机器人实验报告
机器人创新设计实验报告

括号出了问题。 在第三阶段中遇到的主要是后轮与轴的结构固定,花了半个多小时,都没有进展, 经过老师的讲解之后,我们小组又查看相关资料,最后成功解决。 第四阶段让老师评价的时候,机器车没走多长时间,就不走了。怕烧掉 CPU,吴 老师说拆了,我们小组分析有可能是用一个电机驱动导致的,只要改变驱动方式 (增加驱动电机)就可以了。 七、机器人创新设计实验总结。
1、2、3、4 为传感器接口
5 红外接收端口
6 手柄 ABC 三通道的选择键
7 程序写保护,on 允许下载 反之不允许,如果要运行板载程序,则转换到非 on 状态 8 为程序下载接口,连接 usb 转串口线
工业机器人搬运实验报告总结

工业机器人搬运实验报告总结
一、实验目标
本次实验的目标是掌握工业机器人在搬运工作中的应用,了解机器人的编程与控制,提高实际操作能力,并探索机器人在实际生产中的优势与局限性。
二、实验原理
工业机器人是一种能够自动执行任务的机器系统,可以通过预设的程序或人工智能技术自主完成搬运、装配、检测等生产任务。
其核心原理主要包括运动学、动力学和控制理论等。
三、操作过程
1. 实验前准备:确保机器人及其周边设备安全,检查电源及控制系统。
2. 编程与调试:根据搬运任务需求,编写机器人程序,并进行调试,确保机器人能够准确完成任务。
3. 实际操作:启动机器人,观察其搬运过程,并记录相关数据。
4. 实验后整理:关闭机器人,整理实验设备,撰写报告。
四、数据分析与结论
根据实验数据,可以分析出机器人在搬运过程中的效率、精度和稳定性等方面的优势。
例如,对比人工搬运,机器人可以在恶劣环境下连续工作,大幅提高生产效率。
但同时,机器人的初期投资和维护成本较高,且对于复杂环境下的适应能力仍需提高。
五、实验总结
通过本次实验,我们深入了解了工业机器人在搬运工作中的应用和优势。
在实际操作中,我们掌握了机器人的编程与控制技术,提高了实际操作能力。
同时,我们也认识到机器人在实际生产中的局限性,为未来的研究与应用提供了方向。
机器人技术基础实验报告6

机器人技术基础实验报告6一、实验目的本次机器人技术基础实验的目的在于深入了解机器人的运动控制、感知与交互能力,并通过实际操作和观察,掌握机器人系统的基本原理和应用方法。
二、实验设备1、机器人本体:采用了一款具有多关节自由度的工业机器人模型。
2、控制器:配备了高性能的运动控制卡和处理器,用于实现对机器人的精确控制。
3、传感器套件:包括视觉传感器、力传感器和距离传感器等,以获取机器人周围环境的信息。
4、编程软件:使用了专业的机器人编程工具,具备图形化编程和代码编辑功能。
三、实验原理1、运动学原理机器人的运动学研究了机器人各个关节的位置、速度和加速度之间的关系。
通过建立数学模型,可以计算出机器人末端执行器在空间中的位置和姿态。
2、动力学原理动力学分析了机器人在运动过程中所受到的力和力矩,以及这些力和力矩对机器人运动的影响。
这对于设计合理的控制策略和驱动系统至关重要。
3、传感器融合技术通过融合多种传感器的数据,如视觉、力和距离等信息,可以使机器人更全面、准确地感知周围环境,从而做出更智能的决策和动作。
四、实验步骤1、机器人系统初始化首先,对机器人进行了机械和电气连接的检查,确保各部件安装牢固且线路连接正常。
然后,通过控制器对机器人进行初始化设置,包括关节零位校准、运动范围设定等。
2、运动控制编程使用编程软件,编写了简单的运动控制程序,实现了机器人的直线运动、圆弧运动和关节空间的运动轨迹规划。
在编程过程中,充分考虑了运动速度、加速度和精度的要求。
3、传感器数据采集与处理启动传感器套件,采集机器人周围环境的信息。
通过编写相应的程序,对传感器数据进行滤波、融合和分析,提取有用的特征和信息。
4、机器人交互实验设计了人机交互场景,通过示教器或上位机软件向机器人发送指令,观察机器人的响应和动作。
