BAF曝气生物滤池设计计算书

合集下载

污水处理曝气生物滤池(BAF)设计计算书

污水处理曝气生物滤池(BAF)设计计算书

BAF池计算水量Q2000m3/d进水BOD126mg/l出水BOD25mg/l容积负荷33-5kg/(m3*d)BAF池容积67.33333333填料层高度H1 2.5一般为2.5-4.5BAF池面积26.93333333BAF池个数n2BAF池边长 3.669695719BAF池边长取5配水室高h1 1.21.2-1.5承托层h20.30.2-0.3清水区h310.8-1.0超高0.50.3-0.5H 5.5填料体积125125气量可按EH的计算Q小时流量进水BOD出水BOD碳的氧当量X 平均需氧量EAGS(空气体积)200083.333333330.0750.015 1.680.280.15190.4762风机风量(m3/min3.174603175反洗风量反洗风量强度0.2-0.8m3/(m2*min)13.46667m3/min水冲强度0.5-1.0m3/(m2*min)808m3/h9.69621.6m3/(m2*h)581.76选择鼓风机时长柄滤头个数(每平方有36个滤头)969.6(台州中昌)36-492450滤板个数标准滤板尺寸980*980*100价格滤板采用整体浇注厚度180mm 1400-1500m2滤头12元/个滤料1500m3单孔曝气器0.28m3/个050元/个(成本22)#DIV/0!配水器1900元/套(成本)按照停留时间算T 1.5h上升流速度2m3/h有效水深3m水量Q2000m3/d小时流量83.33333333BAF池个数n2池子有效容积125单个池面积20.83333333104.1666667单个池宽度5单个池长度 4.166666667取6.0m单个池长度取5填料层高度H13配水室高h1 1.21.2-1.5承托层h20.20.2-0.3气反冲强度10L/m2*s 清水区h30.80.8-1.0超高0.30.3-0.5总高 5.5填料体积125长柄滤头个数1800(每平方有36-49个滤头)单孔膜曝气器1880曝气量8.4(周工计算,他是按照单孔膜曝气器数量反算的)反冲气量0.5气冲强度大于10L/m2*s0.6m3/m2*mi n曝气量 3.174603175m3/min鼓风机 3.19单孔膜曝气器683.5714286反洗风量强度0.2-0.8m3/(m2*min)12.5m3/min 水冲强度0.5-1.0m3/(m2*min)625m3/h长柄滤头个数(每平方有36个滤头)1500。

BAF计算书

BAF计算书

36 1512 9072
每池共计 总计
曝气器:选用BAF专用单孔膜空气扩散器,安装密度
36~49个/m2
36
每池共计 总计 BAF专用单孔膜空气扩散器通过空气量 计算共需 实际按 供气管为Ф 25 ABS工程塑料管
滤板选用BAF高精度滤板,标准尺寸为990×990×102mm
个 0.24~0.43m3/个·h 个 个
Q
所需反冲洗泵的扬程为
因而选用2台反冲洗水泵,单台额定流量Q=750m3/h,扬程H=13m能够满足反冲洗要求。
5)反冲洗风机选型
反冲洗空气量ຫໍສະໝຸດ Qm3/min35.28
风压计算:(详见给排水设计手册3P618~636) (1)气水室中冲洗水的压头P5(m)=h1’+h2+h3+h4
a.穿过长柄滤头的水头损失h2(m)=0.22 b.穿过承托层的水头损失h3(m)=0.22H2q1 c.穿过滤料层的水头损失h4(m)=(γ 1/γ -1)(1-m0)H d.气水室顶部水深h1’(m)h1=H+1(反冲洗时)
按气水比 设计供气量
为普通活性污泥低30~40% m /h m3/min
3 3
6 2500 41.67 6.94 0.15
生化鼓风机单池气量 曝气空气干管 曝气干管流速 曝气风机选型: (1)风量
m /min DN v m m/s m3/min kPa 10~15
6.55 6.94 60.000 2.50
W=B× L(≤100)
用卵石作承托层,其级配自上而下:d=2~4mm:100mm;d=4~8mm:100mm;d=8~16mm:100mm;
承托层高h2=0.3m,配水室高度h1=1.2m,清水区h3=1.0m,超高h4=0.5m,滤板高h5=0.1m

