2020西城区一模试题及答案
2020北京市西城区高考语文一模试卷 - 答案

2020北京西城区高三一模语文参考答案一、(18分)1.(3分)A 2.(3分)C 3.(3分)B4.(3分)B5.(6分)答案要点:①病原微生物引发的疫病伤害了人类的健康。
②病原微生物引发的大规模疾病影响着人类文明的进程。
③病原微生物的相关研究,推动了现代医学防疫事业不断飞跃发展。
④病原微生物与人类生存的环境密切相关,会对人类生活产生连带影响。
评分标准:每点2分,答出其中三点,得6分。
意思对即可。
二、(25分)6.(3分)C 7.(3分)B 8.(3分)D 9.(3分)B10.(6分)答案要点:①善于骑射,屡经战阵,所向披靡。
②虚心受教,折节读书,深通兵法。
③奋斗不懈,出身低微,终成栋梁。
④治军严明,有勇有谋,多有奇功。
⑤率先垂范,同劳同苦,深得人心。
评分标准:每个要点,2分。
答出其中三点,得6分。
意思对即可。
11.(7分)第一问:(3分)礼、德、安贫乐道、学习方法、谦虚好学、学以致用。
评分标准:一点1分,答出其中三点,得3分。
有其他答案,言之成理亦可。
第二问:(4分)围绕一点明确认识,结合材料作分析。
可以不拘于此处所提供的句子,但另选句子时应对所选句子作呈现。
评分说明:要求有明确认识,能联系《论语》,有简要分析。
三、(24分)12.(3分)C 13.(3分)B14.(6分)答案示例:《夏》诗两句写诗人散发乘凉,高卧闲静宽敞之地,重在表现诗人身形不受拘束的畅快;《宿》诗两句写诗人观松月而觉夜凉,听流泉而怡然,侧重表现诗人身心融入清凉幽静环境的适意。
评分标准:两个要点;每个要点,3分。
意思对即可。
15.(4分)答案示例:选材独特,不吟咏女子对镜簪菊的日常生活,吟咏的是高人隐士不惧俗世的雅致情怀。
个性气质豪爽豁达、高傲脱俗。
探春贵为贾府小姐却又并非嫡出,因而才高气傲、藐视世俗,追求朴而不俗。
评分说明:诗意明确,2分;点明个性气质,分析基本符合原著,2分。
16.(8分)①榆柳荫后檐桃李罗堂前②仰观宇宙之大俯察品类之盛③回首向来萧瑟处也无风雨也无晴④示例:不积小流无以成江海(有合题意的其他语句,亦可)评分标准:每空1分。
2020北京西城区高三一模及参考答案(语文)

2020北京西城区高三一模语文2020.4本试卷共10页,共150分。
考试时长150分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
一、本大题共5小题,共18分。
阅读下面的材料,完成1-5题。
材料一疫病对人类社会的影响,可以追溯到世界上最早的英雄史诗当中。
有研究表明,书中提到的一部分灾难,从所描述的特征或影响来看,应该就是我们今天所说的由有害细菌和病毒等病原微生物的传播而导致的疫病。
根据研究,大约从公元前500年开始,因病原微生物而起的疫病,就开始影响到欧洲文明的发展进程。
而1347-1353年间在欧洲流行的黑死病,更是欧洲历史上最具毁灭性的疫病,它的爆发竟然使欧洲人口减少了将近三分之一。
当时,民众的恐慌情绪急剧增长,以至于要用相当长的时间,才能抚平与此相关的痛苦记忆。
由于大量人口死亡、劳动力分布严重不均,社会结构开始出现变化,农奴从此消失,取而代之的是自由劳动者。
应该说,黑死病、麻风病等疫病从多方面影响了欧洲社会和中世纪的西方文明。
如果说欧亚之间的疫病传播最初还受到距离限制的话,那么当历史进入到欧洲向外扩张的殖民主义时期,病原微生物才真正开始了全球传播的旅程。
1519年,西班牙人试图征服位于美洲的阿兹特克帝国。
阿兹特克人最初抵挡住了西班牙人的攻势,但战争形势随着感染过天花病毒的西班牙人的到来而发生改变。
不久,肆虐的天花就杀死了阿兹特克帝国的大量人口,这也成为阿兹特克文明灭亡的重要原因。
当然,在与肆虐的疫病作斗争的过程中,人类的医学事业也在不断进步。
16世纪解剖学的发展,17世纪生理学的进步,18世纪病理解剖学的创立,加上19世纪细胞学、细菌学等学科的建树,以及20世纪初临床医学的巨大飞跃,共同成就了现代医学。
而现代医学发展、科学技术进步以及政府职能改善等因素,共同推动了卫生防疫工作在全球的普遍开展。
可以说,人类正在以不懈的努力和执着的追求捍卫着自身的安全与幸福。
(取材于张大庆等的文章)1.根据材料一,不属于疫病对人类文明的影响的一项是(3分)A.引发民众恐慌情绪B.改变社会结构形式C.动摇阿兹特克文明D.开展全球卫生防疫2.根据材料一,下列表述不符合文意的一项是(3分)A.在世界最早的英雄史诗中也能找到一些疫病的讯息。
北京市西城区2020届高三第一次模拟考试数学试题

北京市西城区2020届高三第一次模拟考试数学试题西城区高三数学统一测试2020.4 第Ⅰ卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选择符合题目要求的一项。
1.设 $A=\{x|x2\}$,则 $A\cap B$ =()A。
$(-\infty,)$B。
$(2,3)$C。
$(-\infty,)\cup(2,3)$D。
$(-\infty,3)$2.若复数 $z=(3-i)(1+i)$,则 $z$ =()A。
22B。
25C。
10D。
203.下列函数中,值域为$\mathbb{R}$ 且为奇函数的是()A。
$y=x+2$B。
$y=\sin x$C。
$y=x-x^3$D。
$y=2\sqrt{x}$4.设等差数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n$,若$a_3=2$,$a_1+a_4=5$,则 $S_6=$()A。
10B。
9C。
8D。
75.设 $A(2,-1)$,$B(4,1)$,则以线段 $AB$ 为直径的圆的方程是()A。
$(x-3)^2+y=2$,$(x-3)^2+y=8$B。
$(x+3)^2+y=2$,$(x+3)^2+y=8$C。
$(x-3)^2+y=2$,$(x+3)^2+y=8$D。
$(x+3)^2+y=2$,$(x-3)^2+y=8$6.设 $a,b,c$ 为非零实数,且 $a>c$,$b>c$,则()A。
$a+b>c$B。
$a^2+b^2>c^2$C。
$(a+b)^2>c^2$D。
$abc>0$7.某四棱锥的三视图如图所示,记 $S$ 为此棱锥所有棱的长度的集合,则()A。
$22\notin S$,且 $23\notin S$B。
$22\notin S$,且 $23\in S$C。
$22\in S$,且 $23\notin S$D。
$22\in S$,且 $23\in S$8.设 $a,b$ 为非零向量,则“$a+b=a-b$”是“$a$ 与 $b$ 共线”的()A。
2020年北京市西城区高三一模数学试题(含答案)

第Ⅱ卷(非选择题共 110 分)
二、填空题:本大题共 5 小题,每小题 5 分,共 25 分.
11.在 吠 吠 h 的展开式中,常数项为
.(用数字作答)
12.若向量 ⸶ 吠hㄠhhㄠ ⸶ ㄠ吠h满足 㸴,则实数 吠 的取值范围是
.
13.设双曲线吠h t
h
h⸶
t ㄱh的一条渐近线方程为
⸶
h h
吠,则该双曲线的离心率为
(D) 吠 㸴hh h ⸶
6.设 ㄠ ㄠ 为非零实数,且 t ㄠ t ,则
(A)
t
(B) t h
(C)a b
h
t
(D) t
h
1/5
7.某四棱锥的三视图如图所示,记 S 为此棱锥所有棱的长度的集合,则
(A)h h ㄠ且 h 㸴
(B)h h ㄠ且 h 㸴
(C)h h ㄠ且 h 㸴
(D)h h ㄠ且 h 㸴 8.设 ㄠ 为非零向量,则“൭
21.(本小题满分 14 分)
对于正整数 ,如果
h个整数 ㄠ hㄠ ㄠ 满足
h
,
且
h
⸶ ,则称数组 ㄠ hㄠ ㄠ h为 的一个“正整数分拆”.记 ㄠ hㄠ ㄠ 均为偶数的“正整数分拆”
的个数为 ㄠ ㄠ hㄠ ㄠ 均为奇数的“正整数分拆”的个数为쳌 .
(Ⅰ)写出整数 4 的所有“正整数分拆”;
(Ⅱ)对于给定的整数
ㄠ㔰 两点和 ㄠ⺁ 两点.
