热处理工艺——表面淬火、退火工艺、正火工艺

合集下载

正火,淬火,回火,时效,你知道吗?

正火,淬火,回火,时效,你知道吗?

正⽕,淬⽕,回⽕,时效,你知道吗?1.正⽕:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持⼀定时间后在空⽓中冷却,得到珠光体类组织的热处理⼯艺。

2.退⽕annealing:将亚共析钢⼯件加热⾄AC3以上20—40度,保温⼀段时间后,随炉缓慢冷却(或埋在砂中或⽯灰中冷却)⾄500度以下在空⽓中冷却的热处理⼯艺。

3.固溶热处理:将合⾦加热⾄⾼温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理⼯艺。

4.时效:合⾦经固溶热处理或冷塑性形变后,在室温放置或稍⾼于室温保持时,其性能随时间⽽变化的现象。

化,以便继续加⼯成型。

6.时效处理:在强化相析出的温度加热并保温,使强化相沉淀析出,得以硬化,提⾼强度。

7.淬⽕:将钢奥⽒体化后以适当的冷却速度冷却,使⼯件在横截⾯内全部或⼀定的范围内发⽣马⽒体等不稳定组织结构转变的热处理⼯艺。

8.回⽕:将经过淬⽕的⼯件加热到临界点AC1以下的适当温度保持⼀定时间,随后⽤符合要求的⽅法冷却,以获得所需要的组织和性能的热处理⼯艺。

9.钢的碳氮共渗:碳氮共渗是向钢的表层同时渗⼊碳和氮的过程。

习惯上碳氮共渗⼜称为氰化,以中温⽓体碳氮共渗和低温⽓体碳氮共渗(即⽓体软氮化)应⽤较为⼴泛。

中温⽓体碳氮共渗的主要⽬的是提⾼钢的硬度,耐磨性和疲劳强度。

低温⽓体碳氮共渗以渗氮为主,其主要⽬的是提⾼钢的耐磨性和抗咬合性。

10.调质处理(quenching and tempering):⼀般习惯将淬⽕加⾼温回⽕相结合的热处理称为调质处理。

调质处理⼴泛应⽤于各种重要的结构零件,特别是那些在交变负荷下⼯作的连杆、螺栓、齿轮及轴类等。

调质处理后得到回⽕索⽒体组织,它的机械性能均⽐相同硬度的正⽕索⽒体组织更优。

它的硬度取决于⾼温回⽕温度并与钢的回⽕稳定性和⼯件截⾯尺⼨有关,⼀般在HB200—350之间。

热处理名词解释:退火、正火、淬火、回火

热处理名词解释:退火、正火、淬火、回火

热处理名词解释:退火、正火、淬火、回火金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺方法。

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。

其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。

为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。

钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。

另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。

在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。

早在公元前770——前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。

白口铸铁的柔化处理就是制造农具的重要工艺。

公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。

中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。

随着淬火技术的发展,人们逐渐发现冷剂对淬火质量的影响。

三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。

这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。

中国出土的西汉(公元前206——公元24)中山靖王墓中的宝剑,心部含碳量为0.15——0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。

但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。

1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。

什么是退火、正火、淬火及回火

什么是退火、正火、淬火及回火

什么是退火、正火、淬火及回火,它们的用途各是什么?最佳答案退火是将钢件加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。

正火是将钢件加热到Ac3(对于亚共析钢)或者Accm(对于过共析钢)以上50~70摄氏度完全奥氏体化,保温后再在空气中冷却以得到以较细珠光体为主的组织的热处理工艺。

退火或者正火的主要目的大致如下:调整钢件的硬度,以利于后来的切削加工。

消除残余应力,以稳定钢件尺寸。

使化学成分均匀。

为最终热处理做准备。

退火主要是消除内部应力; 正火主要是加工前降低硬度,提高切削加工能力; 淬火主要是增强表面硬度,从而提高综合机械性能.回火一般在淬火或正火后进行,淬火加低温回火的工艺手段还叫淬火,低温回火是必须进行的工序。