同时,机器人也能够根据传感器反馈的信息,主动与环境进行交互,如避障、抓取物体等。
五、实验结果与分析1、运动控制精度通过对机器人运动轨迹的实际测量和与理论轨迹的对比分析,发现机器人在直线运动和圆弧运动中的位置精度能够达到预期要求,但在高速运动时存在一定的误差。
机器人实验报告

机器人实验报告一、实验背景随着科技的飞速发展,机器人在各个领域的应用越来越广泛。
为了深入了解机器人的性能和功能,我们进行了一系列的实验。
二、实验目的本次实验的主要目的是:1、测试机器人在不同环境下的运动能力和适应性。
2、评估机器人的感知系统,包括视觉、听觉和触觉等方面的表现。
3、探究机器人在执行任务时的准确性和效率。
三、实验设备与材料1、实验所用机器人型号为_____,具备多种传感器和执行器。
2、测试场地包括室内的平整地面、有障碍物的区域以及室外的不同地形。
3、相关的测试工具,如测量距离的仪器、记录数据的设备等。
四、实验过程(一)运动能力测试1、在室内平整地面上,设置了一定长度的直线跑道,让机器人以不同的速度进行直线运动,并记录其到达终点的时间和运动过程中的稳定性。
2、在有障碍物的区域,放置了各种形状和高度的障碍物,观察机器人如何避开障碍物并继续前进,同时记录其避障的反应时间和准确性。
(二)感知系统测试1、视觉感知测试:在不同的光照条件下,展示不同颜色和形状的物体,观察机器人能否准确识别并做出相应的反应。
2、听觉感知测试:在不同的声音环境中,发出特定的声音指令,检测机器人对声音的识别和响应能力。
3、触觉感知测试:让机器人接触不同质地和硬度的物体,检查其对触觉信息的感知和处理能力。
(三)任务执行测试1、设定了一系列的任务,如搬运物品、整理物品、搜索特定目标等,观察机器人完成任务的准确性和所需时间。
五、实验结果与分析(一)运动能力1、机器人在直线运动中,速度越快,稳定性略有下降,但总体表现良好,能够在规定时间内到达终点。
2、在避障测试中,机器人能够及时检测到障碍物,并采取合理的避障策略,但在面对复杂的障碍物组合时,偶尔会出现碰撞情况。
(二)感知系统1、视觉感知方面,机器人在正常光照条件下对颜色和形状的识别准确率较高,但在低光照环境中,识别能力有所下降。
2、听觉感知表现较为出色,能够准确识别各种声音指令,并迅速做出响应。
智能机器人技术实训报告

一、绪论1.1 实训背景随着科技的飞速发展,智能机器人技术在我国得到了广泛的关注和应用。
为了提高我国智能机器人技术水平,培养具备实际操作能力的专业人才,我们开展了智能机器人技术实训。
本次实训旨在让学生了解智能机器人的基本原理、组成及工作流程,掌握智能机器人的编程、调试及维护方法,提高学生的实际操作能力和创新意识。
1.2 实训目的(1)使学生了解智能机器人的基本原理、组成及工作流程;(2)使学生掌握智能机器人的编程、调试及维护方法;(3)培养学生的实际操作能力和创新意识;(4)提高学生的团队协作能力和沟通能力。
二、实训内容2.1 实训环境本次实训在智能机器人实验室进行,实验室配备了多种智能机器人设备,包括工业机器人、服务机器人、教育机器人等。
2.2 实训项目(1)机器人基础操作与编程通过学习机器人基础操作,使学生掌握机器人的启动、停止、移动、抓取等基本操作。
同时,学习机器人编程语言,如Python、C++等,编写简单的机器人程序。
(2)机器人传感器应用学习机器人传感器的基本原理、类型及使用方法,如红外传感器、超声波传感器、视觉传感器等。
通过实验,让学生掌握如何使用传感器获取环境信息,实现机器人对环境的感知。
(3)机器人运动控制学习机器人运动控制的基本原理,如PID控制、轨迹规划等。
通过实验,让学生掌握如何控制机器人进行直线运动、曲线运动、抓取物体等。
(4)机器人任务规划与执行学习机器人任务规划的基本原理,如任务分解、路径规划等。
通过实验,让学生掌握如何为机器人分配任务,并指导机器人完成指定任务。
(5)机器人系统集成与调试学习机器人系统集成的基本原理,如硬件选型、软件配置等。
