)tan22x x x f f f πξξξξξξξξξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。

4-1 微分中值定理(一)

4-1 微分中值定理(一)

作辅助函数 (x) f (x)(f )(b) f (a) x
ba
显然 ,
在 [ a , b ] 上连续 ,在 ( a , b ) 内可导,且
(a) b f (a) a f (b) (b),由罗尔定理知至少存在一点
思路: 利用逆向b 思a维找出一即个定满理足结罗论尔成定立理条. 件证的毕函数
在 x0 , x1 之间至少存在一点

矛盾, 故假设不成立
二、拉格朗日中值定理 y
y f (x)
(1) 在区间 [ a , b ] 上连续 (2) 在区间 ( a , b ) 内可导
o a
bx
则至少存在一点
使 f ( ) f (b) f (a).
分析:问题转化为证f ( )f (bb) af (a) 0 b a
y f (x) B
D
2 b
x
推论: 若函数 在区间 I 上满足

在 I 上必为常数.
证: 在 I 上任取两点 格朗日中值定理 , 得
0
由 的任意性知,
在 I 上为常数 .
推论: 若函数
在区间 I 内导数恒相等,
则在 I 内有
推论: 若函数
的导数在区间 I 内不变号,
则 在 I 内严格单调.
例2
例3. 证明等式 证: 设
g(b) g(a)
则(x)在[a,b]上连续,在(a,b)内可导, 且
(a) f (b)g(a) f (a)g(b) (b)
g(b) g(a)
由罗尔定理知, 至少存在一点
f (b) f (a) f ( ) . g(b) g(a) g( )
思考: 柯西定理的下述证法对吗 ?
f (b) f (a) f ( )(b a), (a , b)

微分中值定理的证明

微分中值定理的证明

2014届本科毕业论文(设计)题目:微分中值定理的证明及其应学院:数学科学学院专业班级:数学09-3班学生姓名:迪丽尼格尔■艾来提指导教师:依力夏提答辩日期:2014年月日新疆师范大学教务处1引言 (2)1.1最大最小定理............................... 错误!未定义书签。

1.2介值性定理 .................................. 错误!未定义书签。

1.3根的存在性定理 .............................. 错误!未定义书签。

1.4 一致连续性定理 .............................. 错误!未定义书签。

1.5费马定理.................................... 错误!未定义书签。

1.6有界性定理.................................. 错误!未定义书签。

2微分中值定理错误!未定义书签。

2.1罗尔中值定理 ............................... 错误!未定义书签。

2.2拉格朗日中值定理 ............................ 错误!未定义书签。

2.3柯西中值定理 ............................... 错误!未定义书签。

3微分中值定理的证明.................................................. 错误!未定义书签。

3.1罗尔中值定理的证明......................... 错误!未定义书签。

3.2拉格朗日中值定理的证明..................... 错误!未定义书签。

3.3柯西中值定理的证明......................... 错误!未定义书签。

4微分中值定理的证明的几何解释........................ 错误!未定义书签。

微分中值定理例题

微分中值定理例题

理工大学微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理()()1.()0,(0)0,f x f f f ϕξξξξζξξξ'' <=>><≤[][]''''''[]<<≤1212121212121221112111211221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζϕ''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。

12n 12n 12n 11221122n 0011000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n nni i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >∀⋯⋯∈<<1++⋯+=++⋯+≤⋯=<=>α.'''=+-+∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 0011110000111()()()()().x 2!()()()()()(()()().)nn ni i i i i i i nni nniiiiiii i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======⎛⎫''-'-≥+-<<'≥+-===- ⎪⎝⎭∑∑∑∑∑∑∑注:x()3.)tan.2F ,F 2(0)0,(0)0,((cos02F f xf F F f ππξξπξξππππππξ [0]0'∈=[0]0=∴===[0]∈设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续,在(,)内可导,且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cossin F cos sin 0222222cos0)tan22x x x f f f πξξξξξξξξξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。

