基于单片机的温度测量与控制系统
基于STM32单片机的温度控制系统设计

基于STM32单片机的温度控制系统设计一、本文概述本文旨在探讨基于STM32单片机的温度控制系统的设计。
我们将从系统需求分析、硬件设计、软件编程以及系统测试等多个方面进行全面而详细的介绍。
STM32单片机作为一款高性能、低功耗的微控制器,广泛应用于各类嵌入式系统中。
通过STM32单片机实现温度控制,不仅可以精确控制目标温度,而且能够实现系统的智能化和自动化。
本文将介绍如何通过STM32单片机,结合传感器、执行器等硬件设备,构建一套高效、稳定的温度控制系统,以满足不同应用场景的需求。
在本文中,我们将首先分析温度控制系统的基本需求,包括温度范围、精度、稳定性等关键指标。
随后,我们将详细介绍系统的硬件设计,包括STM32单片机的选型、传感器和执行器的选择、电路设计等。
在软件编程方面,我们将介绍如何使用STM32的开发环境进行程序编写,包括温度数据的采集、处理、显示以及控制策略的实现等。
我们将对系统进行测试,以验证其性能和稳定性。
通过本文的阐述,读者可以深入了解基于STM32单片机的温度控制系统的设计过程,掌握相关硬件和软件技术,为实际应用提供有力支持。
本文也为从事嵌入式系统设计和开发的工程师提供了一定的参考和借鉴。
二、系统总体设计基于STM32单片机的温度控制系统设计,主要围绕实现精确的温度监测与控制展开。
系统的总体设计目标是构建一个稳定、可靠且高效的环境温度控制平台,能够实时采集环境温度,并根据预设的温度阈值进行智能调节,以实现对环境温度的精确控制。
在系统总体设计中,我们采用了模块化设计的思想,将整个系统划分为多个功能模块,包括温度采集模块、控制算法模块、执行机构模块以及人机交互模块等。
这样的设计方式不仅提高了系统的可维护性和可扩展性,同时也便于后续的调试与优化。
温度采集模块是系统的感知层,负责实时采集环境温度数据。
我们选用高精度温度传感器作为采集元件,将其与STM32单片机相连,通过ADC(模数转换器)将模拟信号转换为数字信号,供后续处理使用。
基于单片机的温度控制系统设计原理

基于单片机的温度控制系统设计原理基于单片机的温度控制系统设计概述•温度控制系统是在现代生活中广泛应用的一种自动控制系统。
它通过测量环境温度并对温度进行调节,以维持设定的温度范围内的稳定状态。
本文将介绍基于单片机的温度控制系统的设计原理。
单片机简介•单片机是一种集成电路芯片,具有强大的计算能力和丰富的输入输出接口。
它可以作为温度控制系统的核心控制器,通过编程实现温度的测量和调节功能。
温度传感器•温度传感器是温度控制系统中重要的部件,用于测量环境温度。
常见的温度传感器有热敏电阻、热电偶和数字温度传感器等。
在设计中,需要选择适合的温度传感器,并通过单片机的模拟输入接口对其进行连接。
温度测量与显示•单片机可以通过模拟输入接口读取温度传感器的信号,并进行数字化处理。
通过数值转换算法,可以将传感器输出的模拟信号转换为温度数值,并在显示器上进行显示。
常见的温度显示方式有数码管和LCD等。
温度控制算法•温度控制系统通常采用PID(比例-积分-微分)控制算法。
这种算法通过比较实际温度和设定温度,计算出调节量,并通过输出接口控制执行机构,实现温度的调节。
在单片机程序中,需要编写PID控制算法,并根据具体系统进行参数调优。
执行机构•执行机构是温度控制系统中的关键部件,用于实际调节环境温度。
常见的执行机构有加热器和制冷器。
通过单片机的输出接口,可以控制执行机构的开关状态,从而实现温度的调节。
界面与交互•温度控制系统还可以配备界面与交互功能,用于设定目标温度、显示当前温度和执行机构状态等信息。
在单片机程序中,可以通过按键、液晶显示屏和蜂鸣器等外设实现界面与交互功能的设计。
总结•基于单片机的温度控制系统设计涉及到温度传感器、温度测量与显示、温度控制算法、执行机构以及界面与交互等多个方面。
通过合理的设计和编程实现,可以实现对环境温度的自动调节,提高生活和工作的舒适性和效率。
以上是对基于单片机的温度控制系统设计原理的简要介绍。
基于51单片机的温度控制系统设计

基于51单片机的温度控制系统设计引言:随着科技的不断进步,温度控制系统在我们的生活中扮演着越来越重要的角色。