曝气生物滤池技术应用与设计计算

曝气生物滤池技术应用与设计计算
1 V 型进水布水槽 2 陶粒过滤层 3 承托层 4 处理水收集支管(反冲洗布水管)
5 处理水收集干管(反冲洗进水管) 6 曝气进气管 7 曝气布气管 8 反冲洗进气管 9 反冲洗布气管 10 反冲洗排水槽 图 2 曝气生物滤池
112 曝气生物滤池工艺设计 曝气生物滤池主要由生物反应过滤区 、曝气装
211 生物反应过滤区过滤面积及滤层厚度的确定 21111 生物反应过滤区过滤面积 S
S = Q/ ( v Tn)
(5)
式中 Q ———需处理的污水水量 , Q = 20 000 m3/ d ;
v ———污水过滤滤速 , v = 115 m/ h ;
T ———1 个运行周期 (24 h) 内滤池的实际工作 时间 ,设气水反冲洗时间为 10 min , T
013 ———空气中氧气含量的近似值 ;
016 ———空气的转化系数 。
曝气生物滤池需要的空气量由鼓风机房供给 ,
通过布设在池内的穿孔曝气管均匀地进入反应过滤
层 。穿孔曝气管管径大小依据需要空气量计算确
定。
11213 气水反冲洗系统
在运行周期内 ,随着时间的延续 ,滤层中的空隙
逐渐被新生长的生物固体和悬浮固体堵塞 ,滤层水
物 、悬浮物的去除 ,氨氮的硝化都是在生物过滤层中
进行的 ,所需要的氧量主要包括有机物的降解和氨
氮的硝化 。因此 ,生化反应需供给的空气量可由 (1)
式计算 :
Q = A ×ΔS BOD + B ×ΔPBOD + 4157 X N/
(013 ×016 ×24 × EA)
(1)
式中 Q ———生化反应需供给的2) 。
反冲洗水使用曝气生物滤池正常工作时出水 ,

水污染控制工程_第八章_生物膜法4—BAF计算

水污染控制工程_第八章_生物膜法4—BAF计算

曝气生物滤池的曝气类型为鼓风曝气,鼓风曝 气系统由鼓风机、空气扩散装置(曝气器)和一系 列连通的管道组成。 ① 空气扩散装置的选定和设计
对于曝气生物滤池来说,由于其特殊的池形结 构而导致空气扩散装置常用穿孔管曝气或专用曝气 器。空气扩散装置必须根据计算出的总供气量和每 个空气扩散装置的通气量、服务面积、安装位置处 的平面形状等数据,经过计算确定空气扩散装置的 数目,并对其进行布置。
4)污水流过滤料层高度的停留时间:
空塔停留时间 A· H t1= ×24 Q 式中:t1—污水流过滤料层高度的空塔停留时间,h; b. 实际停留时间: A· H t = ×24×е Q 式中:t—污水流过滤料层的实际停留时间,h; е —滤料层的空隙率,圆形陶粒滤料е =0.5; 对于采用曝气生物滤池处理生活污水或类似水质,其t1一般 不小于30min。 a.
5)水力负荷 Q q= A· 24
(1-7)
水力负荷一般在2~5m3/m2· h为宜。 停留时间及水力负荷一般用来对计算进行 复核。
6)举例
一座日处理20000m3污水的城市污水处理厂,采用曝 气生物滤池进行对BOD的降解,进水BOD5=153mg/l,要求 出水BOD5=20mg/l,计算DC曝气生物滤池的尺寸。 解: 采用BOD5有机负荷计算法进行计算:

滤池共分成4格,每格面积为: a= A / n= 221.7/4 =55.43 m2


考虑到方型池最节省,所以单格滤池定为方形池, 每格尺寸为7.45m×7.45m。 取配水室高度h1=1.2m,承托层高度h2=0.3m, 清水区高度h3=1.0m,超高h4=0.5m,则滤池总高度为: H0=H+h1+h2+h3+h4=4+1.2+0.3+1+0.5=7m 污水流过滤料层的实际停留时间: t=A· H×24×е /Q= 221.7×4×24×0.5/20000=0.532(h) 水力负荷: q= Q/ A· 24= 20000/221.7×24=3.76 m3/m2· h

曝气生物滤池计算书

曝气生物滤池计算书

曝气生物滤池1:滤池尺寸的计算 ①滤料体积W N S Q W 1000∆==dm kgBOD dkgBOD ∙⨯⨯⨯3/21000/2024670=160.8m 3其中,BAF 除碳的滤料负荷为2~6d m kgBOD ∙3/,取2d m kgBOD ∙3/ ②滤池表面积BAF 的滤料高度一般为2~4m ,取3m ,则BAF 的表面积为53.6m 2滤池面积过大时,会不利于布水布气的均匀,因此滤池面积过大时应当分格。