ㄠㄱh,直线 h经过点 ㄠㄱh,直线 直线 h,且直线 , h分别与椭圆 相交于
(Ⅰ)若 ㄠ 分别为椭圆 的左、右焦点,且直线 吠 轴,求四边形 㔰 ⺁ 的面积;
(Ⅱ)若直线 的斜率存在且不为 0,四边形 㔰 ⺁ 为平行四边形,求证:
2020北京市西城区中考语文一模试卷-答案

2020北京西城初三一模语文参考答案一、基础·运用(共16分)1.(1)答案:C评分标准:2分。
本题分项赋分,选C项2分,选A或D项1分,选B项0分。
(2)答案:A评分标准:2分。
本题分项赋分,选A项2分,选B或C项1分,选D项0分。
(3)示例:将“流落”改为“衰落”,将“中西交通中转站与边关门户”改为“边关门户与中西交通中转站”。
评分标准:共2分。
改好“流落”与“陆上丝绸之路”不搭配问题1分,改好“中西交通中转站与边关门户”语序和前文语境不搭配问题1分。
2.答案:D评分标准:2分。
选错不得分。
3.(1)答案:B评分标准:2分。
选错不得分。
(2)示例:①唐②王维评分标准:共2分。
每空1分,朝代、人物名称准确即可。
4.答案:C评分标准:2分。
选错不得分。
5.答案:D评分标准:2分。
选错不得分。
二、古诗文阅读(共16分)(一)(共4分)6.答案:①万里赴戎机②关山度若飞评分标准:共2分。
每空1分,有错不得分。
7.答案:奉命于危难之间评分标准:1分。
有错不得分。
8.示例一:荡胸生曾云示例二:白云千载空悠悠示例三:不畏浮云遮望眼评分标准:1分。
有错该空不得分。
允许有一个不会写的字用拼音代替。
(二)(共5分)9. 示例:①命运坎坷(或“痛苦飘零”“抗敌失利”等)②捐躯报国(或“舍生取义”等)评分标准:共2分。
每空1分,①从诗人身世之“沉”角度答,②从视死如归、死得其所、爱国尽忠、留名青史等角度答,意思对即可。
每空超过4个字的,不得分。
10.示例一:甲人生自古谁无死?留取丹心照汗青画中人物被锁链束缚,却依然执笔题诗,器宇轩昂,坚贞不屈,正符合这两句慷慨赴死、忠心报国的意思。
示例二:乙惶恐滩头说惶恐,零丁洋里叹零丁画中人物伫立滩头,面对波涛翻滚的洋流,孤独落寞,正符合这两句曾经在滩头感到惶恐、在洋中感慨伶仃的意思。
评分标准:共3分。
选择和题诗匹配1分,理由2分,其中画面细节1分,结合诗句内容分析1分。
2020年北京市西城区高考语文一模试卷(有答案)

2020年北京市西城区高考语文一模试卷一、默写(本大题共1小题,共8.0分)1.在下面横线上填写作品原句。
《归园田居》中,陶渊明用“方宅十余亩,草屋八九间。
______ ,______ ”对田园风光作了简笔勾勒。
王羲之写兰亭雅集之乐:“______ ,______ ,所以游目骋怀,足以极视听之娱,信可乐也。
”人生路上,有风雨也有晴天,超然物外的苏轼曾就此发出感慨:“______ ,归去,______ 。
”学习中离不开积累。
如果想表达积累对于结果的重要意义,我们可以引用的古诗文名句有:“______ ,______ 。
”二、诗歌鉴赏(本大题共1小题,共12.0分)2.阅读下面古诗,完成各题。
宿业师山房①期丁大②不至(唐)孟浩然夕阳度西岭,群壑倏已暝。
松月生夜凉,风泉满清听。
樵人归欲尽,烟鸟栖初定。
之子期宿来,孤琴候萝径。
【注】①山房,山中的屋舍。
②丁大:作者友人。
下列对这首诗的理解,不正确的一项是______A.开头两句写夕阳刚刚西沉下去,屋舍四周的群山万壑立刻就变得昏暗起来。
B.三四两句分别从不同的角度,来刻画诗人在身之所处的环境中的独特感受。
C.五六两句写夜深时山间的静谧,“归”“栖”二字中流露出一种浓浓的乡愁。
D.最后两句用“期宿来”点出与友人的期约,表达了诗人对朋友的满心期待。
这首诗结尾一句“孤琴候萝径”中的“琴”,蕴含有见证朋友之间彼此相知的意思。
下列诗句中的“琴”也是表达这层含意的一项是______A.满庭诗境飘红叶,绕砌琴声滴暗泉。
(雍陶《韦处士郊居》)B.唯要主人青眼待,琴诗谈笑自将来。
(白居易《春雪过皇甫家》)C.从此静窗闻细韵,琴声长伴读书人。
(李群玉《书院二小松》)D.中军置酒饮归客,胡琴琵琶与羌笛。
(岑参《白雪歌送武判官归京》)“山光忽西落,池月渐东上。
散发乘夕凉,开轩卧闲敞。
”这是孟浩然《夏日南亭怀辛大》中的几句。
其中的“散发乘夕凉,开轩卧闲敞”,与《宿业师山房期丁大不至》中的“松月生夜凉,风泉满清听”都写到了“夜(夕)凉”,但表意效果又有区别。
2020年北京市西城区九年级一模数学试题(解析版)
2020年北京市西城区九年级一模数学试题一、选择题1. 北京大兴国际机场目前是全球建设规模最大的机场,2019年,9月25日正式通航,预计到2022年机场旅客吞吐量将达到45 000 000人次,将45 000 000用科学记数法表示为()A. 45×610 D. 0.45×10 C. 4.5×810 B. 4.5×7910【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将数据45000000用科学记数法可表示为:4.5×107.故答案选:B.【点睛】此题考查科学记数法的表示方法.表示时关键要正确确定a的值以及n的值.2. 如图是某个几个几何体的三视图,该几何体是()A. 圆锥B. 圆柱C. 长方体D. 正三棱柱【答案】B【解析】【分析】由主视图和俯视图确定是柱体,由左视图确定具体形状.【详解】解:从主视图和俯视图可以确定是柱体,然后由左视图可以确定此物体为一个横放着的圆柱.故答案为:B.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3. 下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称和中心对称的定义及性质直接判断即可.【详解】解:A选项旋转180 度后与原图不重合,不是中心对称图形,故A不符合题意;B选项不是轴对称图形,故B不符合题意;C选项旋转180度后与原图重合,是中心对称图形,同时也是轴对称图形,故C选项符合题意;D选项旋转180度后与原图不重合,不是中心对称图形,故D不符合题意;故选C.【点睛】本题考查轴对称和中心对称的判断,解题关键是熟知轴对称和中心对称定义及性质.4. 在数轴上,点A,B表示的数互为相反数,若点A在点B的左侧,且AB=22,则点A,点B表示的数分别是(), C. 0,,【答案】A【解析】【分析】根据相反数的定义即可求解.【详解】解:由A、B表示的数互为相反数,且,点A在点B的左侧,得点A,点B表示的数分别是故选:A.【点睛】本题考查了相反数的知识,属于基础题,注意熟练掌握相反数的概念是解题的关键.5. 如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=65°,则∠ADC的度数为()A. 65°B. 35°C. 32.5°D. 25°【答案】D【解析】【分析】首先利用直径所对的圆周角是直角得到∠ACB=90°,然后根据∠CAB=65°求得∠ABC的度数,利用同弧所对的圆周角相等即可得到答案.【详解】解:∵AB是直径,∴∠ACB=90°,∵∠CAB=65°,∴∠ABC=∠ACB -∠CAB=90°-65°=25°,∵∠ADC和∠ABC所对的弧相同∴∠ADC=∠ABC=25°,故选:D.【点睛】本题考查了圆周角的知识,解题的关键是掌握直径所对的圆周角为直角.6. 甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x甲,x乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是( )A. 甲=x 乙,s 甲2>s 乙2 B. x 甲=x 乙,s 甲2<s 乙2C.x甲>x乙,s 甲2>s 乙2D.x甲<x乙,s 甲2<s 乙2【答案】A 【解析】【分析】分别计算平均数和方差后比较即可得到答案.【详解】解:(1)10=1x 甲(8×4+9×2+10×4)=9;x 乙=110(8×3+9×4+10×3)=9;s 甲2=110[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s 乙2=110[3×(8﹣9)2+4×(9﹣)2+3×(10﹣9)2]=0.7;∴=x x甲乙,s 甲2>s 乙2,故选:A .【点睛】本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7. 如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度,阳光下他测得长1m 的竹竿落在地面上的影长为0.9m ,在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上,他测得这棵树落在地面上的影长BD 为2.7m ,落在墙面上的影长CD 为1.0m ,则这棵树的高度是( )A. 6.0mB. 5.0mC. 4.0mD. 3.0m【答案】C 【解析】【分析】根据在同一时刻物高和影长比值相同,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似进而解答即可.【详解】解:延长AC 交BD 延长线于点E ,根据物高与影长成正比得:109CD DE .=,∵CD=1,∴1109DE .=解得:DE=0.9,则BE=2.7+0.9=3.6米,∵AB ∥CD ,∴△ABE ∽△CDE ,∴AB BE CD DE=,即36109AB ..=,解得:AB=4,即树AB 的高度为4米,【点睛】本题考查了相似三角形的性质,解决本题的关键是作出辅助线得到AB的影长.8. 设m是非零实数,给出下列四个命题:①若-1<m<0,则1m <m<2m;②若m>1,则1m<2m<m;③若m<1m <2m,则m<0;④2m<m<1m,则0<m<1.其中命题成立的序号是()A. ①③B. ①④C. ②③D. ③④【答案】B【解析】【分析】逐个进行一次判断即可,判断一个命题是假命题,只需举出一个反例.【详解】解:①若-1<m<0,则1m <m<2m,成立,是真命题;②若m>1,取m=2时,m2=4, m<m2,原命题不成立;③若m<1m <2m,取m=-12时,1m=-2,m>1m,原命题不成立;④2m<m<1m ,则0<m<1,成立,是真命题;成立的有①④,故选:B.【点睛】此题考查了命题和不等式,解题的关键是理解不等式的性质.二、填空题9. 若代在实数范围内有意义,则x的取值范围是_______.【答案】1x³【解析】【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】解:实数范围内有意义,∴x-1≥0,故答案为:x ≥1.【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.10. 一个多边形的内角和是外角和的2倍,则这个多边形的边数为________.【答案】6【解析】【分析】设这个多边形的边数为n ,根据多边形内角和公式和多边形外角和为360°建立方程求解即可.【详解】解:设这个多边形的边数为n ,由题意得,()18023602n °´-=°´,解得6n =,∴这个多边形的边数为6,故答案为:6.【点睛】本题主要考查了多边形内角和和外角和综合,熟知多边形内角和公式和多边形外角和为360°是解题的关键.11. 已知y 是以x 为自变量的二次函数,且当x=0时,y 的最小值为-1,写出一个满足上述条件的二次函数表达式_______.【答案】y=x 2-1.【解析】【分析】直接利用二次函数的性质得出其顶点坐标为(0,-1),然后写出一个满足题意的二次函数即可.【详解】解:∵y 是以x 为自变量的二次函数,且当x=0时,y 的最小值为-1,∴二次函数对称轴是y 轴,且顶点坐标为:(0,-1),抛物线开口向上,故满足上述条件的二次函数表达式可以为:y=x 2-1.故答案为:y=x 2-1.【点睛】此题主要考查了二次函数的性质,正确得出其顶点坐标是解题关键.12. 如果21a a +=,那么代数式2111a a a ---的值是______.【答案】1【解析】【分析】先根据分式的运算法则将2111a a a ---进行化简,再将21a a +=的值代入即可.【详解】解:2111a a a ---()()1111a a a a -=-+-()()111a aa a a a +=-++()11a a =+21a a =+∵21a a +=∴原式211a a==+故答案为:1.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.13. 如图,在正方形ABCD 中,BE 平分∠CBD ,EF ⊥BD 于点F ,若,则BC 的长为_________.1+【解析】【分析】根据正方形的性质,角平分线的性质可得到△DEF为等腰直角三角形,然后设BC=CD=x,利用勾股定理解答即可.【详解】解:∵四边形ABCD为正方形,∴∠C=90°,∠CDB=45°,BC=CD.∴EC⊥CB.又∵BE平分∠CBD,EF⊥BD,∴EC=EF.∵∠CDB=45°,EF⊥BD,∴△DEF为等腰直角三角形,∴DF=EF,设BC=CD=x,∵DE=2,,即,∴在Rt△DEF中,222=+,DE DF EF∴((222+=x x解得1∴11.【点睛】本题考查了正方形的性质,角平分线的性质,勾股定理,熟练掌握相关图形的性质是解题的关键.14. 如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC于点D,则AC的长为________,BD的长为_________.【答案】①. 5 .②3【解析】【分析】根据图形和三角形的面积公式求出△ABC的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.【详解】如图所示:由勾股定理得:AC=2234+=5,S△ABC=12BC×AE=12×BD×AC,∵AE=3,BC=5,即12×3×5=12×5BD,解得:BD=3.故答案为:5;3.【点睛】本题主要考查了勾股定理的知识,解题的关键是利用勾股定理求出AC的长,此题难度一般.15. 