考研:微分中值定理的证明题汇总

考研:微分中值定理的证明题汇总
由零点定理可知: F ( x) 在 (0,1) 内至少存在一点 ,使得 F ( ) 0 ,即:
f ( )
唯一性: (反证法) 假设有两个点 1 , 2 (0,1) ,且 1 2 ,使得 F (1 ) F ( 2 ) 0
F ( x) 在 [0,1] 上连续且可导,且 [1 , 2 ] [0,1] F ( x) 在 [1 , 2 ] 上满足 Rolle 定理条件 必存在一点 (1 , 2 ) ,使得: F () f () 1 0
而 f (a) 0 故在 (a, a
f (a) ) 内 f ( x) 0 有唯一的实根 k
1 2 t0 t sin 12. 试问如下推论过程是否正确。对函数 f (t ) 在 [0, x] 上应用拉 t t 0 0
格朗日中值定理得:
f ( x ) f ( 0 ) x0 1 x2 s i n 0 1 1 1 x x s i n f ( ) 2 s in co s x) (0 x0 x
即: cos
1

2 sin
1

x sin
1 x
( 0 x )
因0 x, 故当 x 0 时, 由m i l 2 n s i 0 0,
0
1


x 0
lim x sin
1 0 x
得: lim cos
x 0
1

0 ,即 lim cos
0
【证明】令 G( x) f (a x) f ( x) , x [0, a] . G( x) 在[0,a]上连续,且
G(a) f (2a) f (a) f (0) f (a) G(0) f (a) f (0)

微分中值定理经典题型

微分中值定理经典题型
2
例2 设 f ( x)在U(a, )内具有二阶连续导数 ,
f (a) 0 , a h U (a, ),且
f (a h) f (a) hf (a h) (0 1),
证明:lim 1 / 2. h0
证明: f (a h) f (a) hf (a h)
f (a) h[ f (a) f (a 1 h) h] (0 1 1),
f
( x0 )
1 2
f
(1 ) x02
1 2
f
(2 )(1
x0 )2
f ( x) 1,
f
( x0 )
1 2
x02
1 (1 2
x0 )2
(
x0
1)2 2
1 4
又由 x0 [0,1] 知,
x0
1 2
1, 2
于是有
f
( x0 )
1 2
由 x0 的任意性,可知命题成立.
类似地, 若函数 f ( x) 在 [0,1] 上二阶可微,且 f ( x) a, f ( x) b,其中a, b是非负数. 证明 : x (0,1),有 f ( x) 2a b .
x
x
7 试证至少存在一点
使
证: 法2 用柯西中值定理 . 令
f ( x) sinln x , F ( x) ln x
则 f (x) , F(x) 在 [ 1 , e ] 上满足柯西中值定理条件,
因此
f (e) f (1) f ( ) , ( 1 , e ) F (e) F (1) F( )
故 方 程f ( x) 0,若 有 根必 有 唯 一 的 根,
以 下 只 须 证f (a f (a)) 0
方法1:
将f ( x)在[a,a

微积分中值定理习题课

微积分中值定理习题课

ek f ( ) ek kf ( ) 0
[e kx f ( x ) (e kx ) f ( x )]x 0
[e
kx
f ( x )]x 0.
1
设f (x)在[a, b]上连续, 在(a, b)内可导, 且
f (a ) f (b) 0, f ( x ) 0, x (a , b). 证明: f ( ) k. 对任意的实数k, 存在点 (a b), 使 f ( ) 证 设g( x ) ekx f ( x ) [e kx f ( x )]x 0 ; 则(1) g( x )在[a, b]上连续 ;(2) g( x )在(a, b)内可导
设函数 f (x)在[0, 3]上连续,在(0, 3)内可导, 且f (0) f (1) f ( 2) 3, f ( 3) 1. 试证必存在 (0,3), 使f ( ) 0. x 在 f[( 在 [0, 2]上连续 , 证 因为 因为 ff(( (x)在 cx , )3] 上连续 , c)) [0, 1 3] f上连续 ( 3), 且 ,f 所以 且在 2]上必有最大值 M和最小值 必存在 ,于是 在(c,[0, 3)内可导 , 所以由Rolle 定理知,m m (cf,3 (0 (M , ), m f f 1) 0 M (( )) 0,3 使 . , m f ( 2) M . f (0) f (1) f ( 2) m M. 故 3 由介值定理知,至少存在一点 c [0,2], 使
综上, 存在 (a, b), 使得h( ) 0.
6分
4
考研数学(一、二、三)11分
(1) 证明拉格朗日中值定理: 若函数 f (x)在
[a, b]上连续, 在(a, b)内可导, 则存在 (a , b ), 使得f (b) f (a ) f ( )(b a ). (2) 证明: 若函数f ( x )在x 0处连续, 在(0, ) ( x ) A, 则f (0)存在, ( 0)内可导, 且 lim f

