名校课堂WORD版练习题----第20章--答案
2020名校课堂七年级上册数学答案人教版

2020名校课堂七年级上册数学答案人教版人教版七年级上册数学是学生在初中阶段的第一本数学教材。
这本教材包含了七年级上学期的数学内容,涵盖了整数运算、有理数、比例与相等关系、平面图形和体积与表达式等内容。
对于初学者来说,掌握正确的答案是检验学习成果和进步的重要方法。
本篇文章将提供2020年名校课堂七年级上册数学教材的答案,以帮助同学们检查自己的答题情况和加深对数学知识的理解。
第一章整数与小数1.1 问题解答1. 92. 73. 104. 65. 216. 157. 48. 109. 1810. 161.2 认识整数1. -82. -103. 44. -75. 96. -31.3 实际应用1. 502. 33. 124. -35. 206. 62第二章有理数2.1 有理数的加减1. 42. 63. -14. 55. -96. 87. -138. -29. -410. 311. -112. 42.4 有理数的乘除1. -32. 43. -104. 95. -156. -67. 48. 29. -310. -2第三章比例与相等关系3.1 在比例中运算1. 482. 0.33. 304. 65. 7.56. 127. 458. 1.59. 2810. 2.53.2 比例的延伸1. 162. 363. 94. 0.5第四章平面图形4.1 点、线和面1. 线段 [14, 15]2. 线段 [20, 28]3. 面4. 线段 [12, 16]4.2 四边形1. 平行四边形2. 长方形3. 正方形第五章体积与表达式5.1 长方体的体积1. 2402. 7843. 12605.2 平行四边形的面积1. 77.52. 94.53. 212.5通过查看上述答案,我们可以和教材中给出的标准答案进行对照,对自己的答题情况进行评估。
若存在错误或不理解的地方,可以在课后和老师或同学一起讨论和解答。
同时,学习数学并不仅仅是追求正确答案,更重要的是培养逻辑思维和解决问题的能力。
【精品文档】名校课堂七年级上册数学答案-推荐word版 (16页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==名校课堂七年级上册数学答案导语:曾经的挚爱已经不在,无论是什么发生了改变,那时的彼此都是幸福快乐的。
以下小编为大家介绍名校课堂七年级上册数学答案文章,欢迎大家阅读参考!名校课堂七年级上册数学答案一、选择题:本大题共10小题,每小题2分,共20分。
在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上。
1。
﹣3的绝对值是()A。
3 B。
﹣3 C。
D。
考点:绝对值。
分析:根据一个负数的绝对值等于它的相反数得出。
解答:解:|﹣3|=﹣(﹣3)=3。
故选:A。
点评:考查绝对值的概念和求法。
绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
2。
“天上星星有几颗,7后跟上22个0”这是国际天文学联合会上宣布的消息,用科学记数法表示宇宙空间星星颗数为()颗。
A。
700×1020 B。
7×1023 C。
0。
7×1023 D。
7×1022考点:科学记数法—表示较大的数。
专题:应用题。
分析:科学记数法表示为a×10n(1≤|a|<10,n是整数)。
解答:解:7后跟上22个0就是7×1022。
故选D。
点评:此题主要考查科学记数法。
3。
﹣2,O,2,﹣3这四个数中最大的是()A。
2 B。
0 C。
﹣2 D。
﹣3考点:有理数大小比较。
专题:推理填空题。
分析:根据有理数的大小比较法则:比较即可。
解答:解:2>0>﹣2>﹣3,∴最大的数是2,故选A。
点评:本题考查了有理数的大小比较法则的应用,正数都大于0,负数都小于0,正数都大于一切负数,两个负数绝对值大地反而小。
4。
下列运算正确的是()A。
﹣3(x﹣1)=﹣3x﹣1 B。
人教版新教案word版:第二十章 数据的分析

第二十章 数据的分析20.1 数据的集中趋势 20.1.1 平均数 第1课时 平均数 教学目标1.了解加权平均数的概念.2.能运用加权平均数公式解决实际问题. 预习反馈阅读教材P111~114,完成下列预习内容.1.一般地,如果有n 个数,如x 1,x 2,…,x n ,那么x =1n (x 1+x 2+…+x n )叫做这n 个数的平均数.“x ”读作“x 拔”.2.一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则x 1w 1+x 2w 2+…+x n w n w 1+w 2+w 3+…+w n 叫做这n 个数的加权平均数.3.在求n 个数的平均数时,如果x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(这里f 1+f 2+…+f k =n),那么这n 个数的平均数x =x 1f 1+x 2f 2+…+x k f kn .也叫做x 1,x 2,…,x k 这k 个数的加权平均数,其中f 1,f 2,…,f k 分别叫做x 1,x 2,…,x k 的权. 4.一组数据:7,8,10,12,13的平均数是10.5.一组数据中有a 个x 1,b 个x 2,c 个x 3,那么这组数据的平均数为ax 1+bx 2+cx 3a +b +c .6.某班10名学生为支援希望工程,将平时积攒的零花钱捐献给贫困地区的失学儿童.每人捐款金额如下(单位:元):10,12,13.5,21,40.8,19.5,20.8,25,16,30. 这10名同学平均捐款多少元?解:110(10+12+13.5+21+40.8+19.5+20.8+25+16+30)=20.86(元).名校讲坛例1 (教材P112例1)一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制计,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%,计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示,请确定两人的名次.【解答】 选手A 的最后得分是85×50%+95×40%+95×10%50%+40%+10%=42.5+38+9.5=90.选手B 的最后得分是95×50%+85×40%+95×10%50%+40%+10%=47.5+34+9.5=91.由上可知选手B 获得第一名,选手A 获得第二名.【思考】例1中两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?从中你能体会到权的作用吗?【跟踪训练1】(《名校课堂》20.1.1第1课时习题)学校广播站要招聘1名记者,小亮和小丽报名参加了三项素质测试,成绩如下:将写作能力、普通话水平、计算机水平这三项的总分由原先按3∶5∶2计算,变成按5∶3∶2计算,总分变化情况是(B) A .小丽增加多 B .小亮增加多 C .两人成绩不变化 D .变化情况无法确定例2 (教材P113例2)某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人,求这个跳水队运动员的平均年龄(结果取整数).【解答】 这个跳水队运动员的平均年龄为 x =13×8+14×16+15×24+16×28+16+24+2≈14(岁).【跟踪训练2】 某校调查了20名男生某一周参加篮球运动的次数,调查结果如下表所示,那么这20名男生该周参加篮球运动次数的平均数是(C)A.3次 B .3.5次 C .4次 D .4.5次 巩固训练1.某次考试,5名学生的平均分是82,除甲外,其余4名学生的平均分是80,那么甲的得分是(D)A .84B .86C .88D .902.已知数据a 1,a 2,a 3的平均数是a ,那么数据2a 1+1,2a 2+1,2a 3+1的平均数是(C) A .a B .2a C .2a +1 D.2a 3+13.某公司欲招聘一名工作人员,对甲应聘者进行面试和笔试,甲的面试成绩为85分,笔试成绩为90分,若公司分别赋予面试成绩和笔试成绩7和3的权,则下列算式表示甲的平均成绩的是(C)A.85+902B.85×7+90×32C.85×7+90×310D.85×0.7+90×0.3104.晨光中学规定,学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末成绩占50%.小桐的三项成绩(百分制)依次是95分,90分,85分,小桐这学期的体育成绩是多少? 解:小桐这学期的体育成绩是88.5分. 5.下表是校女子排球队队员的年龄分布:求校女子排球队队员的平均年龄(可使用计算器). 解:x =13×1+14×4+15×5+16×21+4+5+2≈14.7(岁)答:校女子排球队队员的平均年龄为14.7岁.6.一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:(1)如果这家公司想招一名口语能力比较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶2∶3∶3的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁? 解:(1)听、说、读、写的成绩按照3∶3∶2∶2的比确定,则甲的平均成绩为85×3+83×3+78×2+75×23+3+2+2=81,乙的平均成绩为73×3+80×3+85×2+82×23+3+2+2=79.3,显然甲的成绩比乙高,所以从成绩看,应该录取甲.(2)听、说、读、写的成绩按照2∶2∶3∶3的比确定,则甲的平均成绩为85×2+83×2+78×3+75×32+2+3+3=79.5,乙的平均成绩为73×2+80×2+85×3+82×32+2+3+3=80.7,显然乙的成绩比甲高,所以从成绩看,应该录取乙. 课堂小结1.加权平均数的公式.2.运用加权平均数的公式计算样本数据的平均数. 3.体会加权平均数的意义.第2课时 用样本平均数估计总体平均数 教学目标结合加权平均数的有关知识,理解用样本估计总体的方法,解决实际生活中的问题. 预习反馈阅读教材P114~115,完成下列预习内容.1.当要考察的对象很多,或者对考察对象带有破坏性时,统计学中常常通过用样本估计总体的方法来获得对总体的认识.例如,实际生活中经常用样本的平均数来估计总体的平均数.2.一组数据7,8,8,9,8,16,8中,数据8的频数是4.3.若12≤x<30,则这组数的组中值是21.4.小明记录了今年元月份某五天的最低温度(单位:℃):1,2,0,-1,-2,估计这个月的最低温度的平均值大约是0℃.5.某中学环保小组对我市6个餐厅一天的快餐饭盒的使用数量作调查,结果如下:125,115,150,260,110,140.请用统计知识估计:若我市有40个餐厅,则一天共使用饭盒约6__000个.名校讲坛例1 (教材P114探究变式)为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表:(1)这天5路公共汽车平均每班的载客量是多少?(2)从表中,你能知道这一天5路公共汽车大约有多少班次的载客量在平均载客量以上吗?占全天总班次的百分比是多少?【分析】根据上面的频数分布表求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组频数看作相应组中值的权.例如在1≤x <21之间的载客量近似地看作组中值11,组中值11的权是它的频数3. 