如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为___________.【答案】(6,6)【解析】【分析】如图:由题意可得M在AB、BC的垂直平分线上,则BN=CN;证得ON=OB+BN=6,即△OMN是等腰直角三角形,得出MN=ON=6,即可得出答案.【详解】解:如图∵圆M是△ABC的外接圆∴点M在AB、BC的垂直平分线上,∴BN=CN,∵点A,B,C的坐标分别是(0,4),(4,0),(8,0)∴OA=OB=4,OC=8,∴BC=4,∴BN=2,∴ON=OB+BN=6,∵∠AOB=90°,∴△AOB是等腰直角三角形,∵OM⊥AB,∴∠MON=45°,∴△OMN是等腰直角三角形,∴MN=ON=6,点M的坐标为(6,6).故答案为(6,6).【点睛】本题考查了三角形的外接圆与外心、坐标与图形性质、等腰直角三角形的判定与性质等知识,其中判定△OMN为等腰直角三角形是解答本题的关键.16. 某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表:根据以上信息,以下四个判断中,正确的是_________.(填写所有正确结论的序号)①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在5~10广域网人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为3.10【答案】①④【解析】【分析】利用统计图与统计表获取的信息逐项判定即可.【详解】解:①根据统计表可得日接待游客人数10≤x< 15为拥挤,15≤x< 20为严重拥挤,由统计图可知,游玩环境评价为重拥挤”,1日至5日有2天,25日-30日有2天,共4天,故①正确;②本题中位数是指将30天的游客人数从小到大排列,第15与第16位的和除以2,根据统计图可知0≤x < 5的有16天,从而中位数位于0≤x< 5范围内,故②错误;③从统计图可以看出,接近10的有6天,大于10而小于15的有2天,15以上的有2天,10上下的估算为10,则(10×8+15×2-5×10)÷16=3.25,可以考虑为给每个0至5的补上3.25,则大部分大于5,而0至5范围内有6天接近5,故平均数一定大于5,故③错误;④由题意可知“这两天游玩环境评价均为好”的可能性为323´=,故④正确.5410故答案为①④.【点睛】本题考查了中位数、平均数及可能性等知识,利用统计图与统计表获取的有效信息是解答本题的关键.三、解答题17.计算:101((1||2sin 602-++-°.【答案】3【解析】【分析】先运用负整数次幂、零次幂、取绝对值和特殊角的三角函数对原式化简,然后进行计算即可.【详解】解:101()(1||2sin 602-+-+-°=3【点睛】本题主要考查了负整数次幂、零次幂、取绝对值和特殊角的三角函数等知识点,灵活应用相关运算法则是解答本题的关键.18. 解不等式组3(2)22254x x x x -<-ìïí+<ïî.【答案】52<x <4【解析】【分析】先分别求出各不等式的解析,然后各不等式解集的公共部分即为不等式组的解集.【详解】解:3(2)22254x x x x -<-ìïí+<ïî①②由①得x <4由②得x >52所以不等式组的解集为:52<x <4【点睛】本题考查了解一元一次不等式组,根据不等式的解集确定不等式组的解集是解答本题的关键.19. 关于x 的一元二次方程22(21)0x m x m -++=有两个实数根(1)求m的取值范围;(2)写出一个满足条件的m的值,求此时方程的根.【答案】(1)m≥1-;(2) 当m=0时,方程的根为x1=1,x2=0.4【解析】【分析】(1)根据根的判别式列出不等式并求解即可;(2)确定一个满足条件且方便计算的m,然后解一元二次方程即可.△2-4m2≥0,解得:m≥1【详解】解:(1)由题意得:=(2m+1)-;4x1=1,x2=0.(2)当m=0时,原方程为:2-=,解得x x【点睛】本题主要考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac 有如下关系:①当△> 0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△< 0时,方程无实数根.20. 如图,在Y ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC于点E.(1)求证:Y ABCD是矩形;(2)若AD=,cos∠ABE=,求AC的长.【答案】(1)见解析;(2)5.【解析】【分析】(1)先说明.OA=OC,OB=OD,再证得AC=BD,即可证明Y ABCD是矩形;(2)先说明∠BAD=∠ADC=90°,再求得∠CAD=∠ABE,最后解直角三角形即可.【详解】(1)证明:∵四边形ABCD是平行四边形∴OA=OC,OB=OD又∵OA=OB,∴OA=OB=OC=OD,∴AC=BD,∴Y OABCD是矩形;(2)解∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠BAC+∠CAD=90°,∵BE⊥AC,∴∠BAC+∠ABE=90°,∴∠CAD=∠ABE,=cos∠在Rt△ACD中,AD=25,cos∠CAD=ADAC∴AC=5.【点睛】本题考查了矩形的判定和性质、平行四边形的性质、解直角三角形等知识点,掌握矩形的判定和性质定理是解题答本题的关键.21. 先阅读下列材料,再解答问题.尺规作图△,D是边AB上一点,如图1,已知:ABC求作:四边形DBCF,使得四边形DBCF是平行四边形.小明的做法如下:请你参考小明的做法,再设计一一种尺规作图的方法(与小明的方法不同),使得画出的四边形DBCF是平行四边形,并证明.【答案】见解析【解析】【分析】利用平行四边形的判定方法作图证明即可.【详解】解:(1)设计方案先画一个符合题意的草图,再根据两组对边分别相等的四边形是平行四边形.(2)设计作图步骤完成作图作法:如图:①以点C为圆心,BC长为半径画弧;②以点D为圆心,BC长为半径画弧,;③两弧交于点F,四边形DBCF即为所求.(3)推理论证证明:∵CF=BD,DF=BC∴四边形DBCF是平行四边形.【点睛】本题考查了尺规作图、平行四边形的判定等知识点,灵活应用平行四边形的判定方法是解答本题的关键.22. 运用语音识别输入统计可以提高文字输入的速度,为了解A,B两种语音识别输入软件的可读性,小秦同学随机选择了20段话,其中每段话都含有100个字(不计标点符号),在保持相同条件下,标准普通话来测试两种语音识别输入软件的准确性,整个测试分析过程如下,请补充完整.(1)收集数据:两种软件每次识别正确的字数记录如下:(2)整理,描述数据:根据上面得到的两组样本数据,绘制了分布直方图(3)分析数据:两组样本数据的平均数,众数,中位数,方差如下表所示(4)得出结论:根据以上信息.判断____种语音识别输入软件的准确性较好,理由如下.__ _____________(至少从两个不同的角度说明判断的合理性) .【答案】(2)见解析;(3)92,88.5;(4)见解析.【解析】【分析】(2)先统计数据,再补全频数分布直方图即可;(3)根据众数和中位数的定义计算即可;(4)从平均数、方差两个角度分析即可.【详解】解:(2)统计B组数据得到:60-70的频数为2,70-80的频数为4,则补全频数分布直方图如图所示:(3)在A组数据中92出现的次数最多,故A组的众数为92;B组的中位数为第10个和第11个数分别为88和89,则中位数为(88+89)÷2=88.5.故答案如图:(4)A种语音识别输入软件的准确性较好,理由如下:∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴84.7> 83.7,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91< 184.01,故A种语音识别的准确性较好.【点睛】本题考查频数分布直方图、频数分布表、方差等知识,明确题意、灵活应用所学知识是解答本题的关键.23. 如图,四边形OABC中,90OAB°Ð=.OA=OC, BA=BC.以O为圆心,以OA为半径作☉O(1)求证:BC是☉O的切线:(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与此的延长线交于点F若»»=.AD AC①补全图形;②求证:OF=OB.【答案】(1)证明见解析(2)①图见解析(2)证明见解析【解析】【分析】(1)连接AC,根据等腰三角形的性质得到∠OAC=∠OCA,∠BAC=∠BCA,得到∠OCB=∠OAB=90°,根据切线的判定定理证明;(2)①根据题意画出图形;②根据切线长定理得到BA=BC,得到BD是AC的垂直平分线,根据垂径定理、圆心角和弧的关系定理得到∠AOC=120°,根据等腰三角形的判定定理证明结论.【详解】(1)证明:如图1,连接AC,∵OA=OC,∴∠OAC=∠OCA,∵BA=BC,∴∠BAC=∠BCA,∴∠OAC+∠BCA=∠OCA+∠BCA,即∠OCB=∠OAB=90°,∴OC⊥BC,∴BC是⊙O的切线;(2)①解:补全图形如图2;②证明:∵∠OAB =90°,∴BA 是⊙O 的切线,又BC 是⊙O 的切线,∴BA =BC ,∵BA =BC ,OA =OC ,∴BD 是AC 的垂直平分线,∴»»AD CD =,∵»»AD AC =,∴»»AD CD ==»AC,∴∠AOC =120°,∴∠AOB =∠COB =∠COE =60°,∴∠OBF =∠F =30°,∴OF =OB .【点睛】本题考查的是切线的判定、垂径定理、切线长定理的应用,掌握切线的判定定理、圆心角和弧之间的关系定理是解题的关键.24. 如图,在△ABC 中,AB=4cm .BC=5cm ,P 是»AB上的动点.设A ,P 两点间的距离为xcm ,B ,P 两点间的距离为1y cm ,C ,P 距离为2y cm .小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 的几组对应值:(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,1y ),(x ,2y ),并画出函数1y ,2y 的图象:(3)结合函数图象.①当△PBC 为等腰三角形时,AP 的长度约为____cm .②记»AB所在圆的圆心为点O ,当直线PC 恰好经过点O 时,PC 的长度约为_____cm .【答案】(1)3.09(答案不唯2)见解析;(3)①0.83或2.49(答案不唯一).②5.32(答案不唯一).【解析】【分析】(1)利用图象法解决问题即可;(2)描点绘图即可;(3)①分PB=PB 、PC=BC 、PB=BC 三种情况,分别求解即可;②当直线PC 恰好经过点O 时,PC 的长度取得最大值,观察图象即可求解.【详解】解:(1)由画图可得,x=4时,y 1≈3.09cm (答案不唯一).故答案为:3.09(答案不唯一).(2)描点绘图如下:(3)①由y1与y2的交点的横坐标可知,x≈0.83cm时,PC=PB,当x≈2.49cm时,y2=5cm,即PC=BC,观察图象可知,PB不可能等于BC,故答案为:0.83或2.49(答案不唯一).②当直线PC恰好经过点O时,PC的长度取得最大值,从图象看,PC=y2≈5.32cm,故答案为5.32(答案不唯一).【点睛】本题考查函数的图象,等腰三角形的判定和性质等知识,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.25. 在平面直角坐标系xOy中,直线L:y=kx+2k(k>0)与x轴交于点A,与y轴交于点B,与函数my=(x>0)的图象的交点第一象限.x(1)若点P的坐标为(1,6),①求m的值及点A的坐标;=_________;②PBPA(2)直线h:y=2kx-2与y轴交于点C,与直线L1交于点Q,若点P的横坐标为1,①写出点P的坐标(用含k的式子表示);②当PQ≤PA时,求m的取值范围.;(2)①P(1,3k)②m≥3【答案】(1)①6;(−2,0)②13【解析】【分析】(1)①把P(1,6)代入函数my=(x>0)即可求得m的值,直线l1:y=kxx+2k (k >0)中,令y =0,即可求得x 的值,从而求得A 的坐标;②把P 的坐标代入y =kx +2k 即可求得k 的值,进而求得B 的坐标,然后根据勾股定理求得PB 和PA ,即可求得PB PA的值;(2)①把x =1代入y =kx +2k ,求得y =3k ,即可求得P (1,3k );②分别过点P 、Q 作PM ⊥x 轴于M ,QN ⊥x 轴于N ,则点M 、点N 的横坐标1,2+2k,若PQ =PA ,则PQ PA =1,根据平行线分线段成比例定理则PQ PA =MN MA=1,得出MN =MA =3,即可得到2+2k−1=3,解得k =1,根据题意即可得到当PQ PA =MN MA≤1时,k ≥1,则m =3k ≥3.【详解】(1)①令y =0,则kx +2k =0,∵k >0,解得x =−2,∴点A 的坐标为(−2,0),∵点P 的坐标为(1,6),∴m =1×6=6;②∵直线l 1:y =kx +2k (k >0)函数m y x=(x >0)的图象的交点P ,且P (1,6),∴6=k +2k ,解得k =2,∴y =2x +4,令x =0,则y =4,∴B (0,4),∵点A 的坐标为(−2,0),∴PA=PB =∴PB PA 13=,故答案为13;(2)①把x=1代入y=kx+2k得y=3k,∴P(1,3k);②由题意得,kx+2k=2kx−2,解得x=2+2k,∴点Q的横坐标为2+2k,∵2+2k>1(k>0),∴点Q在点P的右侧,如图,分别过点P、Q作PM⊥x轴于M,QN⊥x轴于N,则点M、点N的横坐标为1,2+2k,若PQ=PA,则PQPA=1,∴PQPA =MNMA=1,∴MN=MA,∴2+2k−1=3,解得k=1,∵MA =3,∴当PQ PA =MN MA≤1时,k ≥1,∴m =3k ≥3,∴当PQ ≤PA 时,m ≥3.