因此将滤池分六格,并联运行,单格表面积为:6mx6m (考虑到水力负荷将滤池面积适当扩大)正常水力负荷:670/36/6=3.10h m m ∙2/3当有一格滤池反洗时,最大水力负荷为:670/36/3=3.72h m m ∙2/3 满足除碳时最大水力负荷6.0h m m ∙2/3的要求。

③滤池深度 滤料层高度3m 配水配气室高度1.2m 承托层高度0.3m 清水区高度1.5m 超高0.5m则滤池的总深度为6.5m(承托层,清水区,配气配水室高度不确定,只在一些地方看到滤料被淹没1.5~m 比较好)2:反冲洗水量计算在资料中共查到如下几个数:室外给水设计规范P206:活性炭11.1(大粒径)或6.7S m L ∙2/(小粒径),15~20min 城镇给水第3册过滤那一章:P609固定式表面冲洗2~3S m L ∙2/,冲洗水头0.2MPa P612常用气水冲洗:先气冲——再气水同时(3~4S m L ∙2/)——后水冲(4~10S m L ∙2/) P617快滤池,只水冲时12~15S m L ∙2/ 参考的华北院项目中一般取18S m L ∙2/按水冲洗强度5S m L ∙2/则水量为5x6x6=180L/Sx3.6=648m3/h 。

可选三台反洗水泵,两用一备,单台能力为350 m3/h 反洗水量使用RO 浓水。

3:反冲洗气量计算在资料中共查到如下几个数:室外给水设计规范P206:活性炭13.9(大粒径)或13.9S m L ∙2/(小粒径) 5min 城镇给水第3册P612常用气水冲洗:先气冲(15~20S m L ∙2/)——再气水同时(12~18S m L ∙2/)——后水冲 一般取3.3S m L ∙2/(觉得此值不对,气水比应当是1~3比1)按气冲洗强度15S m L ∙2/则水量为15x6x6=540L/Sx3.6=1944m3/h=32.4 m3/min 可选两台鼓风机,一用一备,单台能力为33m3/min 。

BAF曝气生物滤池设计

BAF曝气生物滤池设计

( 28 20 )
0.36 mg/L 0.67 12%
kgO2/h m m
m3/min
m
m3/min m3/min m3/min m 4
反洗顺序:气洗→(停 30~60S)气、水洗→(停 30~60S)水洗→(较大土建 池)表面漂洗,每次按照以 上顺序进行1~2次反洗。 6.91
0.35)1.632
0.632
m3 m2 m
kgCODcr/(m3滤料· d)
m3/(m2· h) h 0.7 0.75
1 . 024
OR 0 .82 (
K La ( 20 )
△ BOD 5
S
) 0 .32 (
0.3
BOD 5
S S
SS
)
BOD 5
S
SBOD

MLVSS MLSS
S ' SS 1 . 42 (1
出水中溶解性BOD含量Se=S'BOD5-SSBOD= 去除可溶性BOD (2)实际需氧量AOR= ΔBOD5 =η×SBOD5-Se= 1.4× OR× SBOD5×Q/1000+4.57× Q× (SNH3-N-S'NH3-N)/1000=
11.4 或 3.0 m 3.8 或 2.2 或 或
3 2 h) 1.47 m /(m ·
10.2 3.4 2.1
或 或
kgBOD5/(m3滤料· d)
2.04 h 1.02 h 或 或 或 取,进水溶解性BOD5/进水BOD5,η= 取,MLVSS/MLSS= 8.00 2.94 0.51
m3/(m2· h) h
m3/(m2· min) m3/(m2· min) m3/(m2· min) m3/(m2· min) h

BAF计算书

BAF计算书

曝气生物滤池的应用范围较为广泛,其在水深度处理、微污染源水处理、难降解有机物处理、低温污水的硝化、低温微污染水处理中都有很好的、甚至不可替代的功能。

预处理为了使曝气生物滤池能有较长的运行周期,减少反冲次数降低能耗,运用BAF 的工艺都需对进水进行预处理,否则原水中的大量杂质和SS 将进入曝气滤池,将会堵塞曝气、布水系统,给系统的运行带来严重的后果。