正火加回火还叫正火处理,这两项处理手段目的是消除淬火和正火后的材料的组织应力。

退火能够改变钢的组织结构,从而获得我们所要求的性能.(1).加热时的组织转变:其转变过程是在铁素体与渗碳体分界面处优先形成奥氏体晶核,并不断长大,直到珠光体全部消失,奥氏体也就转变完毕.(2).冷却时的组织转变:由于退火的冷却速度很缓慢,奥氏体转变产物与Fe-Fe3C的组织相同,因而共析钢为珠光体;亚共析钢为珠光体加铁素体;过共析钢为珠光体加渗碳体.2.淬火是将钢加热到临界温度以上,保温一段时间,然后快速冷却下来,进行淬硬工件的热处理方法.其实质是通过加热使钢组织结构中的铁素体和珠光体充分转变为成分均匀的奥氏体,然后急冷下来得到硬度很高的马氏体.3.回火是紧接于淬火之后的热处理工序,淬火钢在不同的温度下回火,所得的组织不同,因而其机械性能差别很大,总的趋势是:随着回火温度升高,其强度、硬度降低,而塑性、韧性提高。

淬火钢中的马氏体和残余奥氏体都是不稳定的组织,加热就会发生转变。

随着温度升高,碳原子逐渐以渗碳体的形式析出,引起组织转变。

最后渗碳体聚合而分散在铁素体基体上,形成各种回火组织。

加热温度:淬火加热必须超过Ac1(碳钢727C°)线。

什么是退火、正火、淬火及回火,它们的用途各是什么 及他们所要求的钢的材质及温度

什么是退火、正火、淬火及回火,它们的用途各是什么 及他们所要求的钢的材质及温度

淬火效果的重要因素,淬火工件硬度要求和检测方法:
淬火工件的硬度影响了淬火的效果。淬火工件一般采用洛氏硬度计,测试HRC硬度。淬火的薄硬钢板和表面淬火工件可测试HRA的硬度。厚度小于0.8mm的淬火钢板、浅层表面淬火工件和直径小于5mm的淬火钢棒,可改用表面洛氏硬度计,测试HRN硬度。
。。回火又称配火。金属热处理工艺的一种。将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提高其延性或韧性。根据不同的要求可采用低温回火、中温回火或高温回火。通常随着回火温度的升高,硬度和强度降低,延性或韧性逐渐增高。
材料一般是低碳钢以上,不同的材料温度不同恒温时间也不同。
回答者: 圣龙龙骑士 | 二级 | 2010-11-11 13:03
退火就是随炉冷却,正火就是空冷,淬火就是将加热的材料放入淬火介质中(水、煤油等等)回火就是淬火后为了消除内应力是工件再回到一定的温度中保温。淬火主要是为了增加材料表面的硬度。退火正火,都是为了增加材料强度和减小裂纹出现的概率。这是个庞大的问题,看看热处理工艺学的书
对于中、低碳钢的铸、锻件正火的主要目的是细化组织。与退火相比,正火后珠光体片层较细、铁素体晶粒也比较细小,因而强度和硬度较高。
低碳钢由于退火后硬度太低,切削加工时产生粘刀的现象,切削性能差,通过正火提高硬度,可改善切削性能,某些中碳结构钢零件可用正火代替调质,简化热处理工艺。
过共析钢正火加热刀Acm以上,使原先呈网状的渗碳体全部溶入到奥氏体,然后用较快的速度冷却,抑制渗碳体在奥氏体晶界的析出,从而能消除网状碳化物,改善过共析钢的组织。