【点睛】本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,勾股定理的应用,利用函数图象解决问题是本题的关键.26. 已知抛物线y=ax 2+bx+a+2(a≠0)与x 轴交于点A(x 1,0),点B(x 2,0),(点A 在点B 的左侧),抛物线的对称轴为直线x=-1.(1)若点A 的坐标为(-3,0),求抛物线的表达式及点B 的坐标;(2)C 是第三象限的点,且点C 的横坐标为-2,若抛物线恰好经过点C ,直接写出x 2的取值范围;(3)抛物线的对称轴与x 轴交于点D ,点P 在抛物线上,且∠DOP=45°,若抛物线上满足条件的点P 恰有4个,结合图象,求a 的取值范围.【答案】(1)21322y x x =--+,(1,0);(2)-1<x 2<0;(3)a <-2.【解析】【分析】(1)由题意可知抛物线的对称轴为12b x a=-=-,求出b=2a ,将点A 的坐标代入抛物线的表达式,即可求解;(2)根据题意可得点C 在第三象限,即点A 在点C 和函数对称轴之间,故-2<x 1<-1,继而进行分析即可求解;(3)根据题意可得满足条件的P 在x 轴的上方有2个,在x 轴的下方也有2个,则抛物线与y 轴的交点在x 轴的下方,即可求解.【详解】解:(1)抛物线的对称轴为12b x a=-=-,解得:b=2a ,故y=ax 2+bx+a+2=a (x+1)2+2,将点A 的坐标代入上式并解得:12a =-,故抛物线的表达式为:2221)2113(22y x x x =-++=--+;令y=0,即213220x x --+=,解得:x=-3或1,故点B 的坐标为:(1,0).(2)由(1)知:2(1)2y a x =++,点C 在第三象限,即点C 在点A 的下方,即点A 在点C 和函数对称轴之间,故-2<x 1<-1,而121(1)2x x +=-,即x 2=-2-x 1,故-1<x 2<0.(3)∵抛物线的顶点为(-1,2),∴点D (-1,0),∵∠DOP=45°,若抛物线上满足条件的点P 恰有4个,∴抛物线与x 轴的交点在原点的左侧,如下图,∴满足条件的P 在x 轴的上方有2个,在x 轴的下方也有2个,则抛物线与y 轴的交点在x 轴的下方,当x=0时,2220y ax bx a a =+++=+<,解得:a <-2,故a 的取值范围为:a <-2.【点睛】本题考查的是二次函数综合运用,涉及到解不等式、函数作图,解题的关键是通过画出抛物线的位置,确定点的位置关系,进而分析求解即可.27. 如图,在等腰直角△ABC 中,∠ACB=90 点P 在线段BC 上,延长BC 至点Q ,使得CQ=CP ,连接AP ,AQ .过点B 作BD ⊥AQ 于点D ,交AP 于点E ,交AC 于点F .K 是线段AD 上的一个动点(与点A ,D 不重合),过点K 作GN ⊥AP 于点H ,交AB 于点G ,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.【答案】(1)见解析;(2)见解析;(3)BN=AE+GN,见解析.【解析】【分析】(1)根据题意补全图1即可;(2)根据等腰三角形的性质得到AP=AQ,求得∠APQ=∠Q,求得∠MFN=∠Q,同理,∠NMF=∠APQ,等量代换得到∠MFN=∠FMN,于是得到结论;(3)连接CE,根据线段垂直平分线的性质得到AP=AQ,求得∠PAC=∠QAC,得到∠CAQ=∠QBD,根据全等三角形的性质得到CP=CF,求得AM=CF,得到AE=BE,推出直线CE垂直平分AB,得到∠ECB=∠ECA=45°,根据全等三角形的性质即可得到结论.【详解】(1)依题意补全图1如图所示;(2)∵CQ=CP,∠ACB=90°,∴AP=AQ,∴∠APQ=∠Q,∵BD⊥AQ,∴∠QBD+∠Q=∠QBD+∠BFC=90°,∴∠Q=∠BFC,∵∠MFN=∠BFC,∴∠MFN=∠Q,同理,∠NMF=∠APQ,∴∠MFN=∠FMN,∴NM=NF;(3)连接CE,∵AC⊥PQ,PC=CQ,∴AP=AQ,∴∠PAC=∠QAC,∵BD⊥AQ,∴∠DBQ+∠Q=90°,∵∠Q+∠CAQ=90°,∴∠CAQ=∠QBD,∴∠PAC=∠FBC,∵AC=BC,∠ACP=∠BCF,∴△APC≌△BFC(AAS),∴CP=CF,∵AM=CP,∴AM=CF,∵∠CAB=∠CBA=45°,∴∠EAB=∠EBA,∴AE=BE,∵AC=BC,∴直线CE垂直平分AB,∴∠ECB=∠ECA=45°,∴∠GAM=∠ECF=45°,∵∠AMG=∠CFE,∴△AGM≌△CEF(ASA),∴GM=EF,∵BN=BE+EF+FN=AE+GM+MN,∴BN=AE+GN.【点睛】本题考查了三角形的综合题,全等三角形的判定和性质,等腰直角三角形的性质,线段垂直平分线的判定和性质,正确的识别图形是解题的关键.28. 对于平面直角坐标系xOy中的图形W1和图形W2.给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N,(点M于点N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系(1)如图1,点C(1,0),D(-1,0),E(0,3),点P在线段DE上运动(点P可以与点D,E 重合),连接OP,CP.①线段OP的最小值为_______,最大值为_______;线段CP的取值范直范围是_____;②在点O,点C中,点____________与线段DE满足限距关系;(2)如图2,⊙O的半径为1,直线y b=+(b>0)与x轴、y轴分别交于点F,G.若线段FG与⊙O满足限距关系,求b的范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,1为半径作圆得到⊙H和K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.【答案】(1)①22CP££,②O;(2)13b³;(3)0<r≤3.【解析】【分析】(1)①根据垂线段最短以及已知条件,确定OP,CP的最大值,最小值即可解决问题.②根据限距关系的定义判断即可.(2)直线y b=+与x轴、y轴分别交于点F,G(0,b),分三种情形:①线段FG在⊙O内部,②线段FG与⊙O有交点,③线段FG 与⊙O没有交点,分别构建不等式求解即可.(3)如图3中,不妨设⊙K,⊙H的圆心在x轴上位于y轴的两侧,根据⊙H和⊙K都满足限距关系,构建不等式求解即可.【详解】(1)①如图1中,∵D (-1,0),E(0,3), ∴OD=1,OE =∴OE tan EDO OD Ð==,∴∠EDO=60°,当OP ⊥DE 时,•602OP OD sin =°=,此时OP 的值最小,当点P 与E 重合时,OP,当CP ⊥DE 时,CP 的值最小,最小值•603CD cos =°=,当点P 与D 或E 重合时,PC 的值最大,最大值为2,故答案为:22CP ££.②根据限距关系的定义可知,线段DE 上存在两点M ,N ,满足OM=2ON ,故点O 与线段DE 满足限距关系.故答案为O .(2)直线y b =+与x 轴、y 轴分别交于点F ,G (0,b ),当0<b <1时,线段FG 在⊙O 内部,与⊙O 无公共点,此时⊙O 上的点到线段FG 的最小距离为1-b ,最大距离为1+b ,∵线段FG 与⊙O 满足限距关系,∴1+b ≥2(1-b ),解得13b ³,∴b 的取值范围为131b £<.当1≤b ≤2时,线段FG 与⊙O 有公共点,线段FG 与⊙O 满足限距关系,当b >2时,线段FG 在⊙O 的外部,与⊙O 没有公共点,此时⊙O 上的点到线段FG 的最小距离为121b -,最大距离为b+1,∵线段FG 与⊙O 满足限距关系,∴11212b b æö+³-ç÷èø,而11212b b æö+³-ç÷èø总成立,∴b >2时,线段FG 与⊙O 满足限距关系,综上所述,b 的取值范围为13b ³.(3)如图3中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,两圆的距离的最小值为2r-2,最大值为2r+2,∵⊙H 和⊙K 都满足限距关系,∴2r+2≥2(2r-2),解得r ≤3,故r 的取值范围为0<r ≤3.【点睛】本题属于圆综合题,考查了解直角三角形,垂线段最短,直线与圆的位置关系,限距关系的定义等知识,解题的关键是理解题意,学会利用参数构建不等式解决问题,属于中考创新题型.。
北京市西城区 2020届高三第一次模拟考试 (数学)解析版
【答案】D 【解析】 【分析】
如图所示:在边长为 2 的正方体 ABCD − A1B1C1D1 中,四棱锥 C1 − ABCD 满足条件,故
{ } S = 2, 2 2, 2 3 ,得到答案.
【详解】如图所示:在边长为 2 的正方体 ABCD − A1B1C1D1 中,四棱锥 C1 − ABCD 满足条件.
-4-
当 a 与 b 共线,方向相反时, a + b ≠ a + b ,故不必要.
故选: A .
【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.
9.已知函数 f ( x) = sinx 的部分图象如图所示,将此图象分别作以下变换,那么变换后的
1+ 2sinx
图象可以与原图象重合的变换方式有( )
故选: B .
【点睛】本题考查了复数的运算,复数的模,意在考查学生的计算能力.
3.下列函数中,值域为 R 且为奇函数的是( )
A. y= x + 2
B. y = sinx
C. y= x − x3
【答案】C
D. 20
D. y = 2x
-1-
【解析】 【分析】 依次判断函数的值域和奇偶性得到答案.
【详解】A. y= x + 2 ,值域为 R ,非奇非偶函数,排除;
B. (2,3)
C. (−∞,0) ∪ (2,3)
D. (−∞,3)
【答案】C 【解析】 【分析】 直接求交集得到答案.
【详解】集合 A ={x | x < 3},B ={x | x 0或x 2} ,则 A ∩ B = (−∞,0) ∪ (2,3) .
故选: C .
【点睛】本题考查了交集运算,属于简单题.
2020年北京西城一模数学试卷+答案
2020北京西城区高三一模数学 2020.4本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至6页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合A={x|x<3},B={x|x<0,或x>2},则A∩B=(A)(−∞,0) (B)(2,3)(C)(−∞,0)∪(2,3)(D)(−∞,3)2.若复数z=(3−i)(1+i),则|z|=(A)2√2(B)2√5(C)√10(D)203.下列函数中,值域为R且为奇函数的是(A)y=x+2(B)y=sinx(C)y=x−x3(D)y=2x4.设等差数列{a n}的前n项和为S n,若a3=2,a1+a4=5,则S6=(A)10 (B)9 (C)8 (D)75.设A(2,−1),B(4,1),则以线段AB为直径的圆的方程是(A)(x−3)2+y2=2(B))(x−3)2+y2=8(C)(x+3)2+y2=2(D) (x+3)2+y2=86.设a,b,c为非零实数,且a>c,b>c,则(A)a+b>c(B)ab>c2(C)a+b2>c(D)1a+1b>2c7.某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则 (A)2√2∉S,且2√3∉S (B)2√2∉S,且2√3∈S (C)2√2∈S,且2√3∉S (D)2√2∈S,且2√3∈S8.设a,b 为非零向量,则“|a +b|=|a|+|b|”是“a 与b 共线”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件9.已知函数f(x)=sinx1+2sinx的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有①绕着x 轴上一点旋转180°; ②沿x 轴正方向平移; ③以x 轴为轴作轴对称;④以x 轴的某一条垂线为轴作轴对称. (A)①③(B)③④(C)②③(D)②④10.设函数f(x)={x 2+10x +1,x ≤0|lgx |, x >0若关于x 的方程f(x)=a(a ∈R)有四个实数解x i (i =1,2,3,4),其中x 1<x 2<x 3<x 4,则(x 1+x 2)(x 3−x 4)的取值范围是 (A)(0,101] (B)(0,99](C)(0,100](D)(0,+∞)第Ⅱ卷(非选择题共110分)二、填空题:本大题共5小题,每小题5分,共25分. 11.在(x +1x )6的展开式中,常数项为.(用数字作答)12.若向量a =(x 2,2),b =(1,x)满足a ·b <3,则实数x 的取值范围是. 13.设双曲线x 24−y 2b 2=1(b >0)的一条渐近线方程为y =√22x ,则该双曲线的离心率为.)的最小正周期为;若函数f(x)在区间(0,α)上单调递增,则α的最大值为14.函数f(x)=sin(2x+π4.15.在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论:①甲校学生成绩的优秀率大于乙校学生成绩的优秀率;②甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;③甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是.三、解答题:本大题共6小题,共85分.解答应写出必要的文字说明、证明过程或演算步骤.16.(本小题满分14分)如图,在四棱柱ABCD−A1B1C1D1中,AA1⊥平面ABCD,底面ABCD满足AD∥BC,且AB=AD=AA1=2,BD= DC=2√2.(Ⅰ)求证:AB⊥平面ADD1A1;(Ⅱ)求直线AB与平面B1CD1所成角的正弦值.17.(本小题满分14分),求sinC的值及△ABC的面积.