基于单片机的温度测量控制系统设计
基于STM32单片机的温度控制系统设计

基于STM32单片机的温度控制系统设计一、本文概述本文旨在探讨基于STM32单片机的温度控制系统的设计。
我们将从系统需求分析、硬件设计、软件编程以及系统测试等多个方面进行全面而详细的介绍。
STM32单片机作为一款高性能、低功耗的微控制器,广泛应用于各类嵌入式系统中。
通过STM32单片机实现温度控制,不仅可以精确控制目标温度,而且能够实现系统的智能化和自动化。
本文将介绍如何通过STM32单片机,结合传感器、执行器等硬件设备,构建一套高效、稳定的温度控制系统,以满足不同应用场景的需求。
在本文中,我们将首先分析温度控制系统的基本需求,包括温度范围、精度、稳定性等关键指标。
随后,我们将详细介绍系统的硬件设计,包括STM32单片机的选型、传感器和执行器的选择、电路设计等。
在软件编程方面,我们将介绍如何使用STM32的开发环境进行程序编写,包括温度数据的采集、处理、显示以及控制策略的实现等。
我们将对系统进行测试,以验证其性能和稳定性。
通过本文的阐述,读者可以深入了解基于STM32单片机的温度控制系统的设计过程,掌握相关硬件和软件技术,为实际应用提供有力支持。
本文也为从事嵌入式系统设计和开发的工程师提供了一定的参考和借鉴。
二、系统总体设计基于STM32单片机的温度控制系统设计,主要围绕实现精确的温度监测与控制展开。
系统的总体设计目标是构建一个稳定、可靠且高效的环境温度控制平台,能够实时采集环境温度,并根据预设的温度阈值进行智能调节,以实现对环境温度的精确控制。
在系统总体设计中,我们采用了模块化设计的思想,将整个系统划分为多个功能模块,包括温度采集模块、控制算法模块、执行机构模块以及人机交互模块等。
这样的设计方式不仅提高了系统的可维护性和可扩展性,同时也便于后续的调试与优化。
温度采集模块是系统的感知层,负责实时采集环境温度数据。
我们选用高精度温度传感器作为采集元件,将其与STM32单片机相连,通过ADC(模数转换器)将模拟信号转换为数字信号,供后续处理使用。
基于单片机的室内温度控制系统设计与实现

基于单片机的室内温度控制系统设计与实现1. 本文概述随着科技的发展和人们生活水平的提高,室内环境的舒适度已成为现代生活中不可或缺的一部分。
作为室内环境的重要组成部分,室内温度的调控至关重要。
设计并实现一种高效、稳定且经济的室内温度控制系统成为了当前研究的热点。
本文旨在探讨基于单片机的室内温度控制系统的设计与实现,以满足现代家居和办公环境的温度控制需求。
本文将首先介绍室内温度控制系统的研究背景和意义,阐述其在实际应用中的重要性和必要性。
随后,将详细介绍基于单片机的室内温度控制系统的设计原理,包括硬件设计、软件编程和温度控制算法等方面。
硬件设计部分将重点介绍单片机的选型、传感器的选取、执行机构的搭配等关键环节软件编程部分将介绍系统的程序框架、主要功能模块以及温度数据的采集、处理和控制逻辑温度控制算法部分将探讨如何选择合适的控制算法以实现精准的温度调控。
在实现过程中,本文将注重理论与实践相结合,通过实际案例的分析和实验数据的验证,展示基于单片机的室内温度控制系统的实际应用效果。
同时,还将对系统的性能进行评估,包括稳定性、准确性、经济性等方面,以便为后续的改进和优化提供参考。
本文将对基于单片机的室内温度控制系统的设计与实现进行总结,分析其优缺点和适用范围,并对未来的研究方向进行展望。
本文旨在为读者提供一种简单、实用的室内温度控制系统设计方案,为相关领域的研究和实践提供有益的参考。
2. 单片机概述单片机,也被称为微控制器或微电脑,是一种集成电路芯片,它采用超大规模集成电路技术,将具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种IO口和中断系统、定时器计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、AD转换器等电路)集成到一块硅片上,构成一个小而完善的微型计算机系统。
单片机以其体积小、功能齐全、成本低廉、可靠性高、控制灵活、易于扩展等优点,广泛应用于各种控制系统和智能仪器中。