【解答】(1)这天5路公共汽车平均每班的载客量是x =11×3+31×5+51×20+71×22+91×18+111×153+5+20+22+18+15≈73(人).(2)由表格可知,81≤x <101的18个班次和101≤x <121的15个班次共有33个班次超过平均载客量,占全天总班次的百分比为3383×100%=39.8%.【跟踪训练1】为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如下表各项数据:(1)上表中,a =31,b =51; (2)计算2路公共汽车平均每班的载客量. 解:11×2+31×8+51×202+8+20=43(人).答:2路公共汽车平均每班的载客量是43人.【点拨】 数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数. 例2 (教材P115例3变式)某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如下表所示:这批灯泡的平均使用寿命是多少?【思路点拨】 抽出的100只灯泡的使用寿命组成一个样本,可以利用样本的平均使用寿命来估计这批灯泡的平均使用寿命.【解答】 根据表格,可以得出各小组的组中值,于是x =800×10+1 200×19+1 600×25+2 000×34+2 400×12100=1 676(时),即样本平均数为1 676.由此可以估计这批灯泡的平均使用寿命大约是1 676小时. 【思考】 用全面调查的方法考察这批灯泡的平均使用寿命合适吗?【跟踪训练2】(《名校课堂》20.1.1第2课时习题)某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了40只灯泡,它们的使用寿命如表所示,则这批灯泡的平均使用寿命是1__500__h .巩固训练1.某学校在开展“节约每一滴水”的活动中,从七年级的200名同学中任选出十名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:节水量(单位:吨)0.5 1 1.5 2同学数(人) 2 3 4 1请你估计这200名同学的家庭一个月节约用水的总量大约是(C)A.180吨 B.200吨C.240吨 D.360吨2.某部队为测量一批新制造的炮弹的杀伤半径,从中抽查了50枚炮弹,它们的杀伤半径(米)如下表:杀伤半径20≤x<4040≤x<6060≤x<8080≤x<100数量8 12 25 5 这批炮弹的平均杀伤半径是多少米?解:由表可得出各组数据的组中值分别是30,50,70,90,根据加权平均数公式得x=30×8+50×12+70×25+90×58+12+25+5=60.8(米).答:这批炮弹的平均杀伤半径大约是60.8米.3.为了绿化环境,柳荫街引进一批法国梧桐,三年后这些树的树干的周长情况如图所示,计算(可以使用计算器)这批法国梧桐树干的平均周长(精确到0.1 cm).解:x =45×8+55×12+65×14+75×10+85×68+12+14+10+6=63.8(cm).答:这批梧桐树干的平均周长是63.8 cm. 课堂小结1.哪些情况下,不能使用全面调查?2.在统计中,为什么要用样本的情况去估计总体的情况? 3.如何用样本估计总体? 20.1.2 中位数和众数 第1课时 中位数和众数 教学目标1.会求一组数据的中位数、众数. 2.掌握中位数、众数的作用. 3.会用中位数、众数分析实际问题. 预习反馈阅读教材P116~118,完成下列预习内容.1.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.一组数据的中位数不一定出现在这组数据中.一组数据的中位数是唯一的.2.一组数据中出现次数最多的数据称为这组数据的众数.当一组数据有较多的重复数据时,众数往往能更好地反映其集中趋势.3.某组数据:2,5,4,3,2的中位数是3;数据11,8,2,7,9,2,7,3,2,0,5的众数是2.4.某班7名女生的体重(单位:kg)分别是35,37,38,40,42,42,74,这组数据的众数是42.5.在数据-1,0,4,5,8中插入一个数据x ,使得这组数据的中位数是3,则x =2. 名校讲坛 知识点1 中位数例1 (教材P117例4)在一次男子马拉松长跑比赛中,抽得12名选手所用的时间(单位:min)如下:136 140 129 180 124 154 146 145 158 175 165 148(1)样本数据(12名选手的成绩)的中位数是多少? (2)一名选手的成绩是142 min ,他的成绩如何? 【解答】(1)先将样本数据按照由小到大的顺序排列:124 129 136 140 145 146 148 154 158 165 175 180这组数据的中位数为处于中间的两个数146,148的平均数,即12×(146+148)=147.因此样本数据的中位数是147.(2)根据(1)中得到的样本数据的中位数,可以估计,在这次马拉松比赛中,大约有一半选手的成绩快于147 min ,有一半选手的成绩慢于147 min ,这名选手的成绩是142 min ,快于中位数147 min ,可以推测他的成绩比一半以上选手的成绩好.【思考】 根据例1中的样本数据,你还有其他方法评价(2)中这名选手在这次比赛中的表现吗?【跟踪训练1】 求下列各组数据的中位数: ①5 6 2 3 2(3) ②2 3 4 4 4 4 5(4) ③5 6 2 4 3 5 (4.5) ④3 7 6 8 8 40(7.5)【点拨】 求中位数的步骤:①将这一组数据从大到小(或从小到大)排列;②若该组数据含有奇数个数,位于中间位置的数是中位数;若该组数据含有偶数个数,计算出位于中间位置的两个数的平均数,就是中位数.知识点2 众数例2 (教材P118例5)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示:你能根据表中的数据为这家鞋店提供进货建议吗?【思路点拨】一般来讲,鞋店比较关心哪种尺码的鞋销售量最大,也就是关心卖出的鞋的尺码组成的一组数据的众数.一段时间内卖出的30双女鞋的尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数.进而可以估计这家鞋店销售哪种尺码的鞋最多.【解答】由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23.5厘米的鞋销量最大.因此可以建议鞋店多进23.5厘米的鞋.【思考】分析表中的数据,你还能为鞋店进货提出哪些建议?【跟踪训练2】求下列各组数据的众数:(1)2,5,3,5,1,5,4 (5)(2)5,2,6,7,6,3,3,4,3,7,6 (6 3)(3)2,2,3,3,4 (2 3)(4)2,2,3,3,4,4 (2 3 4)(5)1,2,3,5,7 (1 2 3 5 7)【思考】当一组数据中多个数据出现的次数一样最多时,这几个数据都是这组数据的众数吗?一组数据的众数一定出现在这组数据中吗?巩固训练1.数学老师布置10道选择题,课代表将全班同学的答题情况绘制成条形统计图,根据下图,全班每位同学答对的题数的中位数和众数分别为(D)A.8,8B.8,9C.9,9D.9,82.5个正整数从小到大排列,若这组数据的中位数是3,众数是7且唯一,则这5个正整数的和是(A)A.20 B.21 C.22 D.233.数据8,8,x,6的众数与平均数相同,那么它们的中位数是8.4.为了了解“孝敬父母,从家务事做起”活动的实施情况,某校抽取八年级某班50名学生,调查他们一周做家务所用时间,得到一组数据,并绘制成下表,请根据下表完成各题:每周做家务的时间0 1 1.522.533.54合计(1)该班学生每周做家务的平均时间是2.44小时. (2)这组数据的中位数是2.5,众数是3.5.(《名校课堂》20.1.2第1课时习题)在一次测试中,抽取了10名学生的成绩(单位:分)为:86,92,84,92,85,85,86,94,94,83. (1)这个小组本次测试成绩的中位数是多少? (2)小聪同学此次的成绩是88分,他的成绩如何?解:(1)将这组数据按从小到大的顺序排列为83,84,85,85,86,86,92,92,94,94,则中位数是86+862=86.(2)根据(1)中得到的样本数据的中位数,可以估计,在这次测试中,大约有一半学生的成绩高于86分.小聪同学的成绩是88分,大于中位数86分,可以推测他的成绩比一半以上同学的成绩好. 课堂小结1.如何求中位数?中位数的作用是什么? 2.如何求众数?众数的作用是什么? 第2课时 平均数、中位数和众数的应用 教学目标1.进一步理解平均数、中位数和众数的概念.2.能辨清它们之间的关系,并能运用平均数、中位数、众数解决实际问题. 预习反馈阅读教材P119~120,完成下列预习内容.1.平均数、中位数和众数都可以反映一组数据的集中趋势,它们各有自己的特点,能够从不同的角度提供信息.在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.2.平均数的计算要用到所有的数据,它能够充分利用数据提供的信息,因此在现实生活中较为常用.但它受极端值(一组数据中与其余数据差异很大的数据)的影响较大.3.当一组数据中某些数据多次重复出现时,众数往往是人们关心的一个量,众数不易受极端值的影响.中位数只需要很少的计算,它也不易受极端值的影响.思考:你知道在体操比赛评分时,为什么要去掉一个最高分和一个最低分吗?4.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄(单位:岁)如下:甲群:13,13,14,15,15,15,16,17,17.乙群:3,4,4,5,5,6,6,54,57.(1)甲群游客的平均年龄是15岁,中位数是15岁,众数是15岁,其中能较好地反映甲群游客年龄特征的是平均年龄(众数或中位数).(2)乙群游客的平均年龄是16岁,中位数是5岁,众数是4,5,6岁.其中能较好地反映乙群游客年龄特征的是中位数.名校讲坛例(教材P119例6)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每个营业员在某月的销售额(单位:万元),数据如下:(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.(3)如果想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.【思路点拨】商场服装部统计的每个营业员在某月的销售额组成一个样本,通过分析样本数据的平均数、中位数、众数来估计总体的情况,从而解决问题.【解答】整理上面的数据得到表1和图2.表1销售额/万元13 14 15 16 17 18 19 22 23 24 26 28 30 32人数1 1 5 4 323 1 1 1 2 3 1 2图2(1)从表1和图2可以看出,样本数据的众数是15,中位数是18,利用计算器得到这组数据的平均数约是20,可以推测,这个服装部营业员的月销售额为15万元的人数最多,中间的月销售额是18万元,平均月销售额大约是20万元.(2)如果想确定一个较高的销售目标,这个目标可以定为每月20万元(平均数).因为从样本数据看,在平均数、中位数和众数中,平均数最大,可以估计,月销售额定为每月20万元是一个较高目标,大约会有13的营业员获得奖励.(3)如果想让一半左右的营业员能够达到销售目标,月销售额可以定为每月18万元(中位数).因为从样本情况看,月销售额在18万元以上(含18万元)的有16人,占总数的一半左右,可以估计,如果月销售额为18万元,将有一半左右的营业员获得奖励.