通过实验,让学生掌握如何将机器人与其他设备连接,实现系统集成。
同时,学习机器人调试方法,如故障诊断、性能优化等。
三、实训过程3.1 实训准备(1)学生分组:将学生分为若干小组,每组4-5人,每组选出一名组长。
(2)实训材料:准备实训所需的机器人设备、编程软件、传感器等。
机器人的实验报告

机器人的实验报告机器人的实验报告引言:机器人作为一种人工智能技术的应用,近年来在各个领域都得到了广泛的应用和研究。
本实验旨在探索机器人的功能和潜力,并通过实际操作来了解机器人的工作原理和应用场景。
一、机器人的概述机器人是一种能够自动执行任务的机械设备,它可以根据预设的程序或者通过学习自主地完成各种工作。
机器人通常由感知、决策和执行三个主要模块组成,感知模块用于获取环境信息,决策模块用于分析和处理信息,执行模块用于执行任务。
二、机器人的感知能力1. 视觉感知机器人可以通过摄像头等传感器获取视觉信息,进而识别物体、人脸等。
我们在实验中使用机器人进行人脸识别实验,通过训练机器人的神经网络,使其能够准确地识别出不同人脸。
2. 声音感知机器人可以通过麦克风等传感器获取声音信息,进而识别语音指令、环境声音等。
我们在实验中使用机器人进行语音识别实验,通过训练机器人的语音模型,使其能够准确地识别出不同语音指令。
三、机器人的决策能力机器人的决策能力是指机器人通过分析和处理感知到的信息,做出相应的决策。
在实验中,我们通过编写算法和程序,让机器人能够根据感知到的信息做出相应的动作。
四、机器人的执行能力机器人的执行能力是指机器人能够根据决策模块的指令,执行相应的任务。
在实验中,我们通过调用机器人的执行接口,使其能够执行我们预设的任务,比如移动、抓取物体等。
五、机器人的应用场景1. 工业制造机器人在工业制造领域有着广泛的应用,可以代替人工完成繁重、危险的工作,提高生产效率和产品质量。
2. 医疗护理机器人在医疗护理领域可以用于辅助手术、照料病人等工作,能够提供更加精准和可靠的服务。
3. 农业种植机器人在农业种植领域可以用于自动化种植、喷洒农药等工作,提高农作物的产量和质量。
4. 服务行业机器人在服务行业可以用于接待客人、提供咨询等服务,能够提高服务质量和效率。
六、机器人的未来展望随着人工智能技术的不断发展,机器人的功能和潜力将会越来越大。
先进机器人技术实验报告

先进机器人技术实验报告一、实验目的学习完《先进机器人技术》这门课程之后,在对机械手操作空间变换的知识有所掌握的基础上,通过实践中对机械手控制的操作,加深对机械手操作空间变换的认识。
二、实验仪器STAUBLI TX90机器人三、实验原理机器人的程序编制是机器人运动和控制的结合点,是实现人与机器人通信的主要方法,机器人系统的编程能力极大的决定了具体的机器人使用功能的灵活性和智能程度。
对机器人编程,要求能够建立世界模型,能够描述机器人的作业,能够描述机器人的运动,同时,也要有良好的编程环境。
机器人编程语言一般的基本功能有运算、决策、通信、机械手运动、工具指令和传感器数据处理等,常用的机器人编程语言有AL、AUTOPASS、LAMA-S、VAL、ARIL、WAVE、DIAL、RPL 等,而在本次试验中的STAUBLI TX90机器人使用的编程语言就是VAL语言。
VAL语言是在BASIC语言的基础上扩展的机器人语言,它具有BASIC式的结构,并在此基础上添加了一批机器人编程指令和VAL监控操作系统,可连续实时运算,迅速实现复杂的运动控制。
VAL语言的编程指令简明,且指令和功能均可扩展,其编程方法和全部指令可用于多种计算机控制的机器人。
在本次实验中,通过在电脑软件界面上的编程,并通过模拟机械手末端的运动对程序进行完善,最终实现对STAUBLI TX90机器人操作末端的控制,写出每一位编程人员名字的最后一个字。
本次试验的使用的编程语言是“begin”、“movej”和“end”。