基于单片机的温度控制系统设计毕业论文

基于单片机的温度控制系统设计毕业论文目录摘要 (I)Abstract (I)目录 (II)第一章绪论 (1)1.1课题研究背景及意义 (1)1.2国外研究现状 (1)1.2.1国外研究现状 (1)1.2.2国研究现状 (1)1.2.3总的发展阶段 (2)1.3课题研究的容 (2)第二章硬件系统总体方案设计 (3)2.1硬件系统总体设计方案一 (3)2.2硬件系统总体设计方案二 (4)2.3硬件系统的方案选择 (4)第三章控制系统硬件设计 (6)3.1单片机 (6)3.2 数字温度计DS18B20 (9)3.2.1 DS18S20数字温度计的主要特性 (9)3.3 4X4键盘 (9)3.4数码管 (10)3.5光电耦合器 (12)3.6 双向晶闸管 (13)3.7 PTC加热器 (14)3.8 反相器7406 (15)3.9双四输入与门74LS21 (16)3.9蜂鸣器 (16)第四章控制系统软件设计 (17)4.1 主程序模块设计 (17)4.1.1主程序流程图 (17)4.2温度采集模块程序设计 (18)4.2.1 DS18B20的时序 (18)4.2.3 读温度子程序流程图 (20)4.3温度设定模块程序设计 (21)4.3.1中断服务子程序 (21)4.3.2 键盘扫描子程序 (21)4.4温度显示模块设计 (23)4.4.1设定值显示子程序 (23)4.4.2 实际值显示子程序 (24)4.5温度控制模块设计 (25)4.5.1双位控制算法设计 (25)4.5.2温度控制子程序流程图 (25)4.6报警模块程序设计 (26)第五章结果分析 (27)5.1 PROTEUS仿真 (27)5.1.1 键盘设定温度仿真 (27)5.1.2 温度采集仿真 (28)5.1.3 整体仿真 (28)5.2实际运行结果 (29)第六章总结与展望 (31)6.1总结 (31)6.2展望 (31)致谢 (32)附录程序 (33)参考文献 (42)第一章绪论1.1课题研究背景及意义温度是表征物体冷热程度的物理量,是工农业生产过程中一个很重要而普遍的参数。
基于单片机的温度控制系统设计原理

基于单片机的温度控制系统设计原理基于单片机的温度控制系统设计概述•温度控制系统是在现代生活中广泛应用的一种自动控制系统。
它通过测量环境温度并对温度进行调节,以维持设定的温度范围内的稳定状态。
本文将介绍基于单片机的温度控制系统的设计原理。
单片机简介•单片机是一种集成电路芯片,具有强大的计算能力和丰富的输入输出接口。
它可以作为温度控制系统的核心控制器,通过编程实现温度的测量和调节功能。
温度传感器•温度传感器是温度控制系统中重要的部件,用于测量环境温度。
常见的温度传感器有热敏电阻、热电偶和数字温度传感器等。
在设计中,需要选择适合的温度传感器,并通过单片机的模拟输入接口对其进行连接。
温度测量与显示•单片机可以通过模拟输入接口读取温度传感器的信号,并进行数字化处理。
通过数值转换算法,可以将传感器输出的模拟信号转换为温度数值,并在显示器上进行显示。
常见的温度显示方式有数码管和LCD等。
温度控制算法•温度控制系统通常采用PID(比例-积分-微分)控制算法。
这种算法通过比较实际温度和设定温度,计算出调节量,并通过输出接口控制执行机构,实现温度的调节。
在单片机程序中,需要编写PID控制算法,并根据具体系统进行参数调优。
执行机构•执行机构是温度控制系统中的关键部件,用于实际调节环境温度。
常见的执行机构有加热器和制冷器。
通过单片机的输出接口,可以控制执行机构的开关状态,从而实现温度的调节。
界面与交互•温度控制系统还可以配备界面与交互功能,用于设定目标温度、显示当前温度和执行机构状态等信息。
在单片机程序中,可以通过按键、液晶显示屏和蜂鸣器等外设实现界面与交互功能的设计。
总结•基于单片机的温度控制系统设计涉及到温度传感器、温度测量与显示、温度控制算法、执行机构以及界面与交互等多个方面。
通过合理的设计和编程实现,可以实现对环境温度的自动调节,提高生活和工作的舒适性和效率。
以上是对基于单片机的温度控制系统设计原理的简要介绍。
基于单片机温度测量系统的设计

.