特别是在一些需要精确控制温度的场合,如实验室、医疗设备和工业生产等领域,温度控制系统的设计和应用具有重要意义。
本文将以基于51单片机的温度控制系统设计为主题,探讨其原理、设计要点和实现方法。
一、温度控制系统的原理温度控制系统的基本原理是通过传感器感知环境温度,然后将温度值与设定值进行比较,根据比较结果控制执行器实现温度的调节。
基于51单片机的温度控制系统可以分为三个主要模块:温度传感器模块、控制模块和执行器模块。
1. 温度传感器模块温度传感器模块主要用于感知环境的温度,并将温度值转换成电信号。
常用的温度传感器有热敏电阻、热敏电偶和数字温度传感器等,其中热敏电阻是最常用的一种。
2. 控制模块控制模块是整个温度控制系统的核心,它负责接收传感器传来的温度信号,并与设定值进行比较。
根据比较结果,控制模块会输出相应的控制信号,控制执行器的工作状态。
51单片机作为一种常用的嵌入式控制器,可以实现控制模块的功能。
3. 执行器模块执行器模块根据控制模块输出的控制信号,控制相关设备的工作状态,以实现对温度的调节。
常用的执行器有继电器、电磁阀和电动机等。
二、温度控制系统的设计要点在设计基于51单片机的温度控制系统时,需要考虑以下几个要点:1. 温度传感器的选择根据具体的应用场景和要求,选择合适的温度传感器。
考虑传感器的测量范围、精度、响应时间等因素,并确保传感器与控制模块的兼容性。
2. 控制算法的设计根据温度控制系统的具体要求,设计合适的控制算法。
常用的控制算法有比例控制、比例积分控制和模糊控制等,可以根据实际情况选择适合的算法。
3. 控制信号的输出根据控制算法的结果,设计合适的控制信号输出电路。
控制信号的输出电路需要考虑到执行器的工作电压、电流等参数,确保信号能够正常控制执行器的工作状态。
4. 系统的稳定性和鲁棒性在设计过程中,需要考虑系统的稳定性和鲁棒性。
基于单片机的温度控制系统设计方案

基于单片机的温度控制系统设计方案设计方案:1. 系统概述:本温度控制系统采用单片机作为核心控制器,通过对温度传感器的采集并对温度进行处理,控制继电器的开关状态,实现对温度的精确控制。
系统可广泛应用于家庭、工业、医疗等领域中的温度控制需求。
2. 硬件设计:a. 单片机选择:根据系统需求,我们选择适用于温度控制的单片机,如8051、PIC、STM32等,具备较高的性能和稳定性。
b. 传感器:采用温度传感器(如DS18B20)进行温度的精确测量,传感器将温度值转化为数字信号进行输出,供单片机进行处理。
c. 屏幕显示:选用LCD液晶屏幕,实时显示当前温度值和设定的目标温度值。
3. 软件设计:a. 数据采集:单片机通过GPIO口连接温度传感器,采集传感器输出的数字信号,并进行AD转换,将模拟信号转化为数字信号。
b. 控制策略:单片机通过比较当前温度值和设定的目标温度值,根据控制算法判断是否需要开启或关闭继电器,从而实现对温度的控制。
c. 温度显示:单片机通过串口通信或I2C通信与LCD屏幕进行数据传输和显示,使用户能够随时了解当前温度和设定的目标温度。
4. 控制算法设计:a. ON/OFF控制:当当前温度值超过设定的目标温度值时,继电器闭合,使制冷或加热设备开始工作;当当前温度值低于设定的目标温度值时,继电器断开,使制冷或加热设备停止工作,实现温度的维持控制。
b. PID控制:根据温度的测量值和设定值,通过比例、积分、微分三个环节的控制,精确调节控制设备的工作状态,使温度尽可能接近设定值。
5. 系统实现和调试:a. 硬件连接:根据设计制作电路板,并连接单片机、温度传感器、继电器、液晶显示器等组件。
b. 程序编写:按照软件设计进行程序编写,并进行单片机的初始化设置、温度数据的采集和处理、继电器的控制等功能的实现。
c. 系统调试:通过实际应用场景中的温度测试数据,验证系统的稳定性和准确性,并根据实际情况进行调试和优化,确保系统达到要求的温度控制效果。
基于单片机的温度测量

引言:温度是一个常见的物理量,对于许多领域的应用来说,准确地测量温度非常重要。
单片机作为一种常见的嵌入式系统,具有强大的数据处理和控制能力。
本文将介绍基于单片机的温度测量技术及其应用。
概述:温度测量是一项广泛应用于工业自动化、环境监测、医疗设备等领域的技术。
传统的温度测量方法主要基于热敏电阻、热电偶、红外线等。