【跟踪训练】某同学进行社会调查,随机抽查了某个地区20个家庭的收入情况,并绘制了如下的统计图:(1)求这20个家庭的年平均收入;(2)求这20个家庭收入的中位数和众数;(3)平均数、中位数、众数,哪个更能反映这个地区家庭的年平均收入水平?解:(1)这20个家庭的年平均收入是1.2万元.(2)这20个家庭收入的中位数和众数分别是1.2万元和1.3万元.(3)平均数和中位数更能反映这个地区家庭的年平均收入水平.巩固训练1.某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标完成情况对营业员进行适当的奖惩.为了确定一个适当的目标,商场统计了每个营业员在某月的销售额,经计算得出销售额的平均数是20万元/月,中位数是18万元/月,众数是15万元/月,如果你是该商场的管理人员,(1)你想让一半左右的营业员能够达标,这个目标可定为18万元/月;(2)你想确定一个较高的目标,这个目标可定为20万元/月.2.某公司33名职工的月工资(以元为单位)如下:(1)求该公司职工月工资的平均数、中位数、众数.(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元) (3)你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平? 解:(1)2 091,1 500,1 500. (2)3 288,1 500,1 500. (3)中位数.3.质量检测部门对甲、乙、丙三家公司销售产品的使用寿命进行了跟踪调查,统计结果如下(单位:年):甲公司:4,5,5,5,5,7,9,12,13,15; 乙公司:6,6,8,8,8,9,10,12,14,15; 丙公司:4,4,4,6,7,9,13,15,16,16. 请回答下列问题: (1)填空:(2)如果你是顾客,你将选购哪家公司销售的产品,为什么?(3)如果你是丙公司的推销员,你将如何结合上述数据及统计量,对本公司的产品进行推销?(至少说两条)解:(2)乙公司.因为从平均数、众数和中位数三项指标上看,都比其他的两个公司要好,他们的产品质量更高.(3)①丙公司的平均数和中位数都比甲公司高;②从产品寿命的最高年限考虑,购买丙公司的产品的使用寿命比较长的机会比乙公司产品大一些.课堂小结在实际问题中,会分析具体问题的情况,选择适当的量(平均数、中位数或众数)反映数据的集中趋势.20.2 数据的波动程度教学目标1.了解方差的定义和计算公式,理解方差概念的产生和形成的过程.2.会用方差计算公式来比较两组数据的波动大小,并能运用方差知识,解决实际问题.预习反馈阅读教材P124~127,完成下列预习内容.1.统计中常采用考察一组数据与它们的平均数之间的差别的方法,来反映这组数据的波动情况.2.设有n个数据x1,x2,…,x n,各数据与它们的平均数x的差的平方分别是(x1-x)2,(x2-x)2,…,(x n-x)2,我们用这些值的平均数,即用s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2]来衡量这组数据波动的大小,并把它叫做这组数据的方差.3.方差越大,数据的波动越大;方差越小,数据的波动就越小.4.要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的方差.5.计算一组数据:8,9,10,11,12的方差为2.名校讲坛例1 (教材P125例1)在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参加表演的女演员的身高(单位:cm)如表所示.哪个芭蕾舞团女演员的身高更整齐?【解答】甲、乙两团演员的身高平均数分别是x甲=163+164×2+165×2+166×2+1678=165,x乙=163+165×2+166×2+167+168×28=166.方差分别是s2甲=(163-165)2+(164-165)2+…+(167-165)28=1.5,s2乙=(163-166)2+(165-166)2+…+(168-166)28=2.5.由s2甲<s2乙可知,甲芭蕾舞团女演员的身高更整齐.【跟踪训练1】在一次女子排球比赛中,甲、乙两队参赛选手的年龄如下:甲队26 25 28 28 24 28 26 28 27 29乙队28 27 25 28 27 26 28 27 27 26(1)两队参赛选手的平均年龄分别是多少?(2)你能说说两队参赛选手年龄波动的情况吗?解:(1)两组数据的平均数分别是:x甲=26.9,x乙=26.9,即甲、乙两队参赛选手的平均年龄相同.(2)两组数据的方差分别是:s2甲=(26-26.9)2+(25-26.9)2+…+(29-26.9)210=2.29,s2乙=(28-26.9)2+(27-26.9)2+…+(26-26.9)210=0.89,由s2甲>s2乙可知,甲队参赛选手年龄波动较大.【点拨】平均数是反映一组数据总体趋势的指标,方差是表示一组数据波动程度的指标.所以(2)用方差来判断.例2 (教材例题变式)为了从甲、乙两名学生中选择一人去参加电脑知识竞赛,在相同条件下对他们的电脑知识进行了10次测验,成绩(单位:分)如下:(1)填写下表:(2)利用以上信息,请从不同的角度对甲、乙两名同学的成绩进行评价.【解答】 从众数看,甲成绩的众数为84分,乙成绩的众数是90分,乙的成绩比甲好;从方差看,s 2甲=14.4,s 2乙=34,甲的成绩比乙相对稳定;从甲、乙的中位数、平均数看,中位数、平均数都是84分,两人成绩一样好; 从频率看,甲85分以上的次数比乙少,乙的成绩比甲好.【跟踪训练2】 某射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了8次测试,测试成绩(单位:环)如下表:(1)根据表格中的数据,计算出甲的平均成绩是9环,乙的平均成绩是9环; (2)分别计算甲、乙两名运动员8次测试成绩的方差;(3)根据(1)(2)计算的结果,你认为推荐谁参加全国比赛更合适?并说明理由. 解:(2)甲的方差为18×[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2+(10-9)2+(8-9)2]=0.75,乙的方差为18×[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2+(8-9)2+(10-9)2]=1.25.(3)∵0.75<1.25,∴甲的方差小.∴甲比较稳定,故选甲参加全国比赛更合适. 巩固训练1.若数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则(1)数据x 1±b ,x 2±b ,…,x n ±b 的平均数为x ±b ,方差为s 2; (2)数据ax 1,ax 2,…,ax n 的平均数为ax ,方差为a 2s 2;(3)数据ax 1±b ,ax 2±b ,…,ax n ±b 的平均数为ax ±b ,方差为a 2s 2.2.用条形图表示下列各组数据,计算并比较它们的平均数和方差,体会方差是怎样刻画数据的波动程度的. (1)6 6 6 6 6 6 6 (2)5 5 6 6 6 7 7 (3)3 3 4 6 8 9 9 (4)3 3 3 6 9 9 9解:图略.(1)x =6,s 2=0;(2)x =6,s 2=47;(3)x =6,s 2=447;(4)x =6,s 2=547.3.甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成图1、图2的统计图.图1 图2(1)在图2中,画出折线表示乙队在集训期内这五场比赛成绩的变化情况;(2)已知甲队五场比赛成绩的平均分x甲=90分,请你计算乙队五场比赛成绩的平均分x乙;(3)如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计情况,试从平均分、折线的走势、获胜场数三个方面分别进行简要分析,你认为选派哪支球队参加比赛更能取得好成绩?解:(1)如图所示.(2)x乙=90分.(3)从平均分看,两队的平均分相同,实力大体相当;从折线的走势看,甲队比赛成绩呈上升趋势,而乙队比赛成绩呈下降趋势;从获胜场数看,甲队胜三场,乙队胜两场,甲队成绩较好;综上所述,选派甲队参赛更能取得好成绩.课堂小结1.理解方差的定义,会计算一组数据的方差.2.方差的作用:一组数据的方差越大,数据的波动越大;方差越小,数据的波动越小.3.方差的适用条件:当两组数据的平均数相等或相近时,才利用方差来判断它们的波动情况.20.3 课题学习体质健康测试中的数据分析教学目标1.理解调查活动中的六个基本步骤及其实施方法.2.理解数据的分析在调查活动中的重要作用.预习反馈阅读教材P131~133,完成下列预习内容.1.调查活动中的六个基本步骤是收集数据、整理数据、描述数据、分析数据、撰写调查报告、交流.2.甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下:若从甲、乙两人射击成绩方差的角度评价两人的射击水平,则谁的射击成绩更稳定些?解:甲、乙两人射击成绩的平均成绩分别为:x甲=15(7×2+8×2+10×1)=8,x乙=15(7×1+8×3+9×1)=8,s2甲=15[2×(7-8)2+2×(8-8)2+(10-8)2]=1.2,s2乙=15[(7-8)2+3×(8-8)2+(9-8)2]=0.4.∵s2甲>s2乙,∴乙同学的射击成绩比较稳定.【点拨】在平均数相等时,方差越小,数据越稳定.名校讲坛例(教材补充例题)(1)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理:。
名校课堂练习答案

• 21 Grammar 22. vocabulary
• 23. Writing
24. Speaking
• 25. Listening
模块语法强化训练 (P.5)
• I. (动词的时态复习)
• 1. is going to rain 2. called; were
• 3. doesn’t rain
• III. • 1. When does; leave • 2. What ; doing • 3. If you don’t • 4. shall we • 5. When did ; work
• Unit 3 (P. 6)
• 1—5 BCCDC 6—10 DBBAC
• 11—15 CCCBD
• 1. pronounce 2. advice
• 3. t
4. possible
• 5. forget
6. in class
• 7. agree with 8. listening to
• 9. helped; with 10. each other’s • 11. Why not play • 12. To write • 13. don’t think; should • 14. Who does he • 15. try / not ; not / try to • 16—20 DBBAC • 21—25 BCBAD 26—30 BACBA
• 1. south
2. low
• 3. especially
4. areas
• 5. island
6. part
• (P. 11)
• 7. population 8. popular
• 9. history
【名校课堂】九年级物理全册 第20章 电与磁练习 新人教版