尤其是滤池用于二级处理时,往往需投加药剂才能达到这一要求,药剂的使用不仅增加了运行费用,部分药剂还将降低碱度,进而影响硝化,这是运用BAF 工艺时需要考虑的问题。

除P 脱N在生物除P 技术中,将脱N 和除P 相结合的系统对除P 不利,因为除P 脱N 本身是一对不可调和的矛盾,如DO 太低除P 率会下降,硝化反应受到限制,污泥沉降性能差,如DO 太高,则由于回流厌氧区DO 增加,反硝化受到限制,同时NO3- N 的浓度高可影响厌氧区P 的释放。

因为,P 的释放最好为厌氧环境,如果有NO3- N 存在就表明只能为兼氧环境。

从BAF 运行工艺看,完全用生物除P 是很难达到排放标准的。

用生物除P 就失去了生物滤池高负荷的特点,造成投资过大,因此最好用加FeCl3 药剂的方法除P ,而生物滤池由于耐水力冲击负荷,可使处理后的水超量回流,并在运行中加化学药剂,将化学处理和生物处理同时应用于系统中,达到除P 脱N 目的,使化学药剂用量相对减少,从而降低运行费用。

曝气生物滤池设计1 曝气生物滤池滤料体积 30120024096100010003v QS V m N ⨯===⨯ BOD 容积负荷选3Kg d m BOD ⋅35,采用陶粒滤料,粒径5mm 。

2 滤料面积滤料高度取h 3=2m 2396482V A m h ===滤池采用圆形,则滤池直径m Ad 52.214.35441=⨯==π,取2.5m 取滤池超高h1=0.5m ,布水布气区高度h2=1.0m ,滤料层上部最低水位h4=1.0m ,承托层高h5=0.3m滤池总高度H=5.8m3 水力停留时间空床水力停留时间120324 1.21200V t h Q ⨯==⨯= 实际水力停留时间210.5 1.20.6t t h ε==⨯=4 校核污水水力负荷 3232120060 2.520q Q N m m d m m h A ===⋅=⋅ 5 需氧量OR =)(32.0)(82.05BOD X BOD BOD O ⨯+⨯△ 设3.0)20(La =K ,8.0=MLSS MLVSS ,7.0BOD BOD 55=进水总进水溶解性)20T ()La(20La(T)024.1K K -⋅=4.0024.10.3K )2028(La(28)=⨯=-出水SS 中BOD 含量:L mg e e X MLSSMLVSS S La K e ss 5.19)1(42.1208.01(42.154.05)28(=-⨯⨯⨯=-⨯⨯=⨯-出水溶解性BOD 5含量Se==L去除溶解性BOD5的量: L mg BOD 5.745.301507.05=-⨯=∆单位BOD 需氧量: 52/60.015.009.032.015.00745.082.0KgBOD KgO OR =⨯+⨯= 实际需氧量:h KgO d KgO Q S OR AOR /6.1/8.3730015.06.04.14.1220==⨯⨯⨯=⨯⨯⨯= 6 标准需氧量换算设曝气装置氧利用率为EA =12%,混合液剩余溶解氧C 0=2mg/L,曝气装置安装在水面下4.2m ,取α=,β=,Cs=L ,ρ=1Pa H P P b 53531042.12.4108.910013.1108.9⨯=⨯⨯+⨯=⨯+= %3.19%100)1(2179)1(21=⨯-+-=A A t E E Q L mg Q P C C t b s sb /2.9)423.1910026.21042.1(92.7)4210026.2(555=+⨯⨯⨯=+⨯= 标准需氧量:h KgO C C C AOR SOR T T sb s /4.2024.1]22.99.0[8.02.96.1024.1][2)2028()20()()20(=⨯-⨯⨯⨯=-⋅⋅⋅=--ρβα供气量: min 1.17.66103.01004.23.033m h m E SOR G A s ==⨯⨯== 曝气负荷校核: h m m 6.135.247.66A G 22s ⋅=⨯==π气N 满足要求。