而基于单片机的温度测量技术则结合了传感器、单片机和通信等技术,能够实时、精确地监测和控制温度。
正文:1. 传感器选择1.1 热敏电阻热敏电阻是一种根据温度变化导致电阻值变化的传感器。
它的特点是响应速度快、精度高,但对环境温度和供电电压的稳定性要求较高。
1.2 热电偶热电偶是一种使用两个不同金属的导线连接的传感器。
它的优点是测量范围广,适用于极高或极低温度的测量,但精度较低,受电磁干扰影响较大。
1.3 红外线传感器红外线传感器是一种测量物体表面温度的传感器。
它可以通过接收物体发出的红外辐射来测量温度,适用于无接触测量,但精度受物体表面性质影响较大。
2. 单片机选择2.1 嵌入式系统单片机作为一种常见的嵌入式系统,集成了处理器、存储器和外设接口。
它具有较强的计算和控制能力,适用于温度测量应用中的数据处理和控制任务。
2.2 选择合适的单片机型号选择合适的单片机型号是确保系统稳定运行的关键。
应根据温度测量的要求确定所需要的计算能力、引脚数量、通信接口等因素,选择合适的单片机型号。
3. 温度采集与处理3.1 模拟信号采集通过选定的传感器,将温度信号转换为模拟电压信号。
使用单片机的模拟输入接口,对模拟电压信号进行采集,获取温度数据。
3.2 数字信号处理单片机通过内置的模数转换器(ADC)将模拟信号转换为数字信号。
根据所选单片机型号的计算能力,可以进行进一步的数据处理和算法运算,包括滤波、校正等。
4. 数据存储与通信4.1 存储器选择根据温度测量系统的要求,可以选择合适的存储器类型,如闪存、EEPROM等。
基于单片机的温度控制系统课设报告

基于单片机的温度控制系统摘要:该实验设计基于飞思卡尔MC9S12DG128开发板平台,根据实验任务要求,完成了水温自动控制系统的设计,该系统的温度给定值可由人工通过键盘进行设定,测量温度经过A/D转换由数码管显示,通过PID控制算法对温度进行调节,使温度输出值在给定值上下波动,控制该系统的静态误差为1℃,用LED灯模拟加热强度,并用串口将输出的水温随时间的变化数值发到PC机上。
关键字:飞思卡尔单片机水温控制MC9S12DG1281、设计题目与设计任务σ≤;3.温度误要求:1温度连续可调范围是30-150摄氏度;2 超调量20%<±;4尝试使用能预估大滞后的方法,如史密斯预估,或大林算法;也可差0.5用PID及改进算法。
内容:1.根据题目的技术要求,画出系统组成的原理框图;2. 给出系统硬件电路图;3.确定温度控制方案;4. 给出控制方法及控制程序;5.整理设计数据资料,课程设计总结,撰写设计计算说明书。
2、前言:随着电子技术和计算机的迅速发展,计算机测量控制技术拥有操作简单、控制灵活、使用便捷以及性价比较高的优点,从而得到了广泛的应用。
单片机是一种集CPU、RAM、ROM、I/O接口和中断系统等部分于一体的器件,只需要外加电源和晶振就可以实现对数字信息的处理和控制,因此,单片机广泛应用于现代工业控制中。
利用单片机对温度测量控制会大大提高系统的可靠性和准确性。
该设计实验是在实验室完成,实验任务是设计制作一个水温自动控制系统,控制对象为1L净水,容器为搪瓷器皿。
水温由人工通过4*4的键盘设定,并能在环境温度改变时实现对水温的自动控制,采用PWM技术控制电阻丝的加热,加热强度由8个LED小灯模拟,以保持设定的温度基本不变,测量温度经过A/D 转换在4位数码管上显示(保留一位小数),并将温度每秒钟向计算机发送一次。
一、系统设计的功能该系统的闭环控制系统框图如图所示。
图水温控制系统结构框图单片机对温度的测量控制是基于传感器、A/D转换器以及扩展接口和执行机构来进行的。
基于C51单片机的温度控制系统应用系统设计(附程序)

基于C51单片机的温度控制系统应用系统设计(附程序)基于C51单片机的温度控制系统应用系统设计--------- 单片机原理及应用实践周设计报告姓名:班级:学号:同组成员:指导老师:成绩:时间:2011 年7 月3 日单片机温度控制系统摘要温度是日常生活中无时不在的物理量,温度的控制在各个领域都有积极的意义。
很多行业中都有大量的用电加热设备,如用于热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,采用单片机对它们进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量。