第二十章 电与磁第1节 磁现象 磁场1.磁体和带电体有相似之处,也有不同之处,下面将磁体和带电体的一些性质对照如下:2.磁场的基本性质是能对放入其中的磁体产生磁力作用.3.磁感线是封闭的曲线;分布在磁体周围,而不是平面的;磁感线不相交;磁感线的疏密程度表示磁场的强弱.1.磁性材料间的吸引有两种情况,可能是异名磁极相互吸引,也可能是有磁性的吸引无磁性的(如磁铁吸引铁棒).2.磁感线方向:外部:N→S,内部:S→N.3.地磁的N(北)极在地理S(南)极附近,地磁的S(南)极在地理N(北)极附近.(莱芜中考)如图所示,小磁针在条形磁体作用下处于静止状态.(1)请标出小磁针的N 极;(2)用箭头标出条形磁体磁感线的方向.【提示】根据同名磁极相互排斥、异名磁极相互吸引,则小磁针右端为N 极,左端为S极.磁体周围磁感线的方向总是从磁体N极出发,回到S极.【答案】 如图所示【方法归纳】 利用磁极和磁感线的关系解决两类问题.(1)利用磁极判断磁感线方向:(2)利用磁感线方向确定磁极:磁感线上箭头指向磁极内侧的是S 极,指向外侧的是N 极.知识点1 磁现象1.磁极:磁体吸引能力________的两个部位;磁体的两极:________和________.2.根据右图可得出有关磁极间作用的规律是:(1)______________________; (2)______________________.3.磁化:一些物体在__________作用下获得磁性的现象.知识点2 磁场、地磁场4.磁场:磁体周围存在的一种看不见、摸不着、能使磁针________的物质.5.磁体外部磁感线的特点:从磁体的________极出发,回到磁体________极.6.地磁场:地理南极在地磁________附近,地理北极在地磁________附近.1.(常德中考)如图是生活中常用来固定房门的“门吸”,它由磁铁和金属块两部分组成.该金属块能被磁铁所吸引,是因为可能含有以下材料中的( )A.银 B.铁 C.铝 D.锌2.(杭州中考)甲铁棒能吸引小磁针,乙铁棒能排斥小磁针,若甲、乙铁棒相互靠近,则两铁棒( )A.一定互相吸引 B.一定互相排斥 C.可能无磁力的作用 D.可能互相吸引,也可能排斥3.在一个圆纸盒里藏放着一个条形磁铁,在盒子周围放置一些小磁针(小磁针涂黑端为N极),这些小磁针静止时的指向如图甲所示,则图乙中能正确反映盒中条形磁铁放置情况的是( )4.(天津中考)地球是一个巨大的磁体,下列图中有关地磁体的示意图正确的是( )5.小娴不小心将甲、乙两磁铁棒各摔成两半,破裂情况如图所示.若将两磁铁棒按原状自然接合,则甲棒两半将互相________,乙棒两半将互相________.6.在图中根据小磁针静止时的指向,标出磁体的N、S极和A点的磁感线方向.7.关于磁体、磁场和磁感线,以下说法中正确的是( )A.铜、铁和铝都能够被磁体所吸引B.磁感线是磁场中真实存在的曲线C.磁体之间的相互作用都是通过磁场发生的D.物理学中,把小磁针静止时S极所指的方向规定为该点磁场的方向8.教室里的钢质黑板表面涂了粗糙的“黑板漆”.上课时为了将挂图贴在黑板上,采用下图四种器具中的哪一种最为合适( )A.图钉B.钢钉C.磁吸D.吸盘9.将缝衣针在一块磁体上沿同一方向摩擦20次左右,照图甲那样将缝衣针穿插在制好的泡沫塑料块上,再用涂上颜色的三角形套在缝衣针两端.放在水面上时,会看到缝衣针停留在南北方向上.针对该实验,以下说法错误的是( )A.该实验说明缝衣针能够被磁化B.该实验说明磁体具有指示南北的性质C.该实验说明缝衣针是磁性材料D.该实验说明缝衣针是由铁制成的10.(宁波中考)如图是研究物体周围磁场时的铁屑分布情况:实验时,a、b、c三个位置所对应的磁极可能是( )A.N、N、N B.N、S、S C.N、N、S D.S、N、S11.(杭州中考)如图所示,甲乙两小磁针在一根磁铁附近,下列判断正确的是( )A.甲小磁针左端是S极,乙小磁针左端是N极B.甲小磁针左端是N极,乙小磁针左端也是N极C.甲小磁针左端是S极,乙小磁针左端也是S极D.甲小磁针左端是N极,乙小磁针左端是S极12.(安顺中考)如图甲所示,在水平地面上的磁体上方,有挂在弹簧测力计上的小磁体(下部为N极).小辉提着弹簧测力计向右缓慢移动,挂在弹簧测力计上的小磁体下端,沿图示水平路线从A缓慢移到B.则图乙中能反映弹簧测力计示数F随位置变化的是( )13.(南京中考)如图所示,一张百元新钞票好像被一支笔“戳通”了,实际上这张新钞票依然完好无损,这里应用了磁现象的有关知识.原来,这支笔的笔杆(纸币的下方)与笔头(纸币的上方)可以互相分离,笔杆上与笔头相连的一端内部装有小磁铁,则笔头内的材料可能含有________(填“铜”“铁”或“塑料”).若想探究笔头内的材料是否有磁性,现提供下列器材:①小磁针、②大头针、③碎纸屑,其中可用来完成探究任务的有________(填序号).14.(咸宁中考)最早利用地磁场指示方向的装置是图甲所示“司南”,古文《论衡·是应篇》中记载:“司南之杓(用途),投之于地,其柢(握柄)指南”.则勺柄应为该磁体的________(填“N”或“S”)极;某物理研究所尝试利用一块天然磁石制作一具“司南”,图乙所示为天然磁石的磁感线分布情况,则应将磁石的________(填“A”“B”“C”或“D”)处打磨成勺柄.15.(扬州中考)如图所示,标出磁感线方向和条形磁体的N极.16.请标出图中小磁针静止时的N极.参考答案课前预习1.最强南(S)极北(N)极 2.(1)同名磁极相互排斥(2)异名磁极相互吸引 3.磁体或电流 4.偏转 5.N S 6.北极南极当堂训练1.B 2.D 3.C 4.C 5.吸引排斥 6.课后作业7.C8.C9.D10.B11.B12.C13.铁①②14.S C15.16.第2节电生磁1.奥斯特实验表明:通电导线周围存在着磁场,电流的磁场方向跟电流的方向有关.2.通电螺线管的磁场:与条形磁铁相似;通电螺线管两端的极性跟螺线管中电流的方向有关.3.应用安培定则判断通电螺线管磁极的方法:①标出螺线管上的电流方向;②用右手握住螺线管,让四指弯曲的方向和电流的方向一致;③拇指所指的那端就是通电螺线管的N极.通电螺线管外部,磁感线从通电螺线管的N极出来回到S极;通电螺线管内部,磁感线从S 极到N极.(自贡一模)开关S闭合后,小磁针静止时的指向如图所示,由此可知( )A.a端是通电螺线管的N极,c端是电源正极B.b端是通电螺线管的N极,d端是电源负极C.b端是通电螺线管的N极,d端是电源正极D.a端是通电螺线管的N极,c端是电源负极【提示】通电螺线管两端相当于条形磁体的两个磁极,由小磁针的指向可知通电螺线管a 端为S极,b端为N极,然后根据安培定则可判断出螺线管中电流方向,可知c是电源负极,d 是电源正极.故C选项正确.【答案】 C【方法归纳】通电螺线管中电流方向的判断:(1)根据磁感线方向,标出通电螺线管的N、S极;(2)用右手握住螺线管,拇指指向N极;(3)四指指向就是电流的方向.知识点1 电流的磁效应1.1820年,丹麦物理学家________是世界上第一个发现电和磁之间联系的人.他通过大量的实验表明:通电导线周围存在________,磁场方向跟________方向有关,这种现象叫电流的________效应.知识点2 通电螺线管的磁场2.磁场分布:外部磁场与________的磁场相似.3.极性:通电螺线管两端的极性跟螺线管中__________有关.知识点3 安培定则4.内容:用________握住螺线管,让四指指向螺线管中________的方向,则拇指所指的那端就是螺线管的________.1.丹麦物理学家奥斯特首先通过实验发现电流周围存在磁场.如图所示,我们实验时要在通电直导线下方放一个( )A.螺线管 B.U形磁铁 C.小磁针 D.电流表2.(临沂中考)下列各图中,小磁针静止时N极指向正确的是( )3.如图所示,小磁针与导线在同一平面内,在导线的下方,当导线中电流从左到右时,小磁针N极指向垂直于纸面向里,现将导线中电流方向改为从右到左,则小磁针( )A.不动B.N极向上偏转C.N极指向为垂直于纸面向外D.回到与导线平行的位置4.(武汉中考)下列四幅图中,通电螺线管中电流的方向标注正确的是( )5.小金设计了一个如图所示的线圈指南针,将它放入盛有食盐水的水槽中(铜片和锌片分别与线圈两端相连后放入食盐水构成了化学电池,铜片为正极,锌片为负极),浮在液面上的线圈就能指示方向了.关于该装置的分析错误的是( )A.线圈周围的磁场与条形磁铁的磁场相似B.线圈能够指示方向是因为存在地磁场C.利用该装置可以判断磁铁的南北极D.交换铜片和锌片位置不会改变线圈的磁极6.如图所示,磁体的N极与通电螺线管的A端相吸,在图中标出通电螺线管的N、S极和电源的正负极.7.玩具小船上固定有螺线管(有铁芯)、电源和开关组成的电路,如图所示,把小船按图示的方向放在水面上,闭合开关,船头最后静止时的指向是( )A.向东 B.向南 C.向西 D.向北8.如图所示,螺线管内放一枚小磁针,当开关S闭合后,小磁针的北极指向将( )A.不动 B.向外转90° C.向里转90° D.旋转180°9.根据通电螺线管周围存在磁场(如图甲)的实验事实,某同学对地磁场产生的原因提出了一个假说:地磁场是由绕地球的环形电流引起的.下图乙中符合他假说的模型是( )甲乙10.如图所示,条形磁体置于水平桌面上,通电螺线管的右端固定,闭合开关,当滑动变阻器滑片P向右移动时,条形磁体仍保持静止,在此过程中,条形磁体受到的摩擦力的方向和大小是( )A.方向向左,逐渐增大 B.方向向右,逐渐增大C.方向向左,逐渐减小 D.方向向右,逐渐减小11.(安徽中考)通电螺线管的N、S极如图所示,由此可判断电流是从________(填“a”或“b”)端流入螺线管的.12.(宜宾中考)奥斯特实验表明,通电导线周围存在________.地球本身就是一个磁体,我们手里的小磁针水平静止时北极指向地理________(填“南”或“北”)极附近.13.(河南中考)在一块有机玻璃板上,安装一个用导线绕成的螺线管,在板面上均匀撒满铁屑,通电后铁屑的分布如图所示.图中A、B两点相比,________点磁场较强.实验中________(填“能”或“不能”)用铜屑代替铁屑显示磁场分布.14.如图所示,闭合开关使螺线管通电,可以观察到左边弹簧________,右边弹簧________.(填“伸长”“缩短”或“不变”)动手动脑15.(昆明中考)在探究通电螺线管外部磁场的实验中,采用了图1所示的实验装置.图1 图2(1)当闭合开关S后,小磁针________(填“会”或“不会”)发生偏转,说明通电螺线管与小磁针之间是通过________发生力的作用.(2)用铁屑来做实验,得到了图2所示的情形,它与________磁铁的磁场分布相似.为描述磁场而引入的磁感线________真实存在的.(3)为了研究通电螺线管的磁极性质,老师与同学们一起对螺线管可能的电流方向和绕线方式进行了实验,得到了如图所示的四种情况.实验说明通电螺线管的磁极极性只与它的________有关,且这个关系可以用____________判断.(4)闭合开关S,通电螺线管周围的小磁针N极指向如图所示,由图可知:在通电螺线管外部,磁感线是从________极发出,最后回到________极.参考答案课前预习1.奥斯特磁场电流磁 2.条形磁体 3.电流的方向 4.右手电流N极当堂训练1.C 2.A 3.C 4.A 5.D 6.课后作业7.D8.A9.A10.D11.a12.磁场北13.A 不能14.伸长缩短15.(1)会磁场(2)条形不是(3)电流方向右手螺旋定则(4)N S第3节电磁铁电磁继电器第1课时电磁铁1.电磁铁的优点是:方便控制磁性的有无,方便控制磁性的强弱,方便改变磁极的极性.2.探究电磁铁磁性强弱的因素时用到的是控制变量法,通过电磁铁吸引大头针的数量的多少来判断电磁铁的磁性强弱是转换法.3.电磁铁的磁性强弱与电流的大小和线圈的匝数及有无铁芯有关.电磁铁的铁芯要用软铁而不能用钢.因为软铁容易获得磁性也容易失去磁性.