常用钢热处理工艺

常用钢热处理工艺

常用钢热处理工艺热处理是一种通过改变金属结构来改善其力学性能的方法。

常用钢热处理工艺包括退火、正火、淬火、回火和表面淬火等。

下面对这几种常用钢热处理工艺进行详细介绍。

1. 退火退火是指将钢加热到一定温度,然后缓慢冷却。

退火工艺分为完全退火和等温退火两种。

完全退火是将钢材加热至超过临界温度,然后慢慢降温。

等温退火是将钢材加热至超过临界温度,然后在等温时间内,使钢材的温度均匀,从而使钢材的组织变得均匀,于是提高了钢材的韧性。

2. 正火正火是将钢加热到一定温度,然后快速冷却。

正火一般分为低温正火,中温正火和高温正火三种。

低温正火使钢材的硬度提高,但是韧性降低。

高温正火使钢材的韧性提高,但是硬度降低。

中温正火平衡了钢材的硬度和韧性。

3. 淬火淬火是指将钢加热到超过临界温度,然后快速冷却。

淬火一般分为油淬、水淬和气淬三种。

油淬适用于要求较低的钢材,水淬适用于要求较高的钢材,气淬适用于要求最高的钢材。

淬火后钢材的硬度很高,但是韧性降低,此时需要回火来消除内部应力,提高钢材的韧性。

4. 回火回火是将淬火后的钢在一定温度下加热一段时间,然后由于自然冷却所形成的工艺。

回火分为低温回火和高温回火两种。

低温回火提高了钢材的韧性,但是硬度降低。

高温回火提高了钢材的韧性,但是硬度降低。

5. 表面淬火表面淬火是一种特殊的热处理工艺,用于提高钢材的表面硬度和耐磨性。

表面淬火和淬火不同的是,只在钢材表面进行加热和快速冷却。

这种技术对钢材表面的耐磨性提高很大,但是对钢材硬度的提高不大。

总之,钢材热处理是提高钢材力学性能的重要方法,常用的钢热处理工艺包括退火、正火、淬火、回火和表面淬火等。

选择适当的热处理工艺可以使钢材达到最佳的机械性能。

热处理工艺---淬火、回火、正火、退火的区分

热处理工艺---淬火、回火、正火、退火的区分
2
热处理工艺---淬火、回火、正火、退火的区分
回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一 定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件 进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终处理。 淬火与回火的主要目的是: 1)减少内应力和降低脆性,淬火件存在着很大的应力和脆性,如没有及时回火 往往会产生变形甚至开裂。 2)调整工件的机械性能,工件淬火后,硬度高,脆性大,为了满足各种工件不 同的性能要求,可以通过回火来调整,硬度,强度,塑性和韧性。 3)稳定工件尺寸。通过回火可使金相组织趋于稳定,以保证在以后的使用过程 中不再发生变形。 4)改善某些合金钢的切削性能。
3
热处理工艺---淬火、回火、正火、退火的区分
回火的作用在于:
① 提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几 何尺寸和性能保持稳定。
② 消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。
③ 调整钢铁的力学性能以满足使用要求。
回火之所以具有这些作用,是因为温度升高时,原子活动能力增强,钢铁 中的铁、碳和其他合金元素的原子可以较快地进行扩散,实现原子的重新排列 组合,从而使不稳定的不平衡组织逐步转变为稳定的平衡组织。内应力的消除 还与温度升高时金属强度降低有关。一般钢铁回火时,硬度和强度下降,塑性 提高。回火温度越高,这些力学性能的变化越大。有些合金元素含量较高的合 金钢,在某一温度范围回火时,会析出一些颗粒细小的金属化合物,使强度和 硬度上升。这种现象称为二次硬化
7
热处理工艺---淬火、回火、正火、退火的区分
④ 对低碳钢和低碳低合金钢,采用正火,可得到较多的细片状珠光体组织,使 硬度增高到HB140-190,避免切削时的“粘刀”现象,改善切削加工性。对中碳 钢,在既可用正火又可用退火的场合下,用正火更为经济和方便。 ⑤ 对普通中碳结构钢,在力学性能要求不高的场合下,可用正火代替淬火加高 温回火,不仅操作简便,而且使钢材的组织和尺寸稳定。 ⑥ 高温正火(Ac3以上150~200℃)由于高温下扩散速度较高,可以减少铸件和锻件 的成分偏析。高温正火后的粗大晶粒可通过随后第二次较低温度的正火予以细 化。 ⑦ 对某些用于汽轮机和锅炉的低、中碳合金钢,常采用正火以获得贝氏体组织, 再经高温回火,用于400~550℃时具有良好的抗蠕变能力。 ⑧ 除钢件和钢材以外,正火还广泛用于球墨铸铁热处理,使其获得珠光体基体, 提高球墨铸铁的强度。