四、实验过程首先打开软件VAL Studio,在操作界面中,首先在程序页编写开头文字“begin”,换行,然后输入“waitEndMove”,换行,输入“end”,然后编译。
接着,转换到data界面,在界面中,开始定义机械手末端的运动坐标点、tTool1和mdesc1,定义完毕,转换回到编程界面,使用定义的运动坐标点,编写机械手末端的操作轨迹。
工业机器人实验报告

工业机器人实验报告本文主要介绍我所参与的工业机器人实验,包括实验背景、实验内容、实验过程和实验结果等方面的详细情况,旨在分享工业机器人实验的经验和思考。
一、实验背景工业机器人是一种自动化控制的机器人,广泛应用于工业生产中。
现代化的工厂越来越重视机器人的应用,所以工业机器人的研究和应用具有重要意义。
我所参与的工业机器人实验是由学校和企业合作开展的,旨在培养学生的机器人开发和控制能力。
本次实验采用的是ABB公司的机器人,通过编程控制机械臂完成指定的任务。
二、实验内容本次实验主要分为三个部分:机器人控制、机器人编程和机器人任务。
1. 机器人控制在机器人控制部分,我们学习了机器人的运动控制,包括机器人的运动模式、坐标系、速度和加速度等。
学习了如何通过控制器控制机器人的运动,包括机械臂的运动、手爪的张合等。
2. 机器人编程在机器人编程部分,我们学习了RoboStudio编程软件,通过编写程序实现机器人的自动化控制。
学习了如何编程控制机器人的主程序、子程序、条件语句、循环语句等基础语法。
3. 机器人任务在机器人任务部分,我们学习了如何将机器人应用于实际的生产任务中。
通过编写程序控制机器人完成指定的任务,包括拾取、放置、移动等操作。
三、实验过程在实验过程中,我们首先进行了机器人的基础操作练习,包括手爪的控制、机械臂的运动控制等。
然后,我们进行了机器人编程的实验,通过编写程序实现机器人的自动化操作。
最后,我们进行了实际的机器人任务操作,通过控制机器人完成指定的任务。
在实验中,我们遇到了很多问题,比如机器人的编程语言不熟悉、机器人的运动控制不熟练等。
但是我们通过不断的练习和思考,逐渐克服了这些问题,最终顺利完成了实验任务。
四、实验结果通过本次实验,我们深入了解了工业机器人的运动控制、编程和应用。
我们掌握了机器人运动控制的基本方法和技巧,学会了如何编写程序控制机器人完成指定的任务。
同时,我们也发现了机器人应用的潜力和优点,包括提高生产效率、降低生产成本、增强安全性等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器人实验报告
院系:电气信息工程学院班级:XX级电气X班
姓名:XXX
提交日期:201X年X月X日
前言
作为先进制造业中不可替代的重要装备和手段,工业机器人已经成为衡量一个国家制造水平和科技水平的重要标志。
机器人的应用越来越广泛,需求越来越大,其技术研究与发展越来越深入,这将提高社会生产率与产品质量,为社会创造巨大的财富。
本文将从工业机器的发展历史,现状及未来趋势进行阐述。
机器人技术作为20世纪人类最伟大的发明之一,自20世纪60年代初问世以来,经历了近50年的发展已取得显著成果。
走向成熟的工业机器人,各种用途的特种机器人的实用化,昭示着机器人技术灿烂的明天。
一、发展历史
工业机器人诞生于20 世纪60 年代,在20 世纪90 年代得到迅速发展,是最先产业化的机器人技术.它是综合了计算机,控制论,机构学,信息和传感技术,人工智能,仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域.它的出现是为了适应制造业规模化生产,解决单调,重复的体力劳动和提高生产质量而代替人工作业.在我国,工业机器人的真正使用到现在已经接近20 多年了,已经基本实现了试验,引进到自主开发的转变,促进了我国制造业,勘探业等行业的发展.随着我国改革开放的逐渐深入,国内的工业机器人产业将面对越来越大的竞争与冲击,因此,掌握国内工业机器人市场的实际情况,把握