。
:
!
,
,
传 统 检 测 温 度 的 方 法 是 用 模 拟 温 度 传 感 器 信 号 经 取 样 放 大 后 通 过 模 数 转 换 再 交 给 单 片机 处 理 这种方 易 受 干 扰 不 易控 制 且 精 度 不 高 因 此 本 文 介 绍 种 新 型 的 单 线 温 度 系统 D S l 8 8 2 0 他 能 代 替 模 拟 温 度 传 感 器 和 信 号 处 理 电路 直 接 与 单 片机 沟 通 完 成 温 度 测 量 该 系统 结 构 简 单 现 场 温 度 以 线 总 线 的 数 字 方 式 输 出 大 大提 高 了抗 干 扰 能 力 适 合 于 恶 劣 环 境 下 进 行 现 场 温 度 测 量 关键 词 : 单 片 机 ; D s l 8 8 2 0 ; 数 字 显 示
摘
要
:
。
、
,
。
法 经 过 众 多器 件
一
,
、
。
,
,
一
,
,
,
,
。
.
。
中图分 类 号 :
T P 3 11 1
.
文 献标识 码
:
A
文 章编 号 : 1 0 0 7
-
9599
( 20
10
)
05
—
0054
—
02
D
e s
ig n
.
o
f M CU T
E
n
e m
P
e n
p
g Y g
o n a
eld te
m
pe
r a
tu r e m e a s u r
基于51单片机的温度控制系统设计

基于51单片机的温度控制系统设计引言:随着科技的不断进步,温度控制系统在我们的生活中扮演着越来越重要的角色。
特别是在一些需要精确控制温度的场合,如实验室、医疗设备和工业生产等领域,温度控制系统的设计和应用具有重要意义。
本文将以基于51单片机的温度控制系统设计为主题,探讨其原理、设计要点和实现方法。
一、温度控制系统的原理温度控制系统的基本原理是通过传感器感知环境温度,然后将温度值与设定值进行比较,根据比较结果控制执行器实现温度的调节。
基于51单片机的温度控制系统可以分为三个主要模块:温度传感器模块、控制模块和执行器模块。
1. 温度传感器模块温度传感器模块主要用于感知环境的温度,并将温度值转换成电信号。
常用的温度传感器有热敏电阻、热敏电偶和数字温度传感器等,其中热敏电阻是最常用的一种。
2. 控制模块控制模块是整个温度控制系统的核心,它负责接收传感器传来的温度信号,并与设定值进行比较。
根据比较结果,控制模块会输出相应的控制信号,控制执行器的工作状态。
51单片机作为一种常用的嵌入式控制器,可以实现控制模块的功能。
3. 执行器模块执行器模块根据控制模块输出的控制信号,控制相关设备的工作状态,以实现对温度的调节。
常用的执行器有继电器、电磁阀和电动机等。
二、温度控制系统的设计要点在设计基于51单片机的温度控制系统时,需要考虑以下几个要点:1. 温度传感器的选择根据具体的应用场景和要求,选择合适的温度传感器。
考虑传感器的测量范围、精度、响应时间等因素,并确保传感器与控制模块的兼容性。
2. 控制算法的设计根据温度控制系统的具体要求,设计合适的控制算法。
常用的控制算法有比例控制、比例积分控制和模糊控制等,可以根据实际情况选择适合的算法。
3. 控制信号的输出根据控制算法的结果,设计合适的控制信号输出电路。
控制信号的输出电路需要考虑到执行器的工作电压、电流等参数,确保信号能够正常控制执行器的工作状态。
4. 系统的稳定性和鲁棒性在设计过程中,需要考虑系统的稳定性和鲁棒性。
基于单片机的热敏电阻温度计的设计

基于单片机的热敏电阻温度计的设计引言:热敏电阻是一种根据温度变化而产生变阻的元件,其电阻值与温度成反比变化。
热敏电阻广泛应用于温度测量领域,其中基于单片机的热敏电阻温度计具有精度高、控制方便等特点,因此被广泛应用于各个领域。
本文将介绍基于单片机的热敏电阻温度计的设计,并通过实验验证其测量精度和稳定性。
一、系统设计本系统设计使用STC89C52单片机作为控制核心,热敏电阻作为测量元件,LCD1602液晶显示屏作为温度显示设备。
1.系统原理图2.功能模块设计(1)温度采集模块:温度采集模块主要由热敏电阻和AD转换模块组成。
热敏电阻是根据温度变化而改变阻值的元件,它与AD转换模块相连,将电阻变化转换为与温度成正比的电压信号。
(2)AD转换模块:AD转换模块将热敏电阻的电压信号转换为数字信号,并通过串口将转换结果传输给单片机。
在该设计中,使用了MCP3204型号的AD转换芯片。
(3)驱动显示模块:驱动显示模块使用单片机的IO口来操作LCD1602液晶显示屏,将温度数值显示在屏幕上。
(4)温度计算模块:温度计算模块是通过单片机的计算功能将AD转换模块传输过来的数字信号转换为对应的温度值。
根据热敏电阻的特性曲线,可以通过查表或采用数学公式计算获得温度值。