已知△ABC满足,且b=√6,A=2π3从①B=π,②a=√3,③a=3√2sinB这三个条件中选一个,补充到上面问题中,并完成解答.4注:如果选择多个条件分别解答,按第一个解答计分.2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:(Ⅰ)试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;(Ⅱ)从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求X的分布列和数学期望;(Ⅲ)为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取m个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出m的最小值.(结论不要求证明)19.(本小题满分14分)设函数f(x)=alnx+x2−(a+2)x,其中a∈R.,求a的值;(Ⅰ)若曲线y=f(x)在点(2,f(2))处切线的倾斜角为π4(Ⅱ)已知导函数f′(x)在区间(1,e)上存在零点,证明:当x∈(1,e)时,f(x)>−e2.设椭圆E:x 22=1,直线l1经过点M(m,0),直线l2经过点N(n,0),直线l1∥直线l2,且直线l1,l2分别与椭圆E相交于A,B两点和C,D两点.(Ⅰ)若M,N分别为椭圆E的左、右焦点,且直线l1⊥x轴,求四边形ABCD的面积;(Ⅱ)若直线l1的斜率存在且不为0,四边形ABCD为平行四边形,求证:m+n=0;(Ⅲ)在(Ⅱ)的条件下,判断四边形ABCD能否为矩形,说明理由.21.(本小题满分14分)对于正整数n,如果k(k∈N∗)个整数a1,a2,…,a k满足1≤a1≤a2≤⋯≤a k≤n,且a1+a2+⋯+a k=n,则称数组(a1,a2,…,a k)为n的一个“正整数分拆”.记a1,a2,…,a k均为偶数的“正整数分拆”的个数为f n,a1,a2,…,a k均为奇数的“正整数分拆”的个数为g n.(Ⅰ)写出整数4的所有“正整数分拆”;(Ⅱ)对于给定的整数n(n≥4),设(a1,a2,…,a k)是n的一个“正整数分拆”,且a1=2,求k的最大值;(Ⅲ)对所有的正整数n,证明:f n≤g n;并求出使得等号成立的n的值.(注:对于n的两个“正整数分拆”(a1,a2,…,a k)与(b1,b2,…,b m),当且仅当k=m且a1=b1,a2=b2,…,a k=b m 时,称这两个“正整数分拆”是相同的.)西 城 区 高 三 统 一 测 试数学参考答案 2020.4一、选择题:本大题共10小题,每小题4分,共40分. 1.C 2.B 3.C 4.B 5. A 6. C7. D8. A9. D10. B二、填空题:本大题共5题,每小题5分,共25分. 11.2012.(3,1)-13214.π,π815.②③注:第14题第一问3分,第二问2分;第15题全部选对得5分,不选或有错选得分,其他得3分. 三、解答题:本大题共6小题,共85分. 其他正确解答过程,请参照评分标准给分. 16.(本小题满分14分)解:(Ⅰ)因为在底面ABCD中,2,AB AD BD ===所以222AB AD BD +=,即AB AD ⊥. ……………… 2分 因为1AA ⊥平面ABCD ,AB ⊂平面ABCD ,所以1AA ⊥AB , ……………… 4分 又因为1AA AD A =,1,AA AD ⊂平面11ADD A ,所以AB ⊥平面11ADD A . ……………… 6分(Ⅱ)由(Ⅰ),得1,,AB AD AA 两两垂直,故分别以AB ,AD ,1AA 为x 轴,y 轴,z 轴,如图建立空间直角坐标系, ……………… 7分 在底面ABCD 中,由题意,得224BC BD CD =+=.则(0,0,0)A ,(2,0,0)B ,(2,4,0)C ,1(2,0,2)B ,1(0,2,2)D ,所以(2,0,0)AB =,1(0,4,2)B C =-,11(2,2,0)B D =-, ……………… 8分 设平面11B CD 的法向量(,,)x y z =n ,由10B C ⋅=n ,110B D ⋅=n ,得420,220,y z x y -=⎧⎨-+=⎩令1y =,得(1,1,2)=n . ………………11分 设直线AB 与平面11B CD 所成的角为θ, 则 6sin |cos ,|||6||||AB AB AB θ⋅=<>==⋅n n n , 直线AB 与平面11B CD 所成角的正弦值为66. ……………… 14分17.(本小题满分14分)解:(不可以选择②作为补充条件.)选择①作为补充条件. ……………… 2分 解答如下:因为在ABC △中,πA B C ++=,所以sin sin()C A B =+ ……………… 4分 sin cos cos sin A B A B =+ ……………… 6分B 1B DAA 1D 1CC yxz2ππ2ππsincos cos sin 3434=+4=. ……………… 8分 在△ABC 中,由正弦定理sin sin a bA B=,得sin 3sin b A a B ==. ……………… 11分 所以△ABC的面积1sin 2S ab C =. ……………… 14分选择③作为补充条件. ……………… 2分 解答如下:在△ABC中,由a B =,以及正弦定理sin sin a bA B=, ……………… 4分得2πsin3B ,解得21sin 2B =. 由2π3A =,得B 为锐角, 所以π4B =,且3a B ==. ……………… 6分 因为在ABC △中,πA B C ++=,所以sin sin()C A B =+ ……………… 8分 sin cos cos sin A B A B =+ ……………… 10分2ππ2ππsincos cos sin 3434=+=. ……………… 11分 所以△ABC的面积1sin 2S ab C =. ……………… 14分18.(本小题满分14分)解:(Ⅰ)由图表可知,测试成绩在80分以上的女生有2人,占比为212010=,……… 3分 故在这50万青年学生志愿者中,英语测试成绩在80分以上的女生约为150510⨯=万人. ……………… 5分(Ⅱ)由图表知,选取的8名男生中,成绩在70分以上的有3人,70分及其以下的有5人,由题意,随机变量X 的所有可能取值为:0,1,2. ……………… 6分且205328C C 5(0)C 14P X ⋅===,115328C C 15(1)C 28P X ⋅===,025328C C 3(2)C 28P X ⋅===. ……………… 9分 所以随机变量的分布列为:……………… 10分所以51533()0121428284E X =⨯+⨯+⨯=. ……………… 11分 (Ⅲ)m 的最小值为4. ……………… 14分19.(本小题满分14分)解:(Ⅰ)由题意,得()2(2)f x x a xa'=+-+, ……………… 2分 X则π(2)tan 4f '=, ……………… 4分即224()1a a+-+=,解得2a =. ……………… 6分 (Ⅱ)(2()2(2))(1)x f x a a x x a x x '=+--+=-,其中(1,e)x ∈. ……………… 7分 令0(2())(1)a x f x x x'=-=-,得1x =,或2ax =. ……………… 8分由导函数()f x '在区间(1,e)上存在零点,得(1,e)2a∈,即(2,2e)a ∈. …… 9分随着x 变化,()f x '与()f x 的变化情况如下表所示:所以()f x 在(1,)2上单调递减,在(,e)2上单调递增.所以()f x 在(1,e)上存在最小值2()ln()224a a af a a =--. ……………… 11分设2()2ln 2g x x x x x =--,(1,e)x ∈. 则()()22a a g f =,(1,e)2a ∈. …… 12分所以()2ln 2g x x x '=-.由(1,e)x ∈,得2ln (0,2)x ∈,2(2,2e)x ∈,则()2ln 20g x x x '=-<. 所以()g x 在区间(1,e)上单调递减.所以2()(e)e g x g >=-,即2()()e 22a a g f =>-故当(1,e)x ∈时,2()e f x >-. ……………… 14分20.(本小题满分15分)解:(Ⅰ)由题意,得a 1b =,则1c =. ……………… 2分 根据椭圆的对称性,知四边形ABCD 是矩形.设0(1,)A y -,0(1,)B y --,0(1,)C y -,0(1,)D y ,将1x =-代入椭圆方程得2012y =. ……………… 3分 所以四边形ABCD的面积0||||2||2S AB AD y c =⋅=⋅=. ……………… 5分 (Ⅱ)设11(,)A x y ,22(,)B x y ,直线1()l y k x m =-:, ……………… 6分联立22(),1,2y k x m x y =-⎧⎪⎨+=⎪⎩消去y ,得22222(12)4220k x k mx k m +-+-=, …… 7分 则42222164(12)(22)0k m k k m ∆=-+->,2122412k m x x k +=+,221222212k m x x k -=+. ……………… 8分所以12|||AB x x - ……………… 9分=同理,得||CD = 由四边形ABCD 为平行四边形,得||||AB CD =,即得22m n =. 由题意知m n ≠,所以m n =-,即0m n +=. ……………… 11分 (Ⅲ)结论:四边形ABCD 不可能为矩形. ……………… 12分由(Ⅱ)知,M N 两点关于原点对称.根据椭圆的对称性,可得,A C 两点关于原点对称,故C 的坐标为11(,)x y --.由题意,得221112x y +=,222212x y +=. ……………… 13分 于是,2221212122212121AB BC y y y y y y k k x x x x x x -+-⋅=⋅=-+-22212221112(1)2(1)2y y y y -==-≠----. 所以AB 不可能垂直于BC .所以四边形ABCD 不能为矩形. ……………… 15分21.(本小题满分14分)解:(Ⅰ)(1,1,1,1),(1,1,2),(1,3),(2,2),(4) . ……………… 3分(Ⅱ)由题意,知122k a a a n =≤≤≤≤,且12k a a a n +++=, 得122k n a a a k =+++≥,即2n k ≤. ……………… 5分 所以当n 是偶数时,k 的最大值是2n (此时,2(2,2,,2)k 共有个 是n 的一个“正整数分拆”); 当n 是奇数时,k 的最大值是12n -(此时,12(2,2,,2,3)k -共有个是n 的一个“正整数分拆”). ……………… 8分(Ⅲ)当n 为奇数时,由题意,得0n f =;且1(1,1,,1)n 共有个是n 的一个各位数字均为奇数的“正整数分拆”,所以0n g >,故n n f g <. ……………… 9分当n 为偶数时,由()n 是各位数字均为偶数的“正整数分拆”,1(1,1,,1)n 共有个是各位数字均为奇数的“正整数分拆”,得0n f >,0n g >.① 当2n =时,n 的“正整数分拆”只有(1,1)和(2),所以221f g ==; ② 当4n =时,由(Ⅰ)知,442f g ==; ……………… 11分 ③ 当n 为大于4的偶数时,因为对于n 的任意一个各位数字均为偶数的“正整数分拆”12(,,,)k a a a ,都存在一个与之对应的各位数字均为奇数的“正整数分拆”121(1,1,,1,1,1,,1)k k a a a ---共有个.且当12(,,,)k a a a 不同时,其对应的121(1,1,,1,1,1,,1)k k a a a ---共有个也不相同,所以n n f g ≤.又因为在上述对应关系下,各位数字均为奇数的“正整数分拆”(3,3)n -不存在与之对应的各位数字都是偶数的“正整数分拆”,(注:因为6n ≥,所以(3,3)n -有意义) 所以n n f g <.综上,对所有的正整数n ,n n f g ≤;当且仅当2n =或4时等号成立. ……… 14分。
2020年北京市西城区中考数学一模试卷(解析版)