微分中值定理题目

微分中值定理题目

例1设()x f '在[]b a ,上存在,且()()b f a f '<',而r 为()a f '与()b f '之间的任一值,则在()b a ,内存在一点ξ,使得()r f ='ξ[7].例2设()x f 在()+∞,a 内可导,且()()A x f x f x a x ==+∞→→+lim lim ,试证:至少存在一点 ()+∞∈,a ξ,使得()0='ξf [7].例3设函数()x f 在[]b a ,上可导,且()()0_<'⋅'+b f a f ,则在()b a ,内至少存在一个ξ,使得()0='ξf [7].例4()x f 在[]b a ,上连续,在()b a ,内二阶可导,且()()()b f c f a f ==,()b c a <<, 试证:至少存在一个()b a ,∈ξ,使得()0=''ξf [2].例5设()x f 在[]1,0上有三阶导数,()()010==f f ,设()()x f x x F 3=,证明:存在 ()1,0∈ξ使得()0='''ξF .例6设()x f 在[]b a ,上可微,且()x f 在a 点的右导数()0<'+a f ,在b 点的左导数 ()0<'-b f ,()()c b f a f ==,证明:()x f '在()b a ,内至少有两个零点.例7设()x f 在R 上二次可导,()0>''x f ,又存在一点0x ,使()00<x f ,且 ()0lim <='-∞→a x f x ,()0lim >='+∞→b x f x ,证明:()x f 在R 上有且仅有两个零点. 例8()[]1,0在x f 上二次可导,()()010==f f ,试证明:存在()1,0∈ξ,使得()()()ξξξf f '-=''211[4].例9设()[]1,0在x f 上连续,在()1,0上可导, ()()010==f f ,121=⎪⎭⎫ ⎝⎛f .证明: 至少存在一点()1,0∈ξ使得()1='ξf .例10设函数()x f 在闭区间[]b a ,上连续,在开区间()b a ,上二次可微,连结()()a f a ,与()()b f b ,的直线段与曲线()x f y =相交于()()c f c ,,其中b c a <<.证明在()b a ,上至少存在一点ξ,使得()0=''ξf [1].例11设()x f 在[]b a ,上连续,在()b a ,内可导,且()()1==b f a f 试证:存在ξ, ()b a ,∈η使得 ()()[]1='+-ηηξηf f e [1].例12 设函数()x f 在[]b a ,上连续,在()b a ,上二阶可微,并且()()b f a f =,证明:若存在点()b a c ,∈,使得()()a f c f >,则必存在点()b a ,,,∈ζηξ,使得()0>'ξf ,()0<'ηf ,()0<''ζf [6].例13设()x f 定义在[]1,0上,()x f '存在且()x f '单调递减,()00=f ,证明: 对于 10≤+≤≤≤b a b a ,恒有()()()b f a f b a f +≤+.例14 设()x f 在[]b a ,上连续,在()b a ,可导,b a <≤0,()()b f a f ≠.证明:存在η,()b a ,∈ξ,使得()()ηηξf b a f '+='2 [6]. 例15 设()x f 在[]b a ,上连续,在()b a ,可导,且()0≠'x f ,试证:存在η,()b a ,∈ξ,使得()()ηηξ---=''e ab e e f f ab [1]. 例16设函数()x f 在[]b a ,上连续,在()b a ,可导,证明:存在()b a ,∈ξ,使得()()()()ξξξf f ab a af b bf '+=--[1]. 例17设()[]b a x f ,在上连续()0>a ,在()b a ,可导,证明:在()b a ,内存在ξ,η,使()()ab f f ηηξ'='2[1].例18 设()[]b a x f ,在上连续,在()b a ,内可微,0>>a b ,证明:在()b a ,内存在321,,x x x ,使得()()()()33223222211ln42x f x a b a b x x f a b x x f '-='+='. (3) 例19设()x f 在()b a ,内二次可微,试用柯西中值定理证明:任意x ,()b a x ,0∈,存在ξ在x 与0x 之间,使()()()()()()2000021x x f x x x f x f x f -''+-'+=ξ成立[6]. (8)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分中值定理的证明题1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ∀∈,(,)a b ξ∃∈使得:()()0f f ξλξ'+=。