说明普通热处理工艺种类及工艺特点

说明普通热处理工艺种类及工艺特点

说明普通热处理工艺种类及工艺特点普通热处理工艺是指通过加热和冷却的过程,改变材料的组织结构和性能的工艺方法。

根据热处理的目的和要求,常见的热处理工艺可以分为退火、正火、淬火和回火等几种。

下面将逐一介绍这几种热处理工艺的特点及应用。

1. 退火退火是指将材料加热到一定温度,然后保持一段时间,再缓慢冷却至室温的热处理工艺。

退火的主要目的是消除应力,改善材料的塑性和韧性,并调整材料的组织结构。

退火工艺特点如下:(1)降低硬度:退火过程中,材料的晶粒会长大并变得均匀,从而减小了材料的硬度;(2)改善韧性:退火能够消除材料中的应力,减少脆性相的存在,提高材料的韧性;(3)调整组织结构:退火可以改变材料的晶粒和相的分布,调整材料的组织结构,进而改变材料的性能。

2. 正火正火是指将材料加热到适当温度,保温一段时间,然后在空气中冷却的热处理工艺。

正火主要用于提高材料的硬度和强度,但相对于淬火来说,正火冷却速度较慢,因此产生的变形和应力较小。

正火工艺特点如下:(1)提高硬度和强度:正火能够使材料中的碳化物和相变产物均匀分布,从而提高材料的硬度和强度;(2)减小变形和应力:正火冷却速度较慢,相对于淬火来说,产生的变形和应力较小,有利于减少材料的变形和开裂。

3. 淬火淬火是指将材料加热到临界温度以上,然后迅速冷却到室温的热处理工艺。

淬火主要用于提高材料的硬度和强度,但同时也会引入较大的残余应力。

淬火工艺特点如下:(1)提高硬度和强度:淬火能够使材料中的碳化物和相变产物均匀分布,从而提高材料的硬度和强度;(2)引入残余应力:淬火过程中,由于快速冷却导致内外部温度差异,会产生较大的残余应力,容易导致材料开裂。

4. 回火回火是指在淬火后,将材料加热到一定温度,然后保温一段时间,最后冷却到室温的热处理工艺。

回火主要用于减轻淬火过程中产生的残余应力,提高材料的韧性和塑性。

回火工艺特点如下:(1)减轻残余应力:回火能够通过加热和保温的过程,减轻淬火过程中产生的残余应力,从而降低材料的脆性;(2)调整硬度和韧性:回火可以调整材料的硬度和韧性,通过控制回火温度和时间,可以在硬度和韧性之间取得平衡。

热处理工艺介绍——表面淬火、退火工艺、正火工

热处理工艺介绍——表面淬火、退火工艺、正火工

表面淬火•钢的表面淬火有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。

在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。

由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。

根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。

•感应加热表面淬火感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。

感应加热表面淬火与普通淬火比具有如下优点:1。

热源在工件表层,加热速度快,热效率高2。

工件因不是整体加热,变形小3。

工件加热时间短,表面氧化脱碳量少4。

工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。

有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命5。

设备紧凑,使用方便,劳动条件好6。

便于机械化和自动化7。

不仅用在表面淬火还可用在穿透加热与化学热处理等。

•感应加热的基本原理将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。

这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。

•感应表面淬火后的性能1。

表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3个单位(HRC)。

2。

耐磨性:高频淬火后的工件耐磨性比普通淬火要高。

这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。

3。

疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。

对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热处理工艺——表面淬火、退火工艺、正火工艺
◆表面淬火
? 钢的表面淬火
有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。

在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。

由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。

根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。

? 感应加热表面淬火
感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。

感应加热表面淬火与普通淬火比具有如下优点:
1.热源在工件表层,加热速度快,热效率高
2.工件因不是整体加热,变形小
3.工件加热时间短,表面氧化脱碳量少
4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。