(柳州中考)要增强电磁铁的磁性,下列措施可行的是( )A.改变电流的方向B.增大通入的电流C.减小通入的电流D.减少电磁铁线圈匝数【提示】增大通过电磁铁线圈的电流,可以增强电磁铁的磁性,故B正确;减小通过电磁铁线圈的电流,可以减弱电磁铁的磁性,故C错误;减少电磁铁线圈的匝数,能够减弱电磁铁的磁性,而不是增强电磁铁的磁性,故D错误.【答案】 B【方法归纳】判断电磁铁磁性强弱的方法(1)线圈匝数不变时,电流变化,磁性强弱变化.(2)电流大小不变时,根据线圈匝数多少判断磁性强弱.知识点1 认识电磁铁1.电磁铁是内部带有________的通电螺线管,其工作原理是利用电流的________效应.2.电磁铁在生产和生活中的应用很多,在电炉、电铃、电灯中,用到电磁铁的是________.知识点2 电磁铁的磁性3.影响电磁铁磁性强弱的因素:________的大小和线圈的________.4.电磁铁的优点:①可以通过__________来控制其磁性的有无;②可以通过改变__________来改变其磁极的极性;③可以通过改变______________或__________来改变其磁性的强弱.1.如图所示的四个选项中,应用到电磁铁的是( )A.试电笔 B.滑动变阻器 C.电磁起重机D.节能型日光灯2.关于电磁铁的叙述中,错误的是( )A.通电螺线管中插入铁芯就构成了电磁铁B.电磁铁的铁芯用的是铁棒而不是钢棒C.电磁铁通电时有磁性,断电时没有磁性D.电磁铁的磁极方向不能用安培定则判断3.(庆阳中考)陈华在课外活动实验中,用导线绕成一个线圈自制成一个电磁铁,实验中,他希望获得更强的磁性,设计了以下几种方案,不可能实现的是( )A.增加电路中电池的节数 B.增加线圈匝数C.将电源的正、负极对调 D.在线圈中插入一根铁钉4.探究影响电磁铁磁性强弱的因素时,按如图所示电路进行实验,每次实验总观察到电磁铁A吸引大头针的数目比B多.此实验说明影响电磁铁磁性强弱的因素是( ) A.电流的大小 B.线圈的匝数 C.电流的方向 D.电磁铁的极性5.小胖将漆包线(表面涂有绝缘漆的铜线)绕在两个完全相同的铁钉上,制成了简易电磁铁甲和乙,来探究“影响电磁铁磁性强弱的因素”如图所示.(1)实验时通过观察________________,可以判断电磁铁的磁性强弱;(2)电磁铁乙的铁钉帽端为________(填“N”或“S”)极;(3)分析实验可知,电磁铁甲、乙磁性强弱不同的原因是____________.6.通电螺线管插入铁芯后制成电磁铁,其磁性大大增强,其原因是( )A.铁芯本身具有磁性B.插入铁芯后,使电流增大了C.插入铁芯后,相当于增加了线圈的匝数D.螺线管的磁性与被磁化的铁芯的磁性共同作用7.如图所示设备或电器中,其主要工作原理与电磁铁无关的是( )A.电铃B.电熨斗 C.电磁选矿机D.电磁起重机8.在一次实验中,小红连接了如图所示的电路.电磁铁AB正上方放有一小磁针.闭合开关,可能出现的情况是( )A.电磁铁A端为S极B.小磁针N极指向水平向右C.若滑动变阻器的滑片P向右移动,电磁铁的磁性增强D.移动滑动变阻器的滑片P,不影响电磁铁的磁性强弱9.(遂宁中考)如图所示,A是悬挂在弹簧测力计下的条形磁铁,B是螺线管.闭合开关,待弹簧测力计示数稳定后,将滑动变阻器的滑片缓慢向右移动的过程中,下列说法正确的是( )A.电压表示数变大,电流表示数也变大B.电压表示数变小,电流表示数也变小C.螺线管上端是N极,弹簧测力计示数变小D.螺线管上端是S极,弹簧测力计示数变大10.如图是一种单元防盗门门锁的原理图.其工作过程是:当有人在楼下按门铃叫门时,楼上的人闭合开关,门锁上的电磁铁通电________衔铁,衔铁脱离门扣,这时来人拉开门,进入楼内.在关门时,开关是断开的,衔铁在________作用下,合入门扣.11.小红在码头附近游玩时看到正在工作的电磁起重机如图所示,他的主要部件是电磁铁,与永磁体相比,它的优点是:________________________________________________(写出一条).你知道电磁铁还有哪些应用,请举出一例:______________.12.(德州中考)如图所示,电路中R x为压敏电阻,阻值随所受压力增大而减小,开关S闭合后,螺线管的上端相当于电磁铁的________极,当压力增大时,电磁铁的磁性会________.动手动脑13.(黔东南中考)为探究“影响电磁铁磁性强弱的因素”,小明用电池(电压一定)、滑动变阻器、数量较多的大头针、铁钉以及较长导线为主要器材,进行如图所示的简易实验.(1)他将导线绕在铁钉上制成简易电磁铁,并巧妙地通过______________来显示电磁铁磁性的强弱,下面的实验也用这种方法的是________.A.认识电压时,我们可以用水压来类比B.用光线来描述光通过的路径C.把敲响的音叉接触水面,看有没有溅起水花,来判断音叉有没有振动D.用斜面、小车研究阻力对物体运动的影响(2)连接好电路,使变阻器连入电路的阻值较大,闭合开关,观察到如图甲所示的情景;接着,移动变阻器滑片,使其连入电路的阻值变小,观察到图乙所示的情景.比较图甲和乙,可知________图中的电流较小,从而发现,通过电磁铁的电流越________(填“大”或“小”),磁性越强.第2课时电磁继电器1. 电磁继电器的作用:(1)通过控制低电压、弱电流电路的通断来间接地控制高电压、强电流工作电路;(2)进行远距离操纵;(3)实现温度自动控制或光自动控制.2.电磁继电器的工作原理如图所示:1.电磁继电器实际上是由两个电路组成,一个控制电路,一个工作电路.2.分析电磁继电器类问题的顺序是:控制电路→电磁铁→工作电路.如图所示,下列说法正确的是( )A.当S1断开、S2闭合时,红灯亮B.当S1断开、S2闭合时,绿灯亮C.当S1闭合、S2断开时,绿灯亮D.当S1、S2均闭合时,绿灯亮【提示】由图可知当S1断开、S2闭合时,左侧的控制电路无电流,电磁铁无磁性,由于弹簧的原因,动触点与绿灯的触点接触,同时由于右边的工作电路也是闭合的,所以此时绿灯亮.【答案】 B【方法归纳】解决电磁继电器问题的一般思路:知识点1 电磁继电器1.电磁继电器是利用________控制工作电路________的________.2.请填写电磁继电器各部分的名称.知识点2 电磁继电器的应用3.利用电磁继电器,可以通过控制________电路的通断来间接控制________电路,还可以利用电磁继电器进行__________和______________.1.如图所示,电磁继电器能通过控制低压电路间接地控制高压工作电路.下列说法正确的是( )A.连有电动机的电路是低压控制电路B.电磁继电器实际上是一个由电磁铁控制电路通断的开关C.利用电磁继电器主要是为了节约用电D.利用电磁继电器主要是为了操作方便2.(自贡中考)如图是电磁继电器的构造和工作电路示意图.要使电磁铁对衔铁的吸引力变大,以下做法可行的是( )A.去掉电磁铁线圈中的铁芯B.减少电磁铁线圈的匝数C.适当增大电源A的电压 D.适当增大电源B的电压3.如图所示是某同学连接的电铃电路,开关闭合后,电路中始终有电流,但电铃只响了一声就不再响了,原因是( )A.电磁铁始终没有磁性 B.衔铁没有向下运动C.衔铁一直被电磁铁吸着不能回弹 D.电池正、负极接反了4.如图所示是拍摄机动车闯红灯的工作原理示意图.光控开关接收到红灯发出的光会自动闭合,压力开关受到机动车的压力会闭合,摄像系统在电路接通时可自动拍摄违规车辆.下列有关说法正确的是( )A.只要光控开关接收到红光,摄像系统就会自动拍摄B.机动车只要驶过埋有压力开关的路口,摄像系统就会自动拍摄C.只有光控开关和压力开关都闭合时,摄像系统才会自动拍摄D.若将光控开关和压力开关并联,也能起到相同的作用5.如图所示是王强同学在研究性学习的活动中为某仓库设计的一种防盗报警器,其踏板放在仓库的门口,电铃和灯泡放在值班室内.观察电路可知,这个报警器的工作原理是:(1)有人踩踏板时,______________________________________________.(2)无人踩踏板时,______________________________________________.6.(遵义中考)如图所示是某科技小组设计的一种温度自动控制报警装置电路图,关于它的说法正确的是( )A.当温度低于90 ℃时,报警装置就会响铃,同时绿灯亮B.当温度低于90 ℃时,报警装置就会响铃,同时红灯亮C.当温度达到90 ℃时,报警装置就会响铃,同时红灯亮D.当温度达到90 ℃时,报警装置就会响铃,同时绿灯亮7.城市下水道井盖丢失导致行人坠入下水道的悲剧时有发生,令人痛心.为此,某同学设计了一种警示电路:在井口安装一环形灯L,井盖相当于开关S;正常情况下(S闭合),灯L不亮;一旦井盖丢失(S断开),灯L即亮起,以警示行人.图中电路符合要求的是( )8.(多选)(威海中考)电梯为居民上下楼带来很大的便利,出于安全考虑,电梯设置了超载自动报警系统,其工作原理如图所示,电梯厢底层装有压敏电阻R1,R2为保护电阻,K为动触点,A、B为静触点.当出现超载情况时,电铃将发出报警声,电梯停止运行.下列说法正确的是( )A.电梯工作时电磁铁的上端为N极B.电磁铁磁性的强弱与电流的大小有关C.电梯未超载时动触点K与静触点B接触D.电梯超载时报警,说明压敏电阻的阻值随压力增大而减小9.如图是汽车启动装置电路简图,当钥匙插入钥匙孔并转动时,电磁铁得到磁性,此时电磁铁上端为________极,触点B与C________(填“接通”或“断开”),汽车启动.10.如图是利用太阳能给LED路灯供电的自动控制电路的原理示意图.其中,R是光敏电阻,光敏电阻的阻值R随光照度的增强而减小.白天,通过太阳能电池板与蓄电池回路将太阳能转化为化学能储存在大容量蓄电池内.傍晚,当光照强度小于一定值时,通过蓄电池与LED回路,路灯开始工作.请用笔画线将电路原理图连接完整,使工作电路能正常工作(与触点的接线只能接在静触点上,图中已给出静触点D、E、F、G的四根引线;连线不能交叉).参考答案第1课时电磁铁课前预习1.铁芯磁 2.电铃 3.电流匝数 4.电流的通断电流的方向电流的大小匝数的多少当堂训练1.C 2.D 3.C 4.B 5.(1)吸引大头针的数量(2)N (3)线圈匝数不同课后作业6.D7.B8.B9.C10.吸引弹簧11.磁性的有无、磁性的强弱和极性可以控制电铃(空气开关) 12.S 增强13.(1)吸起大头针的多少 C (2)甲大第2课时电磁继电器课前预习1.电磁铁通断开关 2.衔铁弹簧电磁铁触点 3.低压高压远距离操纵自动控制当堂训练1.B 2.C 3.C 4.C 5.(1)电磁铁有磁性,电铃电路工作,铃响报警(2)电磁铁无磁性,灯泡电路工作,灯亮安全课后作业6.C7.B8.BD9.N接通10.第4节电动机1.通电导线在磁场中的受力方向与导线中的电流方向和磁场方向有关,在分析与判断通电导线的受力方向是否改变时,可用“一变则变,全变不变”的口诀来记忆与分析.2.电动机的转动方向与线圈中电流的方向和磁场的方向有关;电动机的转速与电流的大小和磁场的强弱有关.1.当导体中电流的方向和磁感线的方向同时改变时,通电导体在磁场中受力的方向是不会发生改变的.2.通电导体在磁场中受到力的作用,但受力不一定运动.(泰安中考)在制作简易电动机的过程中,若要改变电动机的转动方向,可以( )A.将电源的正负极对调B.改变通电电流的大小C.换用磁性更强的磁铁。
《名校课堂》人教版物理九年级上册课件:第20章 第2节 电生磁1

奥斯特 发现电流的周围存 奥斯特实验:1820 年,丹麦物理学家________ 磁场 ,在世界上第一个发现了 电与磁之间的联系. 在着______
电流方向 磁场 ,这 电流的磁效应:通电导线周围存在着与 ________有关的______
种现象叫做电流的磁效应.