证:构造函数()()x F x f x e λ=,则()F x 在[,]a b 上连续,在(,)a b 内可导, 且()()0F a F b ==,由罗尔中值定理知:,)a b ξ∃∈(,使()0F ξ'=即:[()()]0f f e λξξλξ'+=,而0e λξ≠,故()()0f f ξλξ'+=。

2. 设,0a b >,证明:(,)a b ξ∃∈,使得(1)()b a ae be e a b ξξ-=--。

证:将上等式变形得:1111111111(1)()b ae e e b a b aξξ-=--作辅助函数1()xf x xe =,则()f x 在11[,]b a上连续,在11(,)b a 内可导,由拉格朗日定理得:11()()1()11f f b a f b aξ-'=- 1ξ11(,)b a ∈ , 即 11111(1)11b ae eba eb a ξξ-=-- 1ξ11(,)b a ∈ , 即: )()1(b a e be ae a b --=-ξξ (,)a b ξ∈。

3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0F ξ''=。

证:显然()F x 在[0,1]上连续,在(0,1)内可导,又(0)(1)0F F ==,故由罗尔定理知:0(0,1)x ∃∈,使得0()0F x '=又2()2()()F x xf x x f x ''=+,故(0)0F '=, 于是()F x '在0[0]x ,上满足罗尔定理条件,故存在0(0,)x ξ∈, 使得:()0F ξ''=,而0(0,)x ξ∈⊂(0,1),即证4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明: (1)在(0,1)内存在ξ,使得ξξ-=1)(f .(2) 在(0,1)内存在两个不同的点ζ,1)()(//=ηζηf f 使得【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【证明】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II )在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是,由问题(1)的结论有.1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f 5. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.【分析】)(x f 在[0,2a]上连续,条件中没有涉及导数或微分,用介值定理或根的存在性定理证明。

辅助函数可如下得到0)()(0)()()()(=-+→=-+→=+x f x a f f a f f a f ξξξξ【证明】令)()()(x f x a f x G -+=,],0[a x ∈.)(x G 在[0,a]上连续,且 )()0()()2()(a f f a f a f a G -=-=)0()()0(f a f G -=当)0()(f a f =时,取0=ξ,即有)()(ξξf a f =+;当)0()(f a f ≠时,0)()0(<a G G ,由根的存在性定理知存在),0(a ∈ξ使得,0)(=ξG ,即)()(ξξf a f =+.6. 若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<<x f ,且1)(≠'x f ,证明:在)1,0( 内有且仅有一个点ξ使得ξξ=)(f 证明:存在性构造辅助函数x x f x F -=)()(则)(x F 在]1,0[上连续,且有00)0()0(>-=f F ,01)1()1(<-=f F ,∴由零点定理可知:)(x F 在)1,0(内至少存在一点ξ,使得0)(=ξF ,即:ξξ=)(f唯一性:(反证法)假设有两个点)1,0(,21∈ξξ,且21ξξ<,使得0)()(21==ξξF F)(x F 在]1,0[上连续且可导,且⊂],[21ξξ]1,0[ ∴)(x F 在],[21ξξ上满足Rolle 定理条件∴必存在一点),(21ξξ∈η,使得:01)()(=-'='ηηf F 即:1)(=η'f ,这与已知中1)(≠'x f 矛盾∴假设不成立,即:x x f x F -=)()(在)1,0(内仅有一个根,综上所述:在)1,0(内有且仅有一个点ξ,使得ξξ=)(f7. 设)(x f 在[0,1]上连续,在(0,1)内可导,且)0(f =)1(f =0,)21(f =1。