有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命
5.设备紧凑,使用方便,劳动条件好
6.便于机械化和自动化
7.不仅用在表面淬火还可用在穿透加热与化学热处理等。

? 感应加热的基本原理
将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。

这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。

? 感应表面淬火后的性能
1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高 2~3 个单位(HRC)。

2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。

这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。

3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。

对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。

一般硬化层深δ=(10~20)%D。

较为合适,其中D。

为工件的有效直径。

◆退火工艺
退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。

退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。

总之退火组织是接近平衡状态的组织。

? 退火的目的
①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。

②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。

③消除钢中的内应力,以防止变形和开裂。

? 退火工艺的种类
①均匀化退火(扩散退火)
均匀化退火是为了减少金属铸锭、铸件或锻坯的化学成分的偏析和组织的不均匀性,将其加热到高温,长时间保持,然后进行缓慢冷却,以化学成分和组织均匀化为目的的退火工艺。

均匀化退火的加热温度一般为Ac3+(150~200℃),即1050~1150℃,保温时间一般为10~15h,以保证扩散充分进行,大道消除或减少成分或组织不均匀的目的。

由于扩散退火的加热温度高,时间长,晶粒粗大,为此,扩散退火后再进行完全退火或正火,使组织重新细化。

②完全退火
完全退火又称为重结晶退火,是将铁碳合金完全奥氏体化,随之缓慢冷却,获得接近平衡状态组织的退火工艺。

完全退火主要用于亚共析钢,一般是中碳钢及低、中碳合金结构钢锻件、铸件及热轧型材,有时也用于它们的焊接构件。

完全退火不适用于过共析钢,因为过共析钢完全退火需加热到Acm以上,在缓慢冷却时,渗碳体会沿奥氏体晶界析出,呈网状分布,导致材料脆性增大,给最终热处理留下隐患。

完全退火的加热温度碳钢一般为Ac3+(30~50℃);合金钢为Ac3+(500~70℃);保温时间则要依据钢材的种类、工件的尺寸、装炉量、所选用的设备型号等多种因素确定。

为了保证过冷奥氏体完全进行珠光体转变,完全退火的冷却必须是缓慢的,随炉冷却到500℃左右出炉空冷。

③不完全退火
不完全退火是将铁碳合金加热到Ac1~Ac3之间温度,达到不完全奥氏体化,随之缓慢冷却的退火工艺。

不完全退火主要适用于中、高碳钢和低合金钢锻轧件等,其目的是细化组织和降低硬度,加热温度为Ac1+(40~60)℃,保温后缓慢冷却。

④等温退火
等温退火是将钢件或毛坯件加热到高于Ac3(或Ac1)温度,保持适当时间后,较快地冷却到珠光体温度区间地某一温度并等温保持,使奥氏体转变为珠光体型组织,然后在空气中冷却的退火工艺。

等温退火工艺应用于中碳合金钢和低合金钢,其目的是细化组织和降低硬度。

亚共析钢加热温度为Ac3+(30~50)℃,过共析钢加热温度为Ac3+(20~40)℃,保持一定时间,随炉冷至稍低于Ar3温度进行等温转变,然后出炉空冷。

等温退火组织与硬度比完全退火更为均匀。

⑤球化退火
球化退火是使钢中碳化物球化而进行的退火工艺。

将钢加热到Ac1以上20~30℃,保温一段时间,然后缓慢冷却,得到在铁素体基体上均匀分布的球状或颗粒状碳化物的组织。

球化退火主要适用于共析钢和过共析钢,如碳素工具钢、合金工具钢、轴承钢等。

这些钢经轧制、锻造后空冷,所得组织是片层状珠光体与网状渗碳体,这种组织硬而脆,不仅难以切削加工,且在以后淬火过程中也容易变形和开裂。

而经球化退火得到的是球状珠光体组织,
其中的渗碳体呈球状颗粒,弥散分布在铁素体基体上,和片状珠光体相比,不但硬度低,便于切削加工,而且在淬火加热时,奥氏体晶粒不易长大,冷却时工件变形和开裂倾向小。