2.通电螺线管的磁场 磁场分布:通电螺线管外部的磁场与______ 条形 磁体的磁场相似. 极 内 应
15.(自贡中考)在图中,根据通电螺线管的 N、S 极,分别标出电 源的正、负极和两个小磁针静止时的 N、S 极.
解 :
16.(昆明中考)在探究通电螺线管外部磁场的实验中,采用了图 1 所示的实验装置. 图1 图2
会 填“会”或“不会”)发生偏 (1)当闭合开关 S 后,小磁针______(
磁场 发生力的作用. 转,说明通电螺线管与小磁针之间是通过______
6.通电螺线管外部的磁场和______ 条形 磁体外部的磁场一样,它的两
S 极.当改变螺线管中的电流方向时,螺线管 N 极、______ 端分别是______ 改变 . 的两磁极______
7. 请在图中标出开关闭合后通电螺线管的“N”极.
解:
03
中档题
8.1820 年,安培在科学院的例会上做了一个小实验,引起了到 会科学家的兴趣.如图所示,把螺线管沿东西方向水平悬挂起来,然后 给导线通电,会发生的现象是 ( B A.通电螺线管仍保持原位置静止 B.通电螺线管转动,直至 A 指向南,B 指向北 C.通电螺线管转动,直至 A 指向北,B 指向南 D.通电螺线管能在任意位置静止 )
(2)用铁屑来做实验, 得到了图 2 所示的情形, 它与______ 条形 磁铁的磁
不是 真实存在的. 场分布相似.为描述磁场而引入的磁感线______
名校课堂WORD版练习题----第17章--答案

第十七章勾股定理17.1 勾股定理第1课时勾股定理(19-20页)参考答案1.勾股定理a2+b2=c22.图形的总面积可以表示为c2+2×12ab=c2+ab,也可以表示为a2+b2+2×12ab=a2+b2+ab,∴c2+ab=a2+b2+ab,即a2+b2=c2.3.C 4.C 5.C 6.C 7.68.(1)∵a2+b2=c2,∴a=c2-b2.∴a= 5.(2)设a=3x,c=5x,∵a2+b2=c2,∴(3x)2+322=(5x)2.解得x=8.∴a=24,c=40. 9.(1)∠BAC=180°-60°-45°=75°.(2)∵AD⊥BC,∴△ADC是直角三角形.∵∠C=45°,∴∠DAC=45°.∴AD=CD.根据勾股定理,得AD= 2.10.D 11.B 12.C 13.13或119 14.3 15.(2)2 01716.在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14-x.由勾股定理,得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2.∴152-x2=132-(14-x)2.解得x=9.∴AD=12.∴S△ABC=12BC·AD=12×14×12=84.17.“有趣中线”有三种情况:①若“有趣中线”为斜边AB上的中线,直角三角形的斜边的中线等于斜边长的一半,不合题意;②若“有趣中线”为BC边上的中线,根据斜边大于直角边,矛盾,不成立;③若“有趣中线”为另一直角边AC上的中线BD,如图所示,BC=3,设BD=2x,则CD=x.在Rt△CBD中,根据勾股定理,得BD2=BC2+CD2,即(2x)2=(3)2+x2,解得x =1.则△ABC的“有趣中线”的长等于2.第2课时勾股定理的应用(21-22页)参考答案1.D 2.11 5 3.104.在Rt△CDB中,由勾股定理,得CD=CB2-BD2=252-152=20(米).∴CE=CD+DE=20+1.6=21.6(米).答:风筝的高度CE为21.6米.5.C6.略.7.A 8.D 9.A 10.B 11.B 12.C 13.2 14.(4,0) 15.7≤h≤1616.在Rt△APO中,∠APO=60°,则∠PAO=30°.∴AP=2OP=200 m,AO=AP2-OP2=2002-1002=1003(m).在Rt△BOP中,∠BPO=45°,则BO=OP=100 m.∴AB=AO-BO=1003-100≈73(m).∴从A到B小车行驶的速度为73÷3≈24.3(m/s)=87.48 km/h>80 km/h.∴此车超过每小时80千米的限制速度.17.(1)在Rt△ABC中,由勾股定理,得BC2=AB2-AC2=52-32=16.∴BC=4 cm.(2)由题意,知BP=t cm,①当∠APB为直角时,如图1,点P与点C重合,BP=BC=4 cm,即t=4;②当∠BAP为直角时,如图2,BP=t cm,CP=(t-4)cm,AC=3 cm,在Rt△ACP中,AP2=AC2+CP2=32+(t-4)2.在Rt△BAP中,AB2+AP2=BP2,即52+[32+(t-4)2]=t2.解得t=254.故当△ABP为直角三角形时,t=4或t=254.小专题(二) 巧用勾股定理解决折叠与展开问题(23-24页)参考答案1.∵点C′是AB边的中点,AB=6,∴BC′=3.由图形折叠的性质,知C′F=CF=BC-BF=9-BF.在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9-BF)2.解得BF=4.2.∵四边形ABCD是长方形,AD=8,∴BC=8.∵△AEF是由△AEB翻折而成,∴BE=EF=3,AB =AF,△CEF是直角三角形.∴CE=BC-BE=8-3=5.在Rt△CEF中,CF=CE2-EF2=52-32=4.设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82.解得x=6.∴AB=6.3.依题意可知,折痕AD是四边形OAED的对称轴,在Rt△ABE中,AE=OA=5,AB=4.∴BE=3,从而CE=2.∴E点坐标为(2,4).在Rt△DCE中,DC2+CE2=DE2.又∵DE=OD,∴(4-OD)2+22=OD2.解得OD=52.∴D点坐标为(0,52).4.(1)证明:由折叠的性质,得∠DEF=∠BEF.∵AB∥DC,∴∠BEF=∠DFE.∴∠DEF=∠DFE.∴DE=DF,即△DEF是等腰三角形.(2)由折叠的性质,得ED=EB.设BE=x,则DE=x,AE=AB-x=9-x.在Rt△ADE中,AD=3,AD2+AE2=DE2.∴32+(9-x)2=x2.解得x=5.∴BE=5.5.AM2+BN2=MN2.证明:过点B作BP∥AC交MH延长线于点P,连接NP,∴∠A=∠PBH,∠PBN+∠C =180°,即∠PBN =90°.∵H 是AB 的中点,∴AH =BH.在△AMH 和△BPH 中,⎩⎪⎨⎪⎧∠A =∠PBH ,AH =BH ,∠AHM =∠BHP ,∴△AMH ≌△BPH(ASA).∴AM =BP ,MH =PH.又∵NH ⊥MP ,∴MN =NP.又∵在Rt △BNP 中,BP 2+BN 2=NP 2.∴AM 2+BN 2=MN 2. 6.C 7.2.608.(1)∵长方体的高为5 cm ,底面长为4 cm ,宽为1 cm ,∴A 2C 2=42+12=17(cm).∴A 1C 2=52+(17)2=42(cm).(2)如图1所示,A 2C 1=52+52=52(cm).如图2所示,A 2C 1=92+12=82(cm).如图3所示,A 2C 1=62+42=213(cm).∵52<213<82,∴一只蚂蚁从点A 2爬到C 1,爬行的最短路程是52cm.9.(1)如图,由题意可,得CD =9 cm ,AD =12-4-4=4(cm),∴AC =AD 2+CD 2=97(cm).答:蚂蚁要吃到甜甜的蜂蜜所爬行的最短距离为97cm. (2)如图,将杯子侧面展开,作A 关于EQ 的对称点A ′,连接A ′C ,则A ′C 即为最短距离,则A ′D =12×18=9(cm),CQ =12-4=8(cm),CD =4+8=12(cm).在Rt △A ′DC 中,由勾股定理,得A ′C =A ′D 2+CD 2=92+122=15(cm).答:蚂蚁吃到蜂蜜所爬行的最短距离为15 cm.17.2 勾股定理的逆定理(25-26页)参考答案1.C2.(1)如果两个三角形的面积相等,那么这两个三角形全等.是假命题. (2)有两个内角相等的三角形是等腰三角形.是真命题. 3.C 4.A 5.B 6.C 7.B 8.(1)是,∠B 是直角. (2)不是.(3)是,∠C 是直角. (4)是,∠A 是直角.9.(1)证明:在Rt △ABD 和Rt △ACD 中,根据勾股定理,得AB 2=AD 2+BD 2,AC 2=AD 2+CD 2,又∵AD =12,BD =16,CD =5,∴AB =20,AC =13.∴△ABC 的周长为AB +AC +BC =AB +AC +BD +DC =20+13+16+5=54.(2)∵AB =20,AC =13,BC =21,AB 2+AC 2≠BC 2,∴△ABC 不是直角三角形.10.D 11.C 12.B 13.C 14.5或1315.在△ABC 中,∵AB =4,BC =3,∠ABC =90°,根据勾股定理,得AC 2=AB 2+BC 2=42+32=52.∴AC =5 cm.在△ACD 中,∵CD =12,AD =13,AC =5,即有AC 2+CD 2=52+122=25+144=169,AD 2=132=169,即AC 2+CD 2=AD 2.∴△ACD 是直角三角形,且AD 为斜边,即∠ACD =90°.16.(1)连接AC.∵AB =BC =1,∠B =90°,∴∠BAC =∠ACB =45°,AC =AB 2+BC 2= 2.又∵CD =3,DA =1,∴AC 2+DA 2=CD 2.∴△ADC 为直角三角形,∠DAC =90°.∴∠BAD =∠BAC +∠DAC =135°.(2)∵S △ABC =12AB ·BC =12,S △ADC =12AD ·AC =22,∴S 四边形ABCD =S △ABC +S △ADC =1+22.17.∵c +a =2b ,c -a =12b ,∴(c +a)(c -a)=2b ·12b.∴c 2-a 2=b 2,即a 2+b 2=c 2.∴△ABC 是以∠C 为直角的直角三角形.章末复习(二) 勾股定理参考答案1.D 2.D3.2 4.D 5.D 6.5 正北7.7 8.和等于0的两个数互为相反数9.互补的两个角是同旁内角假10.B 11.D 12.C 13.B 14.直角三角形15.8 16.1017.在Rt△ABC中,已知AB=2.5 m,BC=0.7 m,则AC= 2.52-0.72=2.4(m).∵AC=AA1+CA1,∴CA1=2 m.∵在Rt△A1B1C中,AB=A1B1,且A1B1为斜边,∴CB1=A1B21-A1C2= 2.52-22=1.5(m).∴BB1=CB1-CB=1.5-0.7=0.8(m).答:梯子底部B将外移0.8 m.18.∵BD=CD=2,∴BC=22+22=2 2.∴设AB=x,则AC=2x.∴x2+(22)2=(2x)2.∴x2+8=4x2.∴x2=83.∴x=263.∴AC=2AB=436.19.在Rt△ACB中,∠B=30°,∠ACB=90°,∴∠A=90°-30°=60°.∵CD⊥AB,∴∠ADC=90°.∴∠ACD=30°.在Rt△ACD中,AC=a,∴AD=12a.由勾股定理,得CD=a2-(12a)2=3a2.同理,得FC=3a4,CH=33a8.在Rt△HCI中,∠I=30°,∴HI=2HC=33a4.由勾股定理,得CI=(33a4)2-(33a8)2=9a8.∴CI的长为9a8.