试证至少存在一个∈ξ(0,1),使()f =1。

分析:)('ξf =1⇒)('x f =1⇒)(x f =x ⇒x x f -)(=0 令 F (x )= x x f -)( 证明: 令 F(x )= x x f -)(F (x )在[0,1]上连续,在(0,1)内可导, F (1)= )0)1((011)1(=<-=-f fF (21)= )1)21((02121)21(=>=-f f由介值定理可知,∃一个∈η(21,1),使F (η)=0 又 F (0)=-)0(f 0=0对F (x )在[0,1]上用Rolle 定理,∃一个∈ξ(0,η)⊂(0,1)使 )('ξF =0 即 )('ξf =18. 设)(x f 在]1,0[上连续,在)1,0(内可导,且)1()0(f f =试证存在ξ和η.满足10<<<ηξ,使0)()(='+'ηξf f 。

证 由拉格朗日中值定理知,)(021)0()21(ξf f f '=-- )21,0(∈ξ)1,21()(211)21()1(∈'=--ηηf f f021)21()1(21)0()21()()(=-+-='+'f f f f f f ηξ 9. 设()f x 在[,]a b 上连续,(,)a b 内可导(0),a b ≤<()(),f a f b ≠ 证明: ,(,)a b ξη∃∈使得 ()().2a bf f ξηη+''=(1) 证: (用()b a -乘于(1)式两端,知)(1)式等价于22()()()().12f f b a b a ξηη''-=- (2)为证此式,只要取()(),F x f x =取()G x x =和2x 在[,]a b 上分别应用Cauchy 中值定理,则知22()()()()()(),12f f f b f a b a b a ξηη''-=-=- 其中,(,)a b ξη∈.10. 已知函数)(x f 在[0 ,1]上连续,在(0 ,1)内可导,b a <<0,证明存在),(,b a ∈ηξ,使)()()(3/22/2ηξηf b ab a f ++=解:利用柯西中值定理332/)()(3)(ab a f b f f --=ηη 而))(()()(/a b f a f b f -=-ξ 则22/33/332/)())(()()(3)(bab a f a b a b f a b a f b f f ++=--=--=ξξηη(后面略) 11. 设)(x f 在a x ≥时连续,0)(<a f ,当a x >时,0)(/>>k x f ,则在))(,(ka f a a -内0)(=x f 有唯一的实根解:因为0)(/>>k x f ,则)(x f 在))(,(ka f a a -上单调增加 0])(1)[()()()())((//>-=-=-kf a f k a f f a f k a f a f ξξ(中值定理)而0)(<a f 故在))(,(ka f a a -内0)(=x f 有唯一的实根 12. 试问如下推论过程是否正确。

对函数21sin0()00t t f t tt ⎧≠⎪=⎨⎪=⎩在[0,]x 上应用拉格朗日中值定理得:21sin 0()(0)111sin ()2sin cos 00x f x f x x f x x x ξξξξ--'====--- (0)x ξ<< 即:111cos2sinsinx xξξξ=- (0)x ξ<< 因0x ξ<<,故当0x →时,0ξ→,由01lim 2sin0ξξξ+→= 01lim sin 0x x x+→= 得:0lim x +→1cos 0ξ=,即01lim cos0ξξ+→=解:我们已经知道,01lim cos0ξξ+→=不存在,故以上推理过程错误。

首先应注意:上面应用拉格朗日中值的ξ是个中值点,是由f 和区间[0,]x 的端点而定的,具体地说,ξ与x 有关系,是依赖于x 的,当0x →时,ξ不一定连续地趋于零,它可以跳跃地取某些值趋于零,从而使01lim cos 0x ξ+→=成立,而01lim cos0ξξ+→=中要求ξ是连续地趋于零。

故由01lim cos 0x ξ+→=推不出1lim cos0ξξ+→=13. 证明:02x π∀<<成立2cos xx tgx x<<。

证明:作辅助函数()f x tgx =,则()f x 在[0,]x 上连续,在(0,)x 内可导, 由拉格朗日定理知:2()(0)1()0cos f x f tgx f x x ξξ-'===-(0,)x ξ∈即:2cos x tgx ξ=,因cos x 在(0,)2π内单调递减,故21cos x 在(0,)2π内单调递增,故222111cos 0cos cos x ξ<<即:22cos cos x xx xξ<< 即:21cos x tgx x<<。

相关文档
最新文档