2020年北京市西城区中考数学一模试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)北京大兴国际机场目前是全球建设规模最大的机场,2019年9月25日正式通航,预计到2022年机场旅客吞吐量将达到45000000人次,将45000000用科学记数法表示为()A.45×106B.4.5×107C.4.5×108D.0.45×1082.(2分)如图是某个几何体的三视图,该几何体是()A.圆锥B.圆柱C.长方体D.正三棱柱3.(2分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(2分)在数轴上,点A,B表示的数互为相反数,若点A在点B的左侧,且AB=2,则点A,点B表示的数分别是()A.﹣,B.,﹣C.0,2D.﹣2,2 5.(2分)如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=65°,则∠ADC的度数为()A.65°B.35°C.32.5°D.25°6.(2分)甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为甲,乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.甲=乙,s甲2>s乙2B.甲=乙,s甲2<s乙2C.甲>乙,s甲2>s乙2D.甲<乙,s甲2<s乙27.(2分)如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度.阳光下他测得长1.0m的竹竿落在地面上的影长为0.9m.在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上.他测得这棵树落在地面上的影长BD为2.7m,落在墙面上的影长CD为1.0m,则这棵树的高度是()A.6.0m B.5.0m C.4.0m D.3.0m8.(2分)设m是非零实数,给出下列四个命题:①若﹣1<m<0,则<m<m2;②若m>1,则<m2<m;③若m<<m2,则m<0;④若m2<m<,则0<m<1.其中命题成立的序号是()A.①③B.①④C.②③D.③④二、填空题(本题共16分,每小题2分)9.(2分)若在实数范围内有意义,则x的取值范围是.10.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.11.(2分)已知y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,写出一个满足上述条件的二次函数表达式.12.(2分)如果a2+a=1,那么代数式﹣的值是.13.(2分)如图,在正方形ABCD中,BE平分∠CBD,EF⊥BD于点F.若DE=,则BC的长为.14.(2分)如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC 于点D,则AC的长为,BD的长为.15.(2分)如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为.16.(2分)某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.每日接待游客人数(单位:万人)游玩环境评价0≤x<5好5≤x<10一般10≤x<15拥挤15≤x<20严重拥挤根据以上信息,以下四个判断中,正确的是(填写所有正确结论的序号).①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在5~10万人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)17.(5分)计算:()﹣1+(1﹣)0+|﹣|﹣2sin60°.18.(5分)解不等式组:19.(5分)关于x的一元二次方程x2﹣(2m+1)x+m2=0有两个实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.20.(5分)如图,在▱ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC 于点E.(1)求证:▱ABCD是矩形;(2)若AD=2,cos∠ABE=,求AC的长.21.(5分)先阅读下列材料,再解答问题.尺规作图已知:△ABC,D是边AB上一点,如图1,求作:四边形DBCF,使得四边形DBCF是平行四边形.小明的做法如下:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别平行的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图3,①延长BC至点E;②分别作∠ECP=∠EBA,∠ADQ=∠ABE;③DQ与CP交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵∠ECP=∠EBA,∴CP∥BA.同理,DQ∥BE.∴四边形DBCF是平行四边形.请你参考小明的做法,再设计一种尺规作图的方法(与小明的方法不同),使得画出的四边形DBCF是平行四边形,并证明.22.(6分)运用语音识别输入软件可以提高文字输入的速度.为了解A,B两种语音识别输入软件的准确性,小秦同学随机选取了20段话,其中每段话都含100个文字(不计标点符号).在保持相同语速的条件下,他用标准普通话朗读每段话来测试这两种语音识别输入软件的准确性.他的测试和分析过程如下,请补充完整.(1)收集数据两种软件每次识别正确的字数记录如下:A 98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58B 99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据两组样本数据的平均数、众数、中位数、方差如表所示:平均数众数中位数方差A84.784.588.91B83.796184.01(4)得出结论根据以上信息,判断种语音识别输入软件的准确性较好,理由如下:(至少从两个不同的角度说明判断的合理性).23.(6分)如图,四边形OABC中,∠OAB=90°,OA=OC,BA=BC.以O为圆心,以OA为半径作⊙O.(1)求证:BC是⊙O的切线;(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与BC的延长线交于点F,若=,①补全图形;②求证:OF=OB.24.(6分)如图,在△ABC中,AB=4cm,BC=5cm.P是上的动点,设A,P两点间的距离为xcm,B,P两点间的距离为y1cm,C,P两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm01234y1/cm 4.00 3.69 2.130y2/cm 3.00 3.91 4.71 5.235(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),点(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,①当△PBC为等腰三角形时,AP的长度约为cm;②记所在圆的圆心为点O,当直线PC恰好经过点O时,PC的长度约为cm.25.(5分)在平面直角坐标系xOy中,直线l1:y=kx+2k(k>0)与x轴交于点A,与y轴交于点B,与函数y=(x>0)的图象的交点P位于第一象限.(1)若点P的坐标为(1,6),①求m的值及点A的坐标;②=;(2)直线l2:y=2kx﹣2与y轴交于点C,与直线l1交于点Q,若点P的横坐标为1,①写出点P的坐标(用含k的式子表示);②当PQ≤P A时,求m的取值范围.26.(6分)已知抛物线y=ax2+bx+a+2(a≠0)与x轴交于点A(x1,0),点B(x2,0)(点A在点B的左侧),抛物线的对称轴为直线x=﹣1.(1)若点A的坐标为(﹣3,0),求抛物线的表达式及点B的坐标;(2)C是第三象限的点,且点C的横坐标为﹣2,若抛物线恰好经过点C,直接写出x2的取值范围;(3)抛物线的对称轴与x轴交于点D,点P在抛物线上,且∠DOP=45°,若抛物线上满足条件的点P恰有4个,结合图象,求a的取值范围.27.(7分)如图,在等腰直角△ABC中,∠ACB=90°.点P在线段BC上,延长BC至点Q,使得CQ=CP,连接AP,AQ.过点B作BD⊥AQ于点D,交AP于点E,交AC于点F.K是线段AD上的一个动点(与点A,D不重合),过点K作GN⊥AP于点H,交AB于点G,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.28.(7分)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A与点B可以重合),在图形W2上存在两点M,N(点M与点N可以重合),使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(1,0),D(﹣1,0),E(0,),点P在线段DE上运动(点P 可以与点D,E重合),连接OP,CP.①线段OP的最小值为,最大值为,线段CP的取值范围是;②在点O,点C中,点与线段DE满足限距关系;(2)如图2,⊙O的半径为1,直线y=x+b(b>0)与x轴、y轴分别交于点F,G.若线段FG与⊙O满足限距关系,求b的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两点,分别以H,K为圆心,1为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r 的取值范围.2020年北京市西城区中考数学一模试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)北京大兴国际机场目前是全球建设规模最大的机场,2019年9月25日正式通航,预计到2022年机场旅客吞吐量将达到45000000人次,将45000000用科学记数法表示为()A.45×106B.4.5×107C.4.5×108D.0.45×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将数据45000000用科学记数法可表示为:4.5×107.故选:B.2.(2分)如图是某个几何体的三视图,该几何体是()A.圆锥B.圆柱C.长方体D.正三棱柱【分析】由主视图和左视图确定是柱体、锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是圆柱.故选:B.3.(2分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、既是轴对称图形又是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.4.(2分)在数轴上,点A,B表示的数互为相反数,若点A在点B的左侧,且AB=2,则点A,点B表示的数分别是()A.﹣,B.,﹣C.0,2D.﹣2,2【分析】根据相反数的定义即可求解.【解答】解:由A、B表示的数互为相反数,且AB=2,点A在点B的左边,得点A、B表示的数是﹣,.故选:A.5.(2分)如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=65°,则∠ADC的度数为()A.65°B.35°C.32.5°D.25°【分析】首先利用直径所对的圆周角是直角确定∠ACB=90°,然后根据∠CAB=65°求得∠ABC的度数,利用同弧所对的圆周角相等确定答案即可.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠CAB=65°,∴∠ABC=90°﹣∠CAB=25°,∴∠ADC=∠ABC=25°,故选:D.6.(2分)甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为甲,乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.甲=乙,s甲2>s乙2B.甲=乙,s甲2<s乙2C.甲>乙,s甲2>s乙2D.甲<乙,s甲2<s乙2【分析】分别计算平均数和方差后比较即可得到答案.【解答】解:(1)甲=(8×4+9×2+10×4)=9;=(8×3+9×4+10×3)=9;乙s甲2=[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s乙2=[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7;∴甲=乙,s甲2>s乙2,故选:A.7.(2分)如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度.阳光下他测得长1.0m的竹竿落在地面上的影长为0.9m.在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上.他测得这棵树落在地面上的影长BD为2.7m,落在墙面上的影长CD为1.0m,则这棵树的高度是()A.6.0m B.5.0m C.4.0m D.3.0m【分析】根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似进而解答即可.【解答】解:根据物高与影长成正比得:,即解得:DE=1.0,则BE=2.7+1.0=3.7米,同理,即:,解得:AB≈4.答:树AB的高度为4米,故选:C.8.(2分)设m是非零实数,给出下列四个命题:①若﹣1<m<0,则<m<m2;②若m>1,则<m2<m;③若m<<m2,则m<0;④若m2<m<,则0<m<1.其中命题成立的序号是()A.①③B.①④C.②③D.③④【分析】判断一个命题是假命题,只需举出一个反例即可.【解答】解:①若﹣1<m<0,则<m<m2;,当m=﹣时,,是真命题;②若m>1,则<m2<m,当m=2时,,原命题是假命题;③若m<<m2,则m<0,当m=﹣时,,原命题是假命题;④若m2<m<,则0<m<1,当m=时,,是真命题;故选:B.二、填空题(本题共16分,每小题2分)9.(2分)若在实数范围内有意义,则x的取值范围是x≥1.【分析】直接利用二次根式有意义的条件进而得出答案.【解答】解:若在实数范围内有意义,则x﹣1≥0,解得:x≥1.故答案为:x≥1.10.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形的边数为6.故答案为:6.11.(2分)已知y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,写出一个满足上述条件的二次函数表达式y=x2﹣1.【分析】直接利用二次函数的性质得出其顶点坐标,进而得出答案.【解答】解:∵y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,∴二次函数对称轴是y轴,且顶点坐标为:(0,﹣1),故满足上述条件的二次函数表达式可以为:y=x2﹣1.故答案为:y=x2﹣1.12.(2分)如果a2+a=1,那么代数式﹣的值是1.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a2+a的值整体代入即可得.【解答】解:原式=﹣===,当a2+a=1时,原式=1,故答案为:1.13.(2分)如图,在正方形ABCD中,BE平分∠CBD,EF⊥BD于点F.若DE=,则BC的长为.【分析】根据正方形的性质、角平分线的性质及等腰直角三角形的三边比值为1:1:来解答即可.【解答】解:∵四边形ABCD为正方形,∴∠C=90°,∠CDB=45°,BC=CD.∴EC⊥CB.又∵BE平分∠CBD,EF⊥BD,∴EC=EF.∵∠CDB=45°,EF⊥BD,∴△DEF为等腰直角三角形.∵DE=,∴EF=1.∴EC=1.∴BC=CD=DE+EC=+1.故答案为:+1.14.