因此,智能化温度控制技术正被广泛地采用。
本温度设计采用现在流行的AT89S51单片机,配以DS18B2数字温度传感器,上、下限进行比较,由此作出判断是否触发相应设备。
本设计还加入了常用的液晶显示及状态灯显示灯常用电路,使得整个设计更加完整,更加灵活。
关键词:温度箱;AT89C52 LCD1602单片机;控制目录1引言11.1温度控制系统设计的背景、发展历史及意义11.2温度控制系统的目的11.3温度控制系统完成的功能12总体设计方案22.1方案一 22.2方案二 23DS18B20温度传感器简介73.1温度传感器的历史及简介73.2DS18B20的工作原理7DS18B20工作时序7ROM操作命令93.3DS18B20的测温原理98B20的测温原理:9DS18B20的测温流程104单片机接口设计124.1设计原则124.2引脚连接12晶振电路12串口引脚12其它引脚135系统整体设计145.1系统硬件电路设计14主板电路设计14各部分电路145.2系统软件设计16 系统软件设计整体思路系统程序流图176结束语2116附录22参考文献391引言1.1温度控制系统设计的背景、发展历史及意义随着社会的发展,科技的进步,以及测温仪器在各个领域的应用,智能化已是现代温度控制系统发展的主流方向。
基于单片机的温度测量系统[1]
![基于单片机的温度测量系统[1]](https://img.taocdn.com/s3/m/7b4007c5d5bbfd0a79567388.png)
随着现代信息技术的飞速发展和传统工业改造的逐步实现,温度自动检测和显示系统在很多领域得到广泛应用。
人们在温度检测的准确度、便捷、快速等方面有着越来越高的要求。
而传统的温度传感器已经不能满足人们的需求,其渐渐被新型的温度传感器所代替。
本文设计并制作了一个简易温度计。
本设计采用了单片机AT89S52和温度传感器DS18B20组成了温度自动测控系统,可根据实际需要任意设定温度值,并进行自动控制。
在此设计中利用了AT89S52单片机作为主控制器件,DS18B20作为测温传感器通过LCD数码管串口传送数据,实现温度显示。
通过DS18B20直接读取被测温度值,进行数据转换,能够设置温度上下限来设置报警温度。
并且在到达报警温度后,系统会自动报警。
本文设计是从测温电路、主控电路、报警电路等几个方面来分析说明的。
该器件可直接向单片机传输数字信号,便于单片机处理及控制。
另外,该温度计还能直接采用测温器件测量温度。
从而简化数据传输与处理过程。
此设计的优点主要体现在可操作性强,结构基础简单,拥有很大的扩展空间等。
关键词:单片机;温度传感器;温度计;报警With the rapid development of modern information technology and the gradual transformation of traditional industries to achieve, automatic temperature detection and display systems are widely used in many fields. People in the temperature measurement accuracy, convenient, rapid, and has a growing demand.This article was designed and produced a simple thermometer. This design uses a microcontroller AT89S52 and temperature sensor DS18B20 automatic temperature control system formed can be arbitrarily set the temperature according to the actual value and for automatic control. In this design using the AT89S52 microcontroller as the main control device, DS18B20 