二、系统实现1.硬件设计(1)单片机电路设计单片机电路包括单片机STC89C52、晶振、电源电路等。
根据需要,选用合适的外部晶振进行时钟信号的驱动。
(2)AD转换电路设计AD转换电路采用了MCP3204芯片进行温度信号的转换。
根据芯片的datasheet,进行正确的连接和电路设计。
(3)LCD显示电路设计LCD显示电路主要由单片机的IO口控制,根据液晶显示模块的引脚定义,进行正确的连接和电路设计。
(4)温度采集电路设计温度采集电路由热敏电阻和合适的电阻组成,根据不同的热敏电阻特性曲线,选择合适的电阻和连接方式。
2.软件设计(1)初始化设置:单片机开机之后,需要进行一系列的初始化设置,包括对IO口、串口和LCD液晶显示屏的初始化设置。
基于C51单片机的温度控制系统应用系统设计(附程序)

基于C51单片机的温度控制系统应用系统设计(附程序)基于C51单片机的温度控制系统应用系统设计--------- 单片机原理及应用实践周设计报告姓名:班级:学号:同组成员:指导老师:成绩:时间:2011 年7 月3 日单片机温度控制系统摘要温度是日常生活中无时不在的物理量,温度的控制在各个领域都有积极的意义。
很多行业中都有大量的用电加热设备,如用于热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,采用单片机对它们进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量。
因此,智能化温度控制技术正被广泛地采用。
本温度设计采用现在流行的AT89S51单片机,配以DS18B2数字温度传感器,上、下限进行比较,由此作出判断是否触发相应设备。
本设计还加入了常用的液晶显示及状态灯显示灯常用电路,使得整个设计更加完整,更加灵活。
关键词:温度箱;AT89C52 LCD1602单片机;控制目录1引言11.1温度控制系统设计的背景、发展历史及意义11.2温度控制系统的目的11.3温度控制系统完成的功能12总体设计方案22.1方案一 22.2方案二 23DS18B20温度传感器简介73.1温度传感器的历史及简介73.2DS18B20的工作原理7DS18B20工作时序7ROM操作命令93.3DS18B20的测温原理98B20的测温原理:9DS18B20的测温流程104单片机接口设计124.1设计原则124.2引脚连接12晶振电路12串口引脚12其它引脚135系统整体设计145.1系统硬件电路设计14主板电路设计14各部分电路145.2系统软件设计16 系统软件设计整体思路系统程序流图176结束语2116附录22参考文献391引言1.1温度控制系统设计的背景、发展历史及意义随着社会的发展,科技的进步,以及测温仪器在各个领域的应用,智能化已是现代温度控制系统发展的主流方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机的温度测量控制系统设计目录1引言 (2)1.1问题的提出…………………………………………………………… (2)1.1.1什么是温度控制…………………………………………………………… (2)1.2设计目的…………………………………………………………… (2)2设计方案 (3)2.1硬件设计方案…………………………………………………………… (3)2.2软件设计方案…………………………………………………………… (3)3硬件设计 (5)3.1主控制部分AT89S51的设计方案 (5)3.2温度采集模块…………………………………………………………… (7)3.3显示模块…………………………………………………………… (7)4软件设计 (9)4.1温度采集…………………………………………………………… (9)4.2键盘输入…………………………………………………………… (10)4.3 LCD显示…………………………………………………………… (11)5总结 (12)6参考文献 (15)附录1设计原理图 (14)附录2设计程序 (15)1引言1.1问题的提出温度是工业生产中主要的被控参数之一,与之相关的各种温度控制系统广泛应用于冶金、化工、机械、食品等领域。
温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。
1.1.1什么是温度控制温度控制系统由温控器和热电偶组成,热电偶检测温度并转换成电信号传给温控器,温控器根据所设定的温度发出控制信号,温度高于设定温度上限停止加热系统或开启降温系统,低于设定温度下线停止降温系统或开启加热系统。
1.2设计目的本设计以AT89C51单片机为核心的温度控制系统的工作原理和设计方法。