单元测试(二) 勾股定理参考答案1.C 2.B 3.C 4.C 5.C 6.D 7.D 8.B 9.如果3a=3b,那么a=b 10.5 2 11.9012.3213.18 14.1015.(1)在△BCD中,∵CD⊥AB,∴BD2+CD2=BC2.∴CD2=BC2-BD2=152-92=144.∴CD=12.(2)在△ACD中,∵CD⊥AB,∴CD2+AD2=AC2.∴AD2=AC2-CD2=202-122=256.∴AD=16.∴AB=AD+BD=16+9=25.(3)∵BC2+AC2=152+202=625,AB2=252=625,∴AB2=BC2+AC2.∴△ABC是直角三角形.16.在Rt△ABC中,AB=4 m,设BC=x m,则AC=(8-x)m.由勾股定理,得BC2=AC2+AB2,即x2=(8-x)2+42,解得x=5.如果下次旗杆从D处刮断,设着地点为E,则DE=BC+CD=5+1.25=6.25(m),AD=AC-CD=3-1.25=1.75(m).在Rt△ADE中,由勾股定理,得AE2=DE2-AD2=6.252-1.752=36,∴AE=6 m.∴杆脚周围6 m范围内有被砸伤的危险.17.∵四边形ABCD是长方形,∴AB=CD,∠B=∠D=90°.由折叠可知,∠D=∠D′,CD=CD′.∴∠B=∠D′,AB=CD′.又∠AEB=∠CED′,∴△ABE≌△CD′E.∴AE=CE.设BE=x,则AE=CE=4-x.∴32+x2=(4-x)2.解得x=78.∴BE=78.18.(1) 6 2 PA2+PB2=PQ2① 6 2(提示:过C作CH⊥AB于H,则CH=AH=HB=1+32=2+62,∴PH=AH-AP=2+62-2=6-22,PC=PH2+CH2=(6-22)2+(6+22)2=2)②PA2+PB2=PQ2(理由:PA2=2,PB2=6,PQ2=2PC2=8,∴PA2+PB2=PQ2).(2)过点C作CD⊥AB,垂足为点D.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵PA2=(AD+PD)2=(DC+PD)2=DC2+2DC·PD+PD2,PB2=(PD-BD)2=(PD-DC)2=DC2-2DC·PD+PD2,∴PA2+PB2=2DC2+2PD2.∵在Rt△PCD中,由勾股定理,得PC2=DC2+PD2,∴PA2+PB2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴PA2+PB2=PQ2.。
《名校课堂》语文(人教版)八年级(上册)

返回 主页
Word版习题
导学案 8年级
习题PPT
导学案
教学资源包
第六单元 美丽的自然
电子导学案 26 三峡 27 短文两篇 28* 观潮 29* 湖心亭看雪 30 诗四首 写作 多角度描写景物 综合性学习 怎样搜集资料
导学案课件 26 三峡 27 短文两篇 28* 观潮 29* 湖心亭看雪 30 诗四首 写作 多角度描写景物 综合性学习 怎样搜集资料
返回 主页
Word版习题
导学案
教学资源包
第一单元 和平的期盼 第二单元 大爱的温馨 第三单元 凝固的艺术 第四单元 科技的奇观 第五单元 文化的魅力 第六单元 美丽的自然
期中测试
期末测试
返回 主页
Word版习题
导学案 8年级
习题PPT
导学案
教学资源包
第一单元 和平的期盼 第二单元 大爱的温馨 第三单元 凝固的艺术 第四单元 科技的奇观 第五单元 文化的魅力 第六单元 美丽的自然
返回 主页
Word版习题
导学案 8年级
习题PPT
导学案
教学资源包
第五单元 文化的魅力
电子导学案 21 桃花源记 22 短文两篇 23* 核舟记 24* 大道之行也 25 杜甫诗三首 写作 学会说点儿道理
导学案课件 21 桃花源记 22 短文两篇 23* 核舟记 24* 大道之行也 25 杜甫诗三首 写作 学会说点儿道理
习题PPT
导学案
教学资源包
第二单元 大爱的温馨
6 阿长与《山海经》 7 背影 8* 台阶 9 老王 10* 信客 写作小专题 叙事要详略得当 综合性学习 小专题 让世界充满爱 单元测试(二)
返回 主页
Word版习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十章 数据的分析 20.1 数据的集中趋势20.1.1 平均数 第1课时 平均数参考答案1.C 2.B 3.6004.方法一:该种水果本周每天销量的平均数为(45+44+48+42+57+55+66)÷7=51(kg);方法二:以50 kg 为标准,超过的千克数记为正数,不足的千克数记为负数,销量记录为-5,-6,-2,-8,+7,+5,+16.∵(-5-6-2-8+7+5+16)÷7=1,∴该种水果本周每天销量的平均数为50+1=51(kg). 5.A 6.B 7.6.48.(1)甲的成绩为85×20%+83×30%+90×50%=86.9(分),乙的成绩为80×20%+85×30%+92×50%=87.5(分),∴乙会竞选上. (2)甲的成绩为85×2+83×1+90×22+1+2=86.6(分),乙的成绩为80×2+85×1+92×22+1+2=85.8(分),因此,甲会竞选上.9.A 10.B 11.D 12.B 13.96 14.(1)x 平时=106+102+115+1094=108(分),即洋洋该学期的数学平时平均成绩为108分.(2)洋洋该学期的数学总评成绩为108×10%+112×30%+110×60%=110.4(分). 15.(1)甲的演讲答辩得分为90+92+943=92(分),甲的民主测评得分为40×2+7×1+3×0=87(分),当a =0.6时,甲的综合得分为92×(1-0.6)+87×0.6=36.8+52.2=89(分). (2)∵乙的演讲答辩得分为89+87+913=89(分),乙的民主测评得分为42×2+4×1+4×0=88(分),∴乙的综合得分为89(1-a)+88a.由(1)知甲的综合得分=92(1-a)+87a.当92(1-a)+87a >89(1-a)+88a 时,即有a <34.又∵0.5≤a ≤0.8,∴当0.5≤a <0.75时,甲的综合得分高.当92(1-a)+87a <89(1-a)+88a 时,即有a >34.又∵0.5≤a ≤0.8,∴当0.75<a ≤0.8时,乙的综合得分高.第2课时 用样本平均数估计总体平均数参考答案1.D 2.C 3.20.44.(1)54.5 64.5 74.5 84.5 94.5(2)平均成绩为54.5×4+64.5×8+74.5×14+84.5×18+94.5×64+8+14+18+6=77.3(分).答:该班本次考试的平均成绩为77.3分.5.B 6.A 7.A 8.7 9.6 500 000 10.C 11.C12.观察该图,可知抽查的学生中全部答对的有20人.该校每位学生平均答对的题数是7×15+8×10+9×15+10×2015+10+15+20≈8.7(道).答:该校每位学生平均答对8.7道题.13.(1)120 72°(2)补全条形统计图如图.(3)这日午饭有剩饭的学生人数为2 500×(1-60%-10%)=750(人),750×10=7 500(克)=7.5(千克).答:这日午饭将浪费7.5千克米饭. 14.(1)25 20(2)由(1)可知,得满分的占20%,∴该地区此题得满分(即8分)的学生人数是4 500×20%=900(人).(3)由题意可得L =0×10%+3×25%+5×45%+8×20%10%+25%+45%+20%8=4.68=0.575.∵0.575处于0.4与0.7之间,∴此题对于该地区的九年级学生来说属于中等难度试题.20.1.2 中位数和众数 第1课时 中位数和众数参考答案1.B 2.B 3.B 4.8 5.326.(1)这组数据按从小到大的顺序排列为83,84,85,85,86,86,92,92,94,94,则中位数是86+862=86. (2)根据(1)中得到的样本数据的中位数,可以估计,在这次测试中,大约有一半学生的成绩高于86分.小聪同学的成绩是88分,大于中位数86分,可以推测他的成绩比一半以上同学的成绩好.7.B 8.B 9.C 10.众数 11.1.0 12.C 13.A 14.C 15.(1)40 15(2)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都为36,∴中位数为36+362=36. (3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%.则计划购买200双运动鞋,35号的有200×30%=60(双). 16.(1)60 2 57.5 4 (2)乙 甲(3)从折线图上看,两名运动员体能测试成绩都呈上升的趋势,但是,乙的增长速度比甲快,并且后一阶段乙的成绩合格的次数比甲多,所以乙训练的效果较好.第2课时 平均数、中位数和众数的应用参考答案1.D 2.D 3.D 4.C 5.-45 -1 6.237.中位数8.(1)4 700 2 250 (2)中位数9.(1)平均数:10;众数:8;中位数:9. (2)确定每人标准日产量为8台或9台比较恰当. 10.B 11.C 12.34 13.m -a n -a 14.(1)8 6 8 8(2)乙公司.因为从平均数、众数和中位数三项指标上看,都比其他的两个公司要好,他们的产品质量更高.(3)①丙公司的平均数和中位数都比甲公司高;②从产品寿命的最高年限考虑,购买丙公司的产品的使用寿命比较长的机会比乙公司产品大一些.15.(1)方案1最后得分:110×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7(分);方案2最后得分:18×(7.0+7.8+3×8+3×8.4)=8(分);方案3最后得分:8分;方案4最后得分:8分或8.4分. (2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.20.2 数据的波动程度参考答案1.C 2.A 3.样本容量 样本平均数 4.B 5.A 6.甲 7.乙 8.x 甲=120+123+119+121+122+124+119+122+121+11910=121(毫克),x 乙=121+119+124+119+123+124+123+122+123+12210=122(毫克),∵x 甲<x 乙,∴乙种饮料维生素C 的平均含量高. 又∵s 2甲=(121-120)2+…+(121-119)210=2.8,s 2乙=(122-121)2+…+(122-122)210=3,∴s 2甲<s 2乙. ∴甲种饮料维生素C 的含量比较稳定. 9.(1)9.5 10 (2)x 乙=10+8+7+9+8+10+10+9+10+910=9(分).s 2乙=110[(10-9)2+(8-9)2+…+(10-9)2+(9-9)2]=1. (3)乙10.B 11.A 12.变大 13.9 14.(1)8 8 9(2)理由:甲与乙的平均成绩相同,且甲的方差比较小,说明甲的成绩较乙来得稳定,故选甲. (3)变小15.(1)3.2 168(2)选择方差作标准,∵(一)班方差<(二)班方差, ∴(一)班能被选取.16.(1)将甲、乙两台阶高度值从小到大排列如下:甲:10,12,15,17,18,18;乙:14,14,15,15,16,16.