(2分)如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC 于点D,则AC的长为5,BD的长为3.【分析】根据图形和三角形的面积公式求出△ABC的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.【解答】解:如图所示:由勾股定理得:AC==5,S△ABC=BC×AE=×BD×AC,∵AE=3,BC=5,即,解得:BD=3.故答案为:5,3.15.(2分)如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为(6,6).【分析】由题意得出M在AB、BC的垂直平分线上,则BN=CN,求出ON=OB+BN=6,证△OMN是等腰直角三角形,得出MN=ON=6,即可得出答案.【解答】解:如图所示:∵⊙M是△ABC的外接圆,∴点M在AB、BC的垂直平分线上,∴BN=CN,∵点A,B,C的坐标分别是(0,4),(4,0),(8,0),∴OA=OB=4,OC=8,∴BC=4,∴BN=2,∴ON=OB+BN=6,∵∠AOB=90°,∴△AOB是等腰直角三角形,∵OM⊥AB,∴∠MON=45°,∴△OMN是等腰直角三角形,∴MN=ON=6,∴点M的坐标为(6,6);故答案为:(6,6).16.(2分)某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.每日接待游客人数(单位:万人)游玩环境评价0≤x<5好5≤x<10一般10≤x<15拥挤15≤x<20严重拥挤根据以上信息,以下四个判断中,正确的是①④(填写所有正确结论的序号).①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在5~10万人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.【分析】根据统计图与统计表,结合相关统计或概率知识逐个选项分析即可.【解答】解:①根据题意每日接待游客人数10≤x<15为拥挤,15≤x<20为严重拥挤,由统计图可知,游玩环境评价为“拥挤或严重拥挤”,1日至5日有2天,25日﹣30日有2天,共4天,故①正确;②本题中位数是指将30天的游客人数从小到大排列,第15与第16位的和除以2,根据统计图可知0≤x<5的有16天,从而中位数位于0≤x<5范围内,故②错误;③从统计图可以看出,接近10的有6天,大于10而小于15的有2天,15以上的有2天,10上下的估算为10,则(10×8+15×2﹣5×10)÷16=3.25,可以考虑为给每个0至5的补上3.25,则大部分大于5,而0至5范围内有6天接近5,故平均数一定大于5,故③错误;④由题意可知“这两天游玩环境评价均为好”的可能性为:×=,故④正确.故答案为:①④.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)17.(5分)计算:()﹣1+(1﹣)0+|﹣|﹣2sin60°.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=2+1+﹣2×=3+﹣=3.18.(5分)解不等式组:【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x<4,由②得:x>,则不等式组的解集为<x<4.19.(5分)关于x的一元二次方程x2﹣(2m+1)x+m2=0有两个实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【分析】(1)先根据方程有两个实数根得出△=[﹣(2m+1)]2﹣4×1×m2>0,解之可得;(2)在以上所求m的范围内取一值,如m=0,再解方程即可得.【解答】解:(1)∵方程有两个实数根,∴△=[﹣(2m+1)]2﹣4×1×m2>0,解得m≥﹣;(2)取m=0,此时方程为x2﹣x=0,∴x(x﹣1)=0,则x=0或x﹣1=0,解得x=0或x=1(答案不唯一).20.(5分)如图,在▱ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC 于点E.(1)求证:▱ABCD是矩形;(2)若AD=2,cos∠ABE=,求AC的长.【分析】(1)根据平行四边形的性质得到OA=OC,OB=OD,求得AC=BD,于是得到结论;(2)根据矩形的性质得到∠BAD=∠ADC=90°,求得∠CAD=∠ABE,解直角三角形即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OC=OD,∴AC=BD,∴▱ABCD是矩形;(2)解:∵▱ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠BAC+∠CAD=90°,∵BE⊥AC,∴∠BAC+∠ABE=90°,∴∠CAD=∠ABE,在Rt△ACD中,AD=2,cos∠CAD=cos∠ABE=,∴AC=5.21.(5分)先阅读下列材料,再解答问题.尺规作图已知:△ABC,D是边AB上一点,如图1,求作:四边形DBCF,使得四边形DBCF是平行四边形.小明的做法如下:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别平行的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图3,①延长BC至点E;②分别作∠ECP=∠EBA,∠ADQ=∠ABE;③DQ与CP交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵∠ECP=∠EBA,∴CP∥BA.同理,DQ∥BE.∴四边形DBCF是平行四边形.请你参考小明的做法,再设计一种尺规作图的方法(与小明的方法不同),使得画出的四边形DBCF是平行四边形,并证明.【分析】根据平行四边形的判定方法即可作图并证明.【解答】解:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别相等的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图,①以点C为圆心,BC长为半径画弧;②以点D为圆心,BC长为半径画弧,;③两弧交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵CF=BD,DF=BC.∴四边形DBCF是平行四边形.22.(6分)运用语音识别输入软件可以提高文字输入的速度.为了解A,B两种语音识别输入软件的准确性,小秦同学随机选取了20段话,其中每段话都含100个文字(不计标点符号).在保持相同语速的条件下,他用标准普通话朗读每段话来测试这两种语音识别输入软件的准确性.他的测试和分析过程如下,请补充完整.(1)收集数据两种软件每次识别正确的字数记录如下:A 98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58B 99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据两组样本数据的平均数、众数、中位数、方差如表所示:平均数众数中位数方差A84.784.588.91B83.796184.01(4)得出结论根据以上信息,判断A种语音识别输入软件的准确性较好,理由如下:∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.(至少从两个不同的角度说明判断的合理性).【分析】(2)根据题意补全频数分布直方图即可;(3)根据众数和中位数的定义即可得到结论;(4)根据A,B两种语音识别输入软件的准确性的方差的大小即可得到结论.【解答】解:(2)根据题意补全频数分布直方图如图所示;(3)补全统计表;平均数众数中位数方差A84.79284.588.91B83.79688.5184.01(4)A种语音识别输入软件的准确性较好,理由如下:∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.故答案为:A,∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.23.(6分)如图,四边形OABC中,∠OAB=90°,OA=OC,BA=BC.以O为圆心,以OA为半径作⊙O.(1)求证:BC是⊙O的切线;(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与BC的延长线交于点F,若=,①补全图形;②求证:OF=OB.【分析】(1)连接AC,根据等腰三角形的性质得到∠OAC=∠OCA,∠BAC=∠BCA,得到∠OCB=∠OAB=90°,根据切线的判定定理证明;(2)①根据题意画出图形;②根据切线长定理得到BA=BC,得到BD是AC的垂直平分线,根据垂径定理、圆心角和弧的关系定理得到∠AOC=120°,根据等腰三角形的判定定理证明结论.【解答】(1)证明:如图1,连接AC,∵OA=OC,∴∠OAC=∠OCA,∵BA=BC,∴∠BAC=∠BCA,∴∠OAC+∠BCA=∠OCA+∠BCA,即∠OCB=∠OAB=90°,∴OC⊥BC,∴BC是⊙O的切线;(2)①解:补全图形如图2;②证明:∵∠OAB=90°,∴BA是⊙O的切线,又BC是⊙O的切线,∴BA=BC,∵BA=BC,OA=OC,∴BD是AC的垂直平分线,∴=,∵=,∴==,∴∠AOC=120°,∴∠AOB=∠COB=∠COE=60°,∴∠OBF=∠F=30°,∴OF=OB.24.(6分)如图,在△ABC中,AB=4cm,BC=5cm.P是上的动点,设A,P两点间的距离为xcm,B,P两点间的距离为y1cm,C,P两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm012342.130y1/cm 4.00 3.69 3.09(答案不唯一)y2/cm 3.00 3.91 4.71 5.235(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),点(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,①当△PBC为等腰三角形时,AP的长度约为0.83或2.49(答案不唯一)cm;②记所在圆的圆心为点O,当直线PC恰好经过点O时,PC的长度约为 5.32(答案不唯一)cm.【分析】(1)利用图象法解决问题即可;(2)描点绘图即可;(3)①分PB=PB、PC=BC、PB=BC三种情况,分别求解即可;②当直线PC恰好经过点O时,PC的长度取得最大值,观察图象即可求解.【解答】解:(1)由画图可得,x=4时,y1≈3.09cm(答案不唯一).故答案为:3.09(答案不唯一).(2)描点绘图如下:(3)①由y1与y2的交点的横坐标可知,x≈0.83cm时,PC=PB,当x≈2.49cm时,y2=5cm,即PC=BC,观察图象可知,PB不可能等于BC,故答案为:0.83或2.49(答案不唯一).②当直线PC恰好经过点O时,PC的长度取得最大值,从图象看,PC=y2≈5.32cm,故答案为5.32(答案不唯一).25.(5分)在平面直角坐标系xOy中,直线l1:y=kx+2k(k>0)与x轴交于点A,与y轴交于点B,与函数y=(x>0)的图象的交点P位于第一象限.(1)若点P的坐标为(1,6),①求m的值及点A的坐标;②=;(2)直线l2:y=2kx﹣2与y轴交于点C,与直线l1交于点Q,若点P的横坐标为1,①写出点P的坐标(用含k的式子表示);②当PQ≤P A时,求m的取值范围.【分析】(1)①把P(1,6)代入函数y=(x>0)即可求得m的值,直线l1:y=kx+2k (k>0)中,令y=0,即可求得x的值,从而求得A的坐标;②把P的坐标代入y=kx+2k即可求得k的值,进而求得B的坐标,然后根据勾股定理求得PB和P A,即可求得的值;(2)①把x=1代入y=kx+2k,求得y=3k,即可求得P(1,3k);②分别过点P、Q作PM⊥x轴于M,QN⊥x轴于N,则点M、点N的横坐标1,2+,若PQ=P A,则=1,根据平行线分线段成比例定理则==1,得出MN=MA=3,即可得到2+﹣1=3,解得k=1,根据题意即可得到当=≤1时,k≥1,则m =3k≥3.【解答】解:(1)①令y=0,则kx+2k=0,∵k>0,解得x=﹣2,∴点A的坐标为(﹣2,0),∵点P的坐标为(1,6),∴m=1×6=6;②∵直线l1:y=kx+2k(k>0)函数y=(x>0)的图象的交点P,且P(1,6),∴6=k+2k,解得k=2,∴y=2x+4,令x=0,则y=4,∴B(0,4),∵点A的坐标为(﹣2,0),∴P A==,PB==,∴==,故答案为;(2)①把x=1代入y=kx+2k得y=3k,∴P(1.3k);②由题意得,kx+2k=2kx﹣2,解得x=2+,∴点Q的横坐标为2+,∵2+>1(k>0),∴点Q在点P的右侧,如图,分别过点P、Q作PM⊥x轴于M,QN⊥x轴于N,则点M、点N的横坐标1,2+,若PQ=P A,则=1,∴==1,∴MN=MA,∴2+﹣1=3,解得k=1,∵MA=3,∴当=≤1时,k≥1,∴m=3k≥3,∴当PQ≤P A时,m≥3.26.(6分)已知抛物线y=ax2+bx+a+2(a≠0)与x轴交于点A(x1,0),点B(x2,0)(点A在点B的左侧),抛物线的对称轴为直线x=﹣1.(1)若点A的坐标为(﹣3,0),求抛物线的表达式及点B的坐标;(2)C是第三象限的点,且点C的横坐标为﹣2,若抛物线恰好经过点C,直接写出x2的取值范围;(3)抛物线的对称轴与x轴交于点D,点P在抛物线上,且∠DOP=45°,若抛物线上满足条件的点P恰有4个,结合图象,求a的取值范围.【分析】(1)抛物线的对称轴为x=﹣1=﹣,求出b=2a,将点A的坐标代入抛物线的表达式,即可求解;(2)点C在第三象限,即点A在点C和函数对称轴之间,故﹣2<x1<﹣1,即可求解;(3)满足条件的P在x轴的上方有2个,在x轴的下方也有2个,则抛物线与y轴的交点在x轴的下方,即可求解.