温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。
由键盘输入预设温度,比较实际环境温度与预设温度再由单片机做出相应的处理已以达到温度控制的目的。
2设计方案2.1硬件设计方案本课题设计的是一种以AT89C51单片机为主控制单元,以DS18B20为温度传感器的温度控制系统。
该控制系统可以实时存储相关的温度数据。
其主要包括:温度采集模块、按键处理模块、LCD显示模块、通讯模块以及单片机最小系统。
本系统由温度传感器DS18B20、AT89C51、LCD显示电路、软件构成。
DS18B20输出表示摄氏温度的数字量,然后用51单片机进行数据处理、译码、显示、报警等。
系统框图如图2.1所示图2.1温度传感器DS18B20把所测得的温度以数字信号的方式发送到AT89C51单片机上,经过51单片机处理,将把温度在显示电路上显示,本系统显示器为点阵字符LCD,LM016L液晶模块。
本系统除了显示温度以外还可以通过键盘预设一个温度值,对所测温度进行监控,当温度高于设定温度时,启动蜂鸣器报警;当所测温度低于设定温度时,启动继电器2S;当所测温度等于设定温度时LED等闪烁。
2.2软件设计方案从软件的功能不同可分为两大类:一是监控软件(主程序),它是整个控制系统的核心,专门用来协调各执行模块和操作者的关系。
二是执行软件(子程序),它是用来完成各种实质性的功能如测量、计算、显示、通讯等。
每一个执行软件是一个小的功能执行模块。
这里将各执行模块一一列出,并为每一个执行模块进行功能定义和接口定义。
各执行模块规划好后,就可以规划监控程序了。
首先要根据系统的总体功能选择一种最合适的监控程序结构,然后根据实时性的要求,合理地安排监控软件和各执行模块之间地调度关系。
主程序是系统的监控程序,在程序运行的过程中必须先经过初始化。
本设计的主程序中将传感器获取的温度与预设温度进行了比较,并对各种不同的状态变化的控制做出了设定。
流程图如图2.2 所示。
系统在初始化完成后就进入温度测量程序,实时的测量当前的温度并通过显示电路在LCD上显示。
根据硬件设计完成对温度的控制。
按下4*3键盘上的OK键可以便可以输入预设温度。
图2.23硬件设计3.1主控制部分AT89S51的设计方案:AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器,俗称单片机。
AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
其主要特性如下:(1) 18位微处理器和控制器,中央处理器是整个单片机的核心部件,能同时处理8位二进制数据或代码,CPU负责控制、指挥和调度整个单元系统协调的工作,完成运算和控制输入输出功能等操作。
(2)内含一个布尔运算器,可直接对数据的位进行操作和运算,特别适用于逻辑控制。
(3)内含4KB可重擦写的可编程闪烁程序存贮器(EEPROM)。
(4)内含128*8位的数据存贮器(RAM)。
(5)4个8位(32根)双向且可独立寻址的I/O(输入输出)接口P0~P3。
(6)2个16位的计数器/定时器。
(7)片内振荡器和时钟电路。
(8)全双工方式的串行接口(DART)。
(9)两级中断优先权的6个中断源/5个中断矢量的中断逻辑。
(10)指令集有111条指令,其中64条为单周期指令,支持6种寻址方式。
(11)最高时钟振荡频率可达12MHz,大部分指令执行时间为1us,乘、除指令为4us。
(12)与MCS-51兼容,寿命为1000次写/擦循环,数据保留时间为10年。
(13)低功耗的闲置和掉电模式,可编程串行通道,三级程序存储器锁定。
引脚及功能 AT89C51单片机为40脚双列直插式封装结构。
其引脚排列顺序及引脚符号如图3.1所示:图3.1AT89C51管脚图AT89C51重要管脚说明:Vcc:电源电压GND:地P0口:P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口,作为输出口用时,每位能驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端口。
在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。
P1口:P1是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。
对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。