甲的中位数是(15+17)÷2=16,平均数是16×(10+12+15+17+18+18)=15;乙的中位数是(15+15)÷2=15,平均数是16×(14+14+15+15+16+16)=15.故两台阶高度的平均数相同,中位数不同.(2)s 2甲=16×[(10-15)2+(12-15)2+(15-15)2+(17-15)2+(18-15)2+(18-15)2]=283,s 2乙=16×[(14-15)2+(14-15)2+(15-15)2+(15-15)2+(16-15)2+(16-15)2]=23.∵s 2乙<s 2甲,∴乙台阶上行走会比较舒服. (3)修改如下:为使游客在两段台阶上行走比较舒服,需使方差尽可能小,最理想应为0,同时不能改变台阶数量和台阶总体高度,故可使每个台阶高度均为15 cm(原平均数),使得方差为0.20.3 课题学习 体质健康测试中的数据分析参考答案1.D 2.D3.(1)47 49.5 60 (2)5 7 4(3)此大棚的西红柿长势普遍较好,最少都有28个;西红柿个数最集中的株数在第三组,共7株;西红柿的个数分布合理,中间多,两端少.4.(1)“学生奶”的日平均销售量为(2+1+1+9+8)÷7=3,“酸牛奶”的日平均销售量为(70+70+80+75+85+80+100)÷7=80,“原味奶”的日平均销售量为(40+30+35+30+38+47+60)÷7=40,则“酸牛奶”的销量最高.(2)“学生奶”的方差:s 2=17×[(2-3)2+(1-3)2+(0-3)2+(1-3)2+(0-3)2+(9-3)2+(8-3)2]≈12.57,“酸牛奶”的方差:s 2=17×[(70-80)2+(70-80)2+(80-80)2+(75-80)2+(85-80)2+(80-80)2+(100-80)2]≈92.86,“原味奶”的方差:s 2=17×[(40-40)2+(30-40)2+(35-40)2+(30-40)2+(38-40)2+(47-40)2+(60-40)2]≈96.86,则“学生奶”的销量最稳定.(3)酸牛奶每天进80瓶,原味奶进40瓶,学生奶平时不进或少进,周末多进一些,进8~9瓶. 5.(1)85 85 80(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)∵s 2初=15×[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70, s 2高=15×[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160, ∴s 2初<s 2高.因此,初中代表队选手成绩较为稳定. 6.(1)依题意,得⎩⎪⎨⎪⎧3×1+6a +7×1+8×1+9×1+10b =6.7×10,a +1+1+1+b =90%×10或1+a +1+1+1+b =10. 解得⎩⎪⎨⎪⎧a =5,b =1.(2)m =6,n =20%.(3)①八年级队平均分高于七年级队;②八年级队的成绩比七年级队稳定;③八年级队的成绩集中在中上游,所以支持八年级队成绩好.(注:任说两条即可)7.(1)x 甲=111×(11×95+3+5+5-5+1-4-6+4+5+5-2)=96(分),x 乙=111×(11×95+3+4+1-1+0-3-3+3+1+4+2)=96(分).(2)为了便于分析比较,我们将甲、乙二人成绩的平均数、中位数、众数列表如下:从中位数上看,,比乙更容易获得高分,所以,应选甲同学参加比赛.从众数上看,甲的众数是100,有4次,同时也是两人中的最高成绩,这表明甲比乙更容易获得高分,所以,应选甲同学参加比赛.小专题(八) 利用统计知识进行决策参考答案1.(1)甲民主测评的得分是200×25%=50(分);乙民主测评的得分是200×40%=80(分);丙民主测评的得分是200×35%=70(分). (2)甲的成绩是(75×4+93×3+50×3)÷(4+3+3)=729÷10=72.9(分);乙的成绩是(80×4+70×3+80×3)÷(4+3+3)=770÷10=77(分);丙的成绩是(90×4+68×3+70×3)÷(4+3+3)=774÷10=77.4(分).∵77.4>77>72.9,∴丙的得分最高. 2.(1)10.9 11.2 11.4(2)根据(1)中得到的样本数据的结论,可以估计,在这次坐位体前屈的成绩测试中,全市大约有一半学生的成绩大于11.2厘米,有一半学生的成绩小于11.2厘米,这位学生的成绩是11.3厘米,大于中位数11.2厘米,可以推测他的成绩比一半以上学生的成绩好.(3)如果全市有一半左右的学生被评定为“优秀”等级,标准成绩应定为11.2厘米(中位数).因为从样本情况看,成绩在11.2厘米以上(含11.2厘米)的学生占总人数的一半左右.可以估计,如果标准成绩定为11.2厘米,全市将有一半左右的学生能够被评定为“优秀”等级. 3.(1)[(12+20+8+4+2)+(20+40+10+8+2)]÷2=(46+80)÷2=63(台).故该店平均每月销售63台计算器.(2)观察图表可知:15出现60次,次数最多,故众数是15.根据中位数的求法可知第63,64位的数都是15,可求得中位数是15.(3)选定下月应多进售价为15元的计算器,进价是15÷(1+20%)=12.5(元). 4.(1)9 9(2)s 2甲=16[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2]=16(1+1+0+1+1+0)=23; s 2乙=16[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2]=16(1+4+1+1+0+1)=43. (3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.章末复习(五) 数据的分析参考答案1.D 2.D 3.A 4.9.45.小明的综合成绩为0.1×96+0.3×94+0.6×90=91.8,小亮的综合成绩为0.1×90+0.3×93+0.6×92=92.1.∵92.1>91.8,∴小亮能拿到一等奖. 6.B 7.(1)178 178(2)甲仪仗队的身高更为整齐,理由:s 2甲=110×[3×(177-178)2+4×(178-178)2+3×(179-178)2]=0.6; s 2乙=110×[2×(176-178)2+(177-178)2+4×(178-178)2+(179-178)2+2×(180-178)2]=1.8.∵0.6<1.8,∴甲仪仗队的身高更为整齐. 8.B 9.黄 10.A 11.A 12.变小 13.714.(1)选择平均数.A 店的日营业额的平均值是17×(1+1.6+3.5+4+2.7+2.5+2.2)=2.5(百万元),B 店的日营业额的平均值是17×(1.9+1.9+2.7+3.8+3.2+2.1+1.9)=2.5(百万元).(2)A 组数据的新数为0.6,1.9,0.5,-1.3,-0.2,-0.3;B 组数据的新数为0,0.8,1.1,-0.6,-1.1,-0.2.∴A 组新数据的平均数x A =16(0.6+1.9+0.5-1.3-0.2-0.3)=0.2(百万元),B组新数据的平均数x B =16(0+0.8+1.1-0.6-1.1-0.2)=0(百万元).∴A 组新数据的方差s 2A=16[(0.2-0.6)2+(0.2-1.9)2+(0.2-0.5)2+(0.2+1.3)2+(0.2+0.2)2+(0.2+0.3)2]≈0.97,∴B 组新数据的方差s 2B =16(02+0.82+1.12+0.62+1.12+0.22)≈0.6.这两个方差的大小反映了A ,B 两家餐饮店相邻两天的日营业额的变化情况,并且B 餐饮店相邻两天的日营业额的变化情况比较小. (3)观察今年黄金周的数据发现今年的3号、4号、5号营业额较高,故明年的3号、4号、5号营业额可能较高.15.(1)甲、乙达标率分别为60%,60%.(2)x 甲=18+15(-1.5+1.5-1-1+2)=18,x 乙=18+15(1+2-1-2+0)=18,s 2甲=15×[(-1.5)2+(1.5)2+(-1)2+(-1)2+22]=2.1,s 2乙=15×[12+22+(-1)2+(-2)2+02]=2.∵s 2甲>s 2乙,∴乙组成绩相对稳定. (3)是用中位数来说明的.因为甲组的成绩中位数是17,而乙组的中位数是18,故甲组好于乙组.单元测试(五) 数据的分析参考答案1.C 2.B 3.B 4.D 5.B 6.C 7.D 8.C 9.4 10.甲 11.81 12.22 13.100 2 14.甲 甲、乙两人的平均数相同,且甲的方差较乙的方差小15.小丽的成绩是80×10%+75×30%+71×25%+88×35%=79.05(分),小明的成绩是76×10%+80×30%+70×25%+90×35%=80.6(分),所以小明的学期总评成绩高.16.(1)16 10(2)从优等品数量的角度看,因A 技术种植的西瓜优等品数量较多,所以A 技术较好;从平均数的角度看,因A 技术种植的西瓜质量的平均数更接近5 kg ,所以A 技术较好;从方差的角度看,因B 技术种植的西瓜质量的方差更小,所以B 技术种植的西瓜质量更为稳定;从市场销售角度看,因优等品更畅销,A 技术种植的西瓜优等品数量更多,且平均质量更接近5 kg ,因而更适合推广A 种技术.17.(1)C (2)图略(3)小明的判断符合实际.理由:这次活动中做家务的时间的中位数所在的范围是1.5≤x<2,小明这一周做家务2小时,所在的范围是2≤x <2.5,所以小明的判断符合实际. 18.(1)50 32(2)∵x =150×(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为16.∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为10.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为15元.(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1 900名学生中捐款金额为10元的学生人数比例为32%,有1 900×32%=608(名).∴该校本次活动捐款金额为10元的学生约有608名. 19.(1)补全直方图如图所示.(2)其质量落在0.5~0.8 kg 范围内的可能性最大. (3)质量落在0.8~1.1 kg 范围内. (4)水库中成品鱼的总质量估计:方法一:用去尾平均数估计:去尾平均数x =0.6×8+0.7×15+1.0×18+1.2×5+1.6×147≈0.87(kg).50×50×0.87=2 175(kg).水库中成品鱼的总质量约为2 175 kg.方法二:平均数x =0.5×1+0.6×8+0.7×15+1.0×18+1.2×5+1.6×1+1.9×250=0.904(kg).50×50×0.904=2 260(kg).水库中成品鱼的总质量约为2 260 kg. 方法三:利用组中值计算平均数:x =0.65×24+0.95×18+1.25×5+1.55×1+1.85×250=0.884(kg).50×50×0.884=2 210(kg).水库中成品鱼的总质量约为2 210 kg.方法四:用众数(中位数)估计水库中成品鱼的总质量:50×50×1.0=2 500(kg).水库中成品鱼的总质量约为2 500 kg.。