我国工业机器人的相关技术与研究进展,显得十分重要。
二、发展现状
在普及第一代工业机器人的基础上,第二代工业机器人已经推广,成为主流安装机型,第三代智能机器人已占有一定比重(占日本1998年安装台数的10%,销售额的36%) (1)机械结构:1) 已关节型为主流,80年代发明的使用于装配作业的平
面关节机器人约占总量的1/3.90年代初开发的适应于窄小空间,快节奏,360度全工作空间范围的垂直关节机器人大量用于焊接和上,下料.2)应3K 和汽车,建筑,桥梁等行业需求, 超大型机器人应运而生.如焊接树10米长,10吨以上大构件的弧焊机器人群,采取蚂蚁啃骨头的协作机构.3)CAD,CAE 等技术已普遍用于设计,仿真和制造中. (2)控制技术:1) 大多数采用32位CPU,控制轴数多达27轴,NC 技术,离线编程技术大量采用.2) 协调控制技术日趋成熟,实现了多手与变位机,
多机器人的协调控制, 正逐步实现多智能体的协调控制. 采用基于PC 的开放
结构的控制系统已成为一股潮3) 流,其成本低,具有标准现场网络功能. (3)驱动技术:1) 80年代发展起来的AC 侍服驱动已成为主流驱动技术用于工业机器人中.DD 驱动技术则广泛地用于装配机器人中.2) 新一代的侍服电机与基于微处
理器的智能侍服控制器相结合已由FANUC 等公司开发并用于工业机器人中, 在远程控制中已采用了分布式智能驱动新技术. (4)应用智能化的传感器:装有视觉传感器的机器人数量呈上升趋势,不少机器人装有两种传感器,有些机器人留了多种传感器接口. (5)通用机器人编程语言:在ABB 公司的20多个小型号产品中,采用了通用模化块语言RAPID.最近美国"机器人工作空间技术公司"开发了Robot Script V.10通用语言,运行于该公司的通用机器人控制器URC 的Win
NT/95环境.该语言易学医用,可用于各种开发环境,与大多数WINDOWS 软件产品兼容. (6)网络通用方式:大部分机器人采用了Ether 网络通讯方式,占总量的41.3,其它采用RS-232,RA-422,RS-485等通讯接口. (7)高速,高精度,多功能化:目前,最快的装配机器人最大合成速度为16.5m/s. 位置重复精度为正负0.01mm. 但有一种速度竞达到80m/s; 而另一种并连机构的NC 机器人, 其位置重复精度大1微秒. (8)集成化与系统化:当今工业机器人技术的另一特点是应用从单机,单
元向系统发展.百台以上的机器人群与微机及周边智能设备和操作人员形成一
个大群体(多智能体) .跨国大集团的垄断和全球化的生产将世界众多厂家的产
品连接在一起,实现了标准化,开放化,网络化的"虚拟制造" ,为工业机器人系统化的发展推波助澜。
三、发展趋势
敏捷制造策略的提出,为工业机器人的发展提供了新的机遇。
敏捷制造的基本思想是企业能迅速将其组织和装备重组,快速响应市场变化,生产出满足用户需求的个性化产品。
敏捷制造要求企业底层的生产设备具有柔性和可动态重组的能力。
机器人是一种具有高度柔性的自动化生产设备。
如果我们站在更高的层次,将机器人视为一种有“感知、思维和行动”的机器,那么,敏捷生产设备就应当是新一代机器人化的机器。
四、技术难点
总趋势是系统越来越复杂,技术挑战越来越大。
早期就是遥操作,不需要运动规划,在关节空间做伺服控制就够了;现在大部分应用(如喷涂、焊接)是在结构化环境中做程序性动作,示教也好、轨迹规划也好,都很成熟,控制精度要求不高;有些复杂应用要使用多种传感器和复杂的规划和控制策略,如一些精巧操作需要更复杂的规划和控制策略,跟环境接触的场合要求“柔顺控制”和“力控制”,这些都是依赖于具体应用的;还有一些新的结构,如灵巧手、运动底座臂、双臂协调操作、高冗余度臂、柔性臂、空间漂浮臂、欠驱动臂等,在建模和控制、操作规划、传感器融合、故障诊断及容错、甚至智能化方面都各有其难度。
2016年1月8日。