作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号校验期间,P1接收低8位地址。
表3.1.1为P1口第二功能。
P1口第二功能P2口:P2是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动4个TTL逻辑门电路。
对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流I。
在访问8位地址的外部数据存储器时,P2口线上的内(也即特殊功能寄存器,在整个访问期间不改变)。
P3口:P3口是一组带有内部上拉电阻的8位双向I/O口。
P3口输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。
对P3口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。
作输入端口时,被外部拉低的P3口将用P3口的第二功能表上拉电阻输出电流I。
P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能,P3口的第二功能如表3.1.2。
3.2温度采集模块由于DS18B20芯片将温度传感器、信号放大调理、A/D转换、接口全部集成于一芯片,与单片机连接简单、方便且化学性很稳定。
它能用做工业测温元件,且此元件线形较好。
在0—100摄氏度时,最大线形偏差小于1摄氏度。
该芯片直接向单片机传输数字信号,便于单片机处理及控制。
与AD590相比是更新一代的温度传感器,所以温度传感器采用DS18B20。
DS18B20是DALLAS公司生产的一线式数字温度传感器,它具有微型化、低功耗、高性能抗干扰能力、强易配处理器等优点,特别适合用于温度测控系统,可直接将温度转化成串行数字信号(按9位二进制数字)给单片机处理,且在同一总线上可以挂接多个传感器芯片,温度测量范围-55~+125℃,可编程为9~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出,其工作电源既可在远端引入,也可采用寄生电源方式产生,多个DS18B20可以并联到三根或者两根线上,CPU只需一根端口线就能与多个DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。
从而可以看出DS18B20可以非常方便的被用于远距离多点温度检测系统。
DS18B20内部结构主要由四部分组成:64位光刻ROM,温度传感器,非挥发的温度报警触发器TH和TL,高速暂存器。
在硬件上,DS18B20与单片机的连接有两种方法,一种是Vcc接外部电源,GND接地,I/O与单片机的I/O线相连;另一种是用寄生电源供电,此时UDD、GND接地,I/O接单片机I/O。
无论是内部寄生电源还是外部供电,I/O口线要接5KΩ左右的上拉电阻。
3.3显示模块本设计显示电路采用LM016L来显示测量得到的温度值。
LM016L液晶模块采用HD44780控制器,hd44780具有简单而功能较强的指令集,可以实现字符移动,闪烁等功能,LM016L与单片机MCU通讯可采用8位或4位并行传输两种方式,hd44780控制器由两个8位寄存器,指令寄存器(IR)和数据寄存器(DR)忙标志(BF),显示数RAM(DDRAM),字符发生器ROMA(CGOROM)字符发生器RAM(CGRAM),地址计数器RAM(AC)。
IR用于寄存指令码,只能写入不能读出。
DR用于寄存数据,数据由内部操作自动写入DDRAM和CGRAM,或者暂存从DDRAM和CGRAM读出的数据。
BF为1时,液晶模块处于内部模式,不响应外部操作指令和接受数据,DDTAM用来存储显示的字符,能存储80个字符码。
CGROM由8位字符码生成5*7点阵字符160种和5*10点阵字符32种。
CGRAM是为用户编写特殊字符留用的,它的容量仅64字节,可以自定义8个5*7点阵字符或者4个5*10点阵字符,AC可以存储DDRAM和CGRAM的地址,如果地址码随指令写入IR,则IR自动把地址码装入AC,同时选择DDRAM或CGRAM。
LM016L液晶模块的引脚功能如表3.2所示:LM016L引脚功能表4、软件设计4.1温度采集CPU对DS18B20的访问流程是:先对DS18B20初始化,再进行ROM操作命令,最后才能对存储器操作,数据操作。
DS18B20每一步操作都要遵循严格的工作时序和通信协议。
如主机控制DS18B20完成温度转换这一过程,根据DS18B20的通讯协议,须经三个步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。