另外对于一些需要改善冷塑性变形(如冲压、冷镦等)的亚共析钢有时也可采用球化退火。

球化退火加热温度为Ac1+(20~40)℃或Acm-(20~30)℃,保温后等温冷却或直接缓慢冷却。

在球化退火时奥氏化是“不完全”的,只是片状珠光体转变成奥氏体,及少量过剩碳化物溶解。

因此,它不可能消除网状碳化物,如过共析钢有网状碳化物存在,则在球化退火前须先进行正火,将其消除,才能保证球化退火正常进行。

球化退火工艺方法很多,最常用的两种工艺是普通球化退火和等温球化退火。

普通球化退火是将钢加热到Ac1以上20~30℃,保温适当时间,然后随炉缓慢冷却,冷到500℃左右出炉空冷。

等温球化退火是与普通球化退火工艺同样的加热保温后,随炉冷却到略低于Ar1的温度进行等温,等温时间为其加热保温时间的1.5倍。

等温后随炉冷至500℃左右出炉空冷。

和普通球化退火相比,球化退火不仅可缩短周期,而且可使球化组织均匀,并能严格地控制退火后的硬度。

⑥再结晶退火(中间退火)
再结晶退火是经冷形变后的金属加热到再结晶温度以上,保持适当时间,使形变晶粒重新结晶成均匀的等轴晶粒,以消除形变强化和残余应力的热处理工艺。

⑦去应力退火
去应力退火是为了消除由于塑性形变加工、焊接等而造成的以及铸件内存在的残余应力而进行的退火工艺。

锻造、铸造、焊接以及切削加工后的工件内部存在内应力,如不及时消除,将使工件在加工和使用过程中发生变形,影响工件精度。

采用去应力退火消除加工过程中产生的内应力十分重要。

去应力退火的加热温度低于相变温度A1,因此,在整个热处理过程中不发生组织转变。

内应力主要是通过工件在保温和缓冷过程中消除的。

为了使工件内应力消除得更彻底,在加热时应控制加热温度。

一般是低温进炉,然后以100℃/h左右得加热速度加热到规定温度。

焊接件得加热温度应略高于600℃。

保温时间视情况而定,通常为2~4h。

铸件去应力退火的保温时间取上限,冷却速度控制在(20~50)℃/h,冷至300℃以下才能出炉空冷。

◆正火工艺
正火工艺是将钢件加热到Ac3(或Acm)以上30~50℃,保温适当的时间后,在静止的空气中冷却的热处理工艺。

把钢件加热到Ac3以上100~150℃的正火则称为高温正火。

对于中、低碳钢的铸、锻件正火的主要目的是细化组织。

与退火相比,正火后珠光体片层较细、铁素体晶粒也比较细小,因而强度和硬度较高。

低碳钢由于退火后硬度太低,切削加工时产生粘刀的现象,切削性能差,通过正火提高硬度,可改善切削性能,某些中碳结构钢零件可用正火代替调质,简化热处理工艺。

过共析钢正火加热刀Acm以上,使原先呈网状的渗碳体全部溶入到奥氏体,然后用较快的速度冷却,抑制渗碳体在奥氏体晶界的析出,从而能消除网状碳化物,改善过共析钢的组织。

焊接件要求焊缝强度的零件用正火来改善焊缝组织,保证焊缝强度。

在热处理过程中返修零件必须正火处理,要求力学性能指标的结构零件必须正火后进行调质才能满足力学性能要求。

中、高合金钢和大型锻件正火后必须加高温回火来消除正火时产生的内应力。

有些合金钢在锻造时产生部分马氏体转变,形成硬组织。

为了消除这种不良组织采取正火时,
比正常正火温度高20℃左右加热保温进行正火。

正火工艺比较简便,有利于采用锻造余热正火,可节省能源和缩短生产周期。

正火工艺与操作不当也产生组织缺陷,与退火相似,补救方法基本相同。

相关文档
最新文档