as an LCD digital temperature sensor tube through the serial transmission of data, to achieve temperature display. DS18B20 measured by direct reading temperature values, data conversion, to set the temperature to set the alarm on the lower temperature. And the temperature reaching the alarm, the system will automatically alarm.This design is from the temperature measurement circuit, main control circuit, alarm circuit, and several other aspects of the note. The device can transmit digital signals directly to the microcontroller, easy to handle and control MCU. In addition, the thermometer temperature measurement device can be used directly to measure temperature. The major advantages of this design is reflected in operable structural basis is simple, lots of expansion space.Keywords:AT89S52;DS18B20;thermometer;alarm目录摘要 (I)Abstract (II)目录 (III)1 引言 (1)1.1 选题的背景 (1)1.2 选题的目的及意义 (2)1.3 论文结构 (2)2 设计的整体方案 (3)2.1 设计的主要内容 (3)2.2 设计性能要求 (4)3 器件的选择 (5)3.1 单片机的选择 (5)3.1.1 AT89S52的特点及选择原因 (5)3.1.2 AT89S52的工作模式及注意事项 (6)3.2 温度传感器的选择 (8)3.2.1 DS18B20的特点及选择原因 (8)3.2.2DS18B20的测温原理 (12)3.3 显示器的选择 (15)4 电路原理 (17)4.1 晶振电路与复位电路 (17)4.2 温度采集电路 (20)4.3 显示电路 (21)4.4 报警系统 (22)4.5 按键电路和指示灯电路 (23)5 程序原理及系统流程图 (23)5.1 主程序 (23)5.2 读出温度子程序 (24)5.3 温度数据显示子程序 (27)5.4设置温度上下限程序 (28)5.4 计时时间设置 (29)6 软件仿真 (31)6.1 软件介绍 (31)6.2 仿真过程 (32)7 实物的焊接与调试 (34)8 体会与展望 (36)8.1 设计总结 (36)8.2设计前景 (37)致谢 (38)参考文献 (39)附录A 系统总图 (40)1 引言1.1 选题的背景随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DE2是Altera研究机构推出的FPGA多媒体开发平台。通过对DE2平台的了解它完全可以按照工业产品的标准进行,使用QUARTUSII的开发工具来进行设计,仿真。它的优点是可靠性高,性能稳定。但是缺点是平时我们接触较少,而且需要使用的程序相对于发杂。
而单片机与高精度温度传感器结合的方式我们接触较多,而且成本低,测量温度简单且容易实现。即用单片机完成人机界面,系统控制,信号分析处理,由前端温度传感器完成信号的采集与转换。这种方案克服了方案一的缺点,所以本课题任务是基于单片机和温度传感器实现对温度的控制。
AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。
2,硬件设计要求及思路