DN-BAF设计计算

DN-BAF设计计算
AW H
式中:
2、供气 量的计算 与供气系 统的设计
微生物需 氧量
A—曝气 生物滤池 的总面 积,m2; H—滤料 层高度, m。 一般滤池 中滤料层 高度H为 2.5~ 4.5m,根 据工程实 际情况确 定。
包括降解 剩余有机 物的需氧 量和硝化 的需氧量 两部分。
估算
R c Q C BOD / 1000
qNH3-N— 滤料的 NH3-N表 面负荷, gNH3-N/ (m2· d)。 所需滤料 的体积
W
S S'
W—滤料 的总有效 体积, 式中: m3; S’—单 位体积滤 料的表面 积, m2/m3滤 料。 N曝气生 物滤池的 总截面积
AW H
A—N曝气 生物滤池 的总截面 式中: 积,m2; H—滤料 层高度, m。 一般滤池 中滤料层 高度H为 2.5~ 4.5m,根 据工程实 际情况确 定。 n座(n≥ 2)并 联,每座 面积
单一水反 冲洗
气水联合 反冲洗
滤池运行 24-48 滤池截面 上的反冲 洗水速为 气速为 冲洗后的 排水中SS 的浓度为
先单独用 气反冲 洗,再气 -水联合 反冲洗, 最后用清 水反洗。 h反洗一 次
15-25m/h 60-80m/h
8001200mg/L
碱度 K 7.14QC NH3-N /1000
式中: 4、配水 系统与反 冲洗系统 的设计
K为安全 系数,一 半为1.21.3,其 他符号同 前。
配水系统 的设计 曝气生物 滤池的配 水系统一 般采用小 阻力配水 系统,并 根据反冲 洗形式以 采用滤头 、格栅式 、平板孔 式较多。 可参照《 给排水设 计手册》 反冲洗系 统的设计
R RN RC
实际所需 供气量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

m m m m m m Pa Pa % mg/L mg/L mg/L mg/L
7033×9.533/24/(0.8×1.02425-20 (0.9×1×8.4 -2))
T=20℃,查表得到 T=30℃,查表得到
中间计算过程,取设计水温25℃
kg/h m3/h m3/h 3 m /min
556
BAF曝气生物滤池设计计算书
1 2 3 4 处理水量 进水BOD 出水BOD + 进水NH4 10 250 10 30 10 0.600 8 3.50 2 2 1 1.2 4.4 4.4 m /h 招标文件提供水质:BOD:100~500mg/L 招标要求出水水质 招标文件提供水质:BOD:100~500mg/L 招标要求出水水质
+ 3 3
mg/L mg/L kgNH4 -N/(m .d) m3 m m2 座 2 m m 3 2 m /m .d m/h
5 出水NH4+ 一、滤池计算 + 1 NH4 负荷取值 2 3 4 5 6 7 8 9 滤料需量 滤料有效高度 滤池总表面积 滤池座数 单座滤池表面积 滤池直径 校核水力负荷 校核滤速
一般取值0.30~0.8kgNH4 -N/(m .d)
+
3
一般单座面积不超过100m 采用圆形 3 2 一般为3~6m /m .h
2
ቤተ መጻሕፍቲ ባይዱ
二、需氧量计算 1 碳的氧当量a 2 去除BOD需氧量 3 氧化每公斤氨氮所需氧量 4 5 6 7 去除氨氮需氧量 活性生物膜总量 活性生物膜总需氧量 总需氧量
1.47 85 4.57 22 26 5 111
kgO2/d kgO2/kgN kgO2/d kg kg/d kgO2/d 暂不考虑细菌细胞的氧当量 每立方米滤料上活性生物膜量约3.2kg 单位活性生物膜需氧量约0.18kg
三、需空气量计算 承托层的厚度 0.30 滤料上部清水区高度 1.00 配水区高度 1.20 曝气装置至液面水深 4.80 超高 0.50 曝气滤池总高度 6.50 大气压力 101300.00 空气扩散处装置出口处的绝对压力 148340 空气扩散装置的氧的转移效率 0.20 气泡离开池面时,氧的百分比 17.54 11 大气压力下,氧的饱和度CS(20℃) 9.17 12 曝气池中不利温度下氧的饱和度CS(30℃) 7.63 13 曝气池中平均氧饱和度CSb(30℃) 8.66 14 水温20℃时曝气池中溶解氧饱和度 10.17 15 RCS(20℃) 47.13 16 系数α 0.82 17 系数β 0.95 18 系数ρ 1.00 19 系数C 2.00 20 1.024T-20 1.13 21 需氧量 8.19 22 供气量 137 23 单座生物滤池供气量 68 24 单台罗茨风机风量 1.14 1 2 3 4 5 6 7 8 9 10
相关文档
最新文档