【解答】解:(1)抛物线的对称轴为x=﹣1=﹣,解得:b=2a,故y=ax2+bx+a+2=a(x+1)2+2,将点A的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x+1)2+2=﹣x2﹣x+;令y=0,即﹣x2﹣x+=0,解得:x=﹣3或1,故点B的坐标为:(1,0);(2)由(1)知:y=a(x+1)2+2,点C在第三象限,即点C在点A的下方,即点A在点C和函数对称轴之间,故﹣2<x1<﹣1,而(x1+x2)=﹣1,即x2=﹣2﹣x1,故﹣1<x2<0;(3)∵抛物线的顶点为(﹣1,2),∴点D(﹣1,0),∵∠DOP=45°,若抛物线上满足条件的点P恰有4个,∴抛物线与x轴的交点在原点的左侧,如下图,∴满足条件的P在x轴的上方有2个,在x轴的下方也有2个,则抛物线与y轴的交点在x轴的下方,当x=0时,y=ax2+bx+a+2=a+2<0,解得:a<﹣2,故a的取值范围为:a<﹣2.27.(7分)如图,在等腰直角△ABC中,∠ACB=90°.点P在线段BC上,延长BC至点Q,使得CQ=CP,连接AP,AQ.过点B作BD⊥AQ于点D,交AP于点E,交AC于点F.K是线段AD上的一个动点(与点A,D不重合),过点K作GN⊥AP于点H,交AB于点G,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.【分析】(1)根据题意补全图1即可;(2)根据等腰三角形的性质得到AP=AQ,求得∠APQ=∠Q,求得∠MFN=∠Q,同理,∠NMF=∠APQ,等量代换得到∠MFN=∠FMN,于是得到结论;(3)连接CE,根据线段垂直平分线的性质得到AP=AQ,求得∠P AC=∠QAC,得到∠CAQ=∠QBD,根据全等三角形的性质得到CP=CF,求得AM=CF,得到AE=BE,推出直线CE垂直平分AB,得到∠ECB=∠ECA=45°,根据全等三角形的性质即可得到结论.【解答】解:(1)依题意补全图1如图所示;(2)∵CQ=CP,∠ACB=90°,∴AP=AQ,∴∠APQ=∠Q,∵BD⊥AQ,∴∠QBD+∠Q=∠QBD+∠BFC=90°,∴∠Q=∠BFC,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区2020学年度第一学期期末试卷九年级化学2020考生须知1.本试卷共8页,共四道大题,35道小题,满分80分。
考试时间100分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.答案一律填写在答题卡上,在试卷上作答无效。
4.考试结束,将试卷和答题卡一并交回。
可能用到的相对原子质量:H 1 C 12 O 16 Na 23 S 32 K 39 Mn 55 Cu 64一、选择题(每小题只有一个选项符合题意。
共25个小题,每小题1分,共25分。
)1.空气成分中,体积分数约占78%的是A.氧气B.氮气C.二氧化碳D.稀有气体2.下列物质中,属于纯净物的是A.矿泉水B.氢气C.食醋D.牛奶3.生活中的下列变化,属于化学变化的是A.冰块受热变为液体B.熨斗通电后变热C.吃进的食物被消化D.樟脑球在衣柜中消失4.地壳中含量最多的元素是A.铝B.硅C.铁D.氧5.碳元素与氧元素的本质区别是A.电子数不同B.质子数不同C.中子数不同D.最外层电子数不同6.下列金属中,金属活动性最强的是A.Zn B.Cu C.Fe D.Mg7.铝能制成铝箔是因为铝具有A.延展性B.导电性C.导热性D.抗腐蚀性8.北京市已于2006年完成了“管道煤气置换为天然气”的工程。
天然气的主要成分是A.甲烷B.氮气C.一氧化碳D.氧气9.二氧化钛(TiO2)中钛元素的化合价是A.-4 B.-2 C.+4 D.+210.元素周期表中镁元素的信息如右图所示,对图中信息理解不正确...的是A.元素名称为镁B.质子数为12C.元素符号为Mg D.核外电子数为24.3111.下列物质的用途是利用其化学性质的是A .铜线可用于制电缆B .干冰可用于人工降雨C .稀有气体可制成电光源D .氧气可用于炼钢、气焊12.下列实验操作正确的是13.物质都是由微观粒子构成的,下列物质由分子构成的是A .水B .氯化钠C .金刚石D .汞 14.下列化学名称与符号相符合的是A .氧元素O 2B .氯离子C1-C .碳酸钠NaCO 3D .金AU 15.实验室制取二氧化碳,下列做法可行的是A .用镊子夹取块状石灰石固体B .将鼻子凑到瓶口闻酸液的气味C .将用剩的酸液倒回原瓶D .用稀硫酸与块状石灰石反应制取二氧化碳 16.下列粒子结构示意图中,表示阳离子的是17.下列自救措施中不合理...的是 A .室内起火,不要急于打开所有门窗 B .厨房燃气泄漏,不要立即打开抽油烟机C .在山林中遇到火灾时,向顺风方向奔跑,脱离火灾区D .火灾发生且烟雾较浓时,应用湿毛巾捂住口鼻,迅速逃离 18.下列实验现象描述与事实不符合...的是 A .木炭在氧气中燃烧,发出白光 B .红磷在空气中燃烧,产生大量白色烟雾 C .镁与稀盐酸反应产生气体,放出热量D .铁丝在氧气中燃烧,火星四射,生成一种黑色固体19.在SO 3 + H 2O == H 2SO 4 反应中,反应前后发生改变的是A .分子总数B .元素种类C .各元素化合价D .原子种类 A . B . C . D .A .读取数值B .倾倒液体C .检查装置气密性D .加热液体20.关于“3CO 2”的含义叙述正确的是①表示二氧化碳这种物质 ②表示三个碳原子和六个氧原子③表示三个二氧化碳分子 ④表示二氧化碳分子由一个碳原子和两个氧分子构成 ⑤相对分子质量为132 ⑥碳原子与氧原子的质量比为3∶8A .①③④B .②⑤⑥C .③⑥D .②⑥ 21.下列事实与相应的解释不一致的是 2223 2425.原煤(含硫元素)在氧气中不完全燃烧会生成CO 、CO 2 和SO 2。
若测得CO 、CO 2、和SO 2的混合气体中碳元素的质量分数为24%,则其中SO 2的质量分数可能是 A .10% B .30% C .50% D .70% 二、填空题(本题包括5道小题,共30分。
)26.(6分)随着经济的发展,能源和环境日益成为人们关注的焦点。
(1)煤、天然气和 通常称为化石燃料。
(2)煤块燃烧时,将煤块粉碎成煤粉是为了使煤与空气 。
(3)上海世博会的主题是“城市,让生活更美好”。
世博园内使用电动车,有效地减少了二氧化碳、二氧化硫、一氧化碳的排放,这些物质中会引起温室效应的是 ;造成酸雨的是 。
(4)低碳生活是指生活中要尽量减少能量消耗和材料消耗,从而降低二氧化碳的排放量。
下列做法符合低碳生活理念的是 (填字母序号)。
A .少用一次性的木筷 B .用完电器后拔掉插头C .大力发展火力发电D .优化建筑设计,研制新型保温材料 27.(8分)水是生命之源,人类的日常生活与工农业生产都离不开水。
(1)如图甲所示。
通电一段时间后,试管1中所收集的气体为 ,该实验说明水是由 组成的。
该反应的化学方程式是 。
(2)小刚自制了一个简易净水器(如图乙)净化雨水,其中活性炭的主要作用是 。
经过此净水器得到的水仍然不是纯水,若想得到纯水可采用的方法是 。
(3)氢气燃烧产物是水,被认为是最清洁的燃料,其制备及燃烧的过程中会发生如下化学反应,反应的微观过程可用下图表示:图一和图二所出现的物质中,共有 种含有氢元素的化合物,参加反应的甲烷与生成水的质量比为 (计算结果用最简整数比表示)。
图乙图甲试管1试管2小卵石 石英沙 活性炭 蓬松棉点燃氢原子氧原子 碳原子一定条件图一图二甲乙丙X 丁A.过氧化氢溶液和二氧化锰混合B.加热高锰酸钾C.铁丝锈蚀(1)A、B实验中数据变化关系与对应图像相符的是(填字母序号)。
(2)A中反应的化学方程式是。
充分反应后,所得液体中氢元素的质量分数是(计算结果保留一位小数)。
(3)C中铁生锈的条件是,观察到的现象是。
29.(5分)某电镀厂排放的污水中含有CuSO4、ZnSO4和FeSO4,为减少水污染及节约成本,回收重要原料硫酸锌和有关金属,设计如下图所示流程。
请回答:(1)步骤①的操作是,步骤③使用的方法是。
(2)固体A的成分是,固体B的成分是。
(3)步骤④中反应的化学方程式是。
30.(5分)甲、乙、丙、丁、X都是初中化学常见的物质,它们之间的关系如下图所示。
(图中“—”表示两端的物质能发生化学反应,“→”表示物质间存在转化关系;部分反应物、生成物及反应条件均已略去。
)(1)若上述物质由C、O、Fe三种元素中的一种或几种组成。
已知甲是常见的灭火剂,甲的化学式是,丙和乙反应的化学方程式是。
(2)若上述物质由H、C、O、Fe四种元素中的一种或几种组成,且只有一种物质中含有金属元素,并将题目中“丙—乙”改为“丙→乙”。
已知甲也可用于灭火,则甲的化学式是。
丙→丁的化学方程式是,此反应属于基本反应类型中的反应。
废液滤液A 固体A固体C固体DCu滤液A 加过量甲①③加适量乙溶液④②蒸干固体B三、实验题(本题包括3道小题,共19分。
) 31.(7分)请根据下图所示实验,回答问题。
甲 乙 丙(1)甲中可观察到硫在氧气中燃烧,发出 火焰,此反应的化学方程式是 。
(2)乙中仪器a 的名称是 ,玻璃管中的现象是 。
该装置的不足之处是 。
(3)丙中铜片上的现象是 ,由此得出可燃物燃烧的条件是 。
32.(7分)同学们在课外活动中设计了有关气体的实验。
(1)气体的发生装置如右图所示。
① 此装置若用于制备氧气,应在分液漏斗中盛放的药品是 ;若用于制备二氧化碳,反应的化学方程式是 。
② 此装置还可以验证某气体的化学性质,请完成下表中的内容。
③ 在不改变此实验装置的基础上,同学们认为只要再增加一个操作,还可以验证该气体的其他化学性质。
增加的操作是 。
(2)同学们又设计以下实验研究某混合气体的组成。
① 第一组:取三支试管,在其容积的二分之一 处做标记。
分别充满气体(甲为CO 2,乙为A 气体,丙为CO 2和A 的混合气)后倒扣在NaOH 溶液中。
最终观察到的实验现象如右图所示。
据此推测:气体A 的化学性质有 。
② 第二组:同学们利用右图所示的装置进行实验。
实验步骤:关闭止水夹,向充满丙的集气瓶中注入 10 mLNaOH 溶液(足量),充分反应后,冷却至室 温,打开止水夹。
实验现象是 。
仪器名称 分液漏斗小试管 大试管 装置内的药品大理石用化学方程式表示相关性质K小试管分液漏斗分液漏斗止水夹250 mL200 mL 水甲乙丙Fe 2O 3石灰水COa氧气 硫33.(5分)催化剂在科研、医药生产和电子工业等前沿领域有着广泛应用。
(1)为探究二氧化锰对氯酸钾分解的催化作用。
在相同条件下,同学们按下表进行实验编号KClO3质量/g 其他物质质量/g 待测数据实验1 2.0实验2 a MnO20.5①表中a的数值应是。
②表中的待测数据指(填字母序号)。
A.氧气的质量B.反应后固体的质量C.氧气的体积D.单位时间内产生氧气的体积③设计“实验1”的目的是。
(2)同学们继续探究二氧化锰是否参与了氯酸钾的分解反应。
氯酸钾和二氧化锰混合加热的化学方程式为:2KClO3====2KCl + 3O2↑。
已知氯酸钾与二氧化锰混合加热时连续发生如下反应,试分析后按要求填空。
(I)2KClO3 + 2MnO2===2KMnO4 + Cl2↑+ O2↑;(II)(用化学方程式表示);(III)K2MnO4 + Cl2===2KCl + MnO2 + O2↑。
通过以上分析,同学们得出结论:二氧化锰参与了氯酸钾的分解反应。
【拓展】氟利昂释放出的氯原子参与了臭氧层的破坏,其微观示意图如下:综合图中①②③的反应过程,写出臭氧层被破坏的化学方程式。
MnO2氧原子氯原子①++③日光++②四、计算题(本题包括2道小题,共6分。
)34.(3分)已知金属钠与水在常温下反应的化学方程式为:2Na + 2H2O==2NaOH + H2↑。
若要得到2 g氢气,需要金属钠多少克?35.(3分)已知碳与氧化铜在高温时可同时发生两个反应且均生成红色固体。
(1)碳与氧化铜在高温时反应生成红色铜的化学方程式可表示为:说明:除特别注明外,每空1分。
其他合理答案参照本标准给分。
二、填空题(26~30小题,共30分。
)26.(1)石油(2)充分接触(3)CO2SO2(4)ABD(答对两项得1分,全部答对得2分)通电27.(1)氢气氢元素和氧元素2H2O === 2H2↑+ O2↑(2)吸附 蒸馏 (3)2 4:9(2分) 28.(1)B(2)2H 2O 2 === 2H 2O + O 2↑ 11.1% (3)铁与氧气、水同时接触银白色固体表面有红色固体出现(1分),试管内液面上升(1分)29.(1)过滤 用磁铁吸引 (2)ZnSO 4 Fe 、Zn 、Cu(3)Zn + H 2SO 4 = ZnSO 4 + H 2↑ (或Zn + CuSO 4 = ZnSO 4 + Cu )30.(1)CO 2 4CO + Fe 3O 4 === 3Fe + 4CO 2 (或3CO + Fe 2O 3 === 2Fe + 3CO 2)(2)H 2O 3Fe + 2O 2 === Fe 3O 4 化合 三、实验题(31~33小题,共19分) 31.(1)蓝紫色 S+ O 2 === SO 2(2)试管 红色粉末逐渐变黑 没有尾气处理装置(3)白磷燃烧..,放热,产生大量白烟,红磷不燃烧... 温度需要达到该可燃物的着火点32.(1)① 过氧化氢溶液 CaCO 3 + 2HCl = CaCl 2 + CO 2↑+ H 2O② 稀盐酸 石灰水(或紫色石蕊试液) (说明:两空都对,得1分)CO 2 + Ca(OH) 2 = CaCO 3↓+ H 2O (或CO 2 + H 2O == H 2CO 3) ③ 将一根燃着的木条放在K 处(2)① 不与氢氧化钠溶液(或氢氧化钠、水)反应 (答一点即可)② 有115 mL 的水倒吸入集气瓶中(或水倒吸入集气瓶,量筒中余下的水为85 mL )33.(1)①2.0 ② D ③对比(或对照、或空白实验)(2)2KMnO 4 K 2MnO 4 + MnO 2 + O 2↑2O 3=====3O 2 (条件写出“Cl ”即可)高温点燃点燃△=== ClMnO 2日光 高温四、计算题(34~35小题,共6分。