要求设计单片机(AT89S51)最小系统,并在此基础上完成对温度传感器DS18B20的读写操作,实现温度测量功能,温度实时显示功能,要求所设计系统具备报警温度设置功能。对超过设置温度值的状态进行报警和相应控制操作(本次使用LED表示相应的控制操作)。
单片机的选择在整个系统设计中至关重要,要满足大内存、高速率、通用性、价格便宜等要求,本课题选择AT89S51作为主控芯片。
2,设计心得与体会
八,参考文献
九,附录………………………………………………………………………
摘要
本设计以AT89S51单片机为核心的温度控制系统的工作原理和设计方法。温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。文中介绍了该控制系统的硬件部分,包括:温度检测电路、温度控制电路、PC机与单片机串口通讯电路和一些接口电路 。单片机通过对信号进行相应处理,从而实现温度控制的目的。文中还着重介绍了软件设计部分,在这里采用模块化结构,主要模块有:数码管显示程序、键盘扫描及按键处理程序、温度信号处理程序、继电器控制程序、超温报警程序。
由于系统控制方案简单 ,数据量也不大 ,考虑到电路的简单和成本等因素 ,因此在本设计中选用 A TMEL 公司的 A T89S51单片机作为主控芯片。主控模块采用单片机最小系统是由于 A T89S51芯片内含有4 kB的 E2PROM ,无需外扩存储器 ,电路简单可靠 ,其时钟频率为 0~24 MHz ,并且价格低廉 。
4)IO扩展接口
5)7段数码管
(2)使用单片机设计思路:
要求设计单片机(AT89S51)最小系统,并在此基础上完成对温度传感器DS18B20的读写操作,
实现温度测量功能,温度实时显示功能,要求所设计系统具备报警温度设置功能。对超过设
置温度值的状态进行报警和相应控制操作(本次使用LED表示相应的控制操作)。
3,系统结构
三,方案论证与比较
设计这个温度测量有两种方法:分别是使用DE2开发板和单片机开发,以下是两种设计方法的原理介绍:
(1)使用DE2开发板设计:
使用DE2开发板提供的资源进行设计题目的实现。
1)FPGA芯片:EP2C35F672C6N (Cyclone II)
2)5M时钟
3)LED、按键、开关
课 程 设 计 报 告
课程名称综合电子设计
题 目基于单片机的温度测量与控制系统
指导教师
设计起止日期
系 别
专 业
学生姓名
班级/学号
成 绩
2,硬件设计要求及思路
3,系统结构
三,方案论证与比较
四,系统设计
五,单元电路设计…………………,显示电路
六,软件设计
七,结束语
1,实验总结…………………………………………………………………
单片机原理系统结构图:
图1,单片机系统结构图
(1)主控制部分AT89S51的设计方案:
AT89S51 是一个低功耗,高性能CMOS 8位单片机,片内含8k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。AT89S51具有如下特点:40个引脚,4k Bytes Flash片内程序存储器,128 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。
四,系统设计
本课题设计的是一种以STC89C52单片机为主控制单元,以DS18B20为温度传感器的温度控制系统。该控制系统可以实时存储相关的温度数据并记录当前的时间。其主要包括:电源模块、温度采集模块、按键处理模块、实时时钟模块、数据存储模块、LCD显示模块、通讯模块以及单片机最小系统。
本系统由温度传感器DS18B20、AT89S52、LCD显示电路、软件构成。DS18B20输出表示摄氏温度的数字量,然后用51单片机进行数据处理、译码、显示、报警等。
此外,AT89S51设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。
关键词:AT89S51单片机 DS18B20温度芯片温度控制 串口通讯
二, 功能介绍
1,基本要求
(1)温度设定范围为20-30oC,最小区分度为1oC。
(2)环境温度超温时,接通制冷装置;低于等于设定温度时,断开制冷装置。用LED表示制冷装置的接通/断开状态。
(3)用数码管显示环境的实际温度,温度显示范围0-99oC,显示精度为小数点后1位。