水轮发电机甩负荷定义

合集下载

水轮发电机基本知识介绍

水轮发电机基本知识介绍

水轮发电机基本知识介绍一. 关于发电机电磁设计水轮发电机电磁设计的任务是按给定的容量、电压、相数、频率、功率因数、转速等额定值和其他技术要求来确定发电机的有效部分尺寸、电磁负荷、绕组数据及性能参数等。

水轮发电机电气参数的选择,主要依据电力系统对电站电气参数和主接线的要求,同时根据《水轮发电机基本技术条件》、《导体和电器设备选择设计技术规定》等相关规范来选择,当然也要根据具体电站的要求。

在电磁设计过程中考核的几个主要参数:磁密,定、转子线圈温升,短路比,主要电抗,效率,飞轮力矩。

二. 电磁设计需要输入的基本技术数据(一)额定容量、有功功率、无功功率和功率因数的关系Φ--发电机输出电流在时间相位上滞后于电压的相位角额定容量S=√3U N I N =22Q P有功功率P=√3U N I N cos φ=S ·cos φ无功功率Q=√3U N I N sin φ=S ·sin φcos φ= SP (二)发电机的电磁计算需要具备以下基本的额定数据:功率/容量,功率因数,电压,转速(极数),频率,相数,飞轮力矩(转运惯量)1. 额定容量(视在功率)或者额定功率(有功功率)S=φcos P (kV A / MV A ) P=水轮机额定出力×发电机效率 (kW / MW )发电机的容量大小更直接反映发电机的发电能力。

有功功率结合功率因数才能完整反映发电机的输出功率能力。

2. 额定功率因数cos φ发电机有功功率一定时,cos φ的减小,可以提高电力系统稳定运行的功率极限,提高发电机的稳定运行水平;同时由于增大了发电机的容量,发电机造价也增加。

相反,提高额定功率因数,可以提高发电机有效材料的利用率,并可提高发电机的效率。

近年来由于电力系统容量的增加,系统装设同步调相机和电力电容器来改善其功率因数,以及远距离超高压输电系统使线路对地电容增大,发电机采用快速励磁系统提高稳定性,使发电机额定功率因数有可能提高。

水轮发电机组甩负荷过渡过程性能指标的探讨 精品

水轮发电机组甩负荷过渡过程性能指标的探讨 精品

+**1 < =&
大电机技术
/,
实际上可能达到的最佳情况是, 当转速下降到接近空 载转速时, 提前以最大速度打开导叶, 并在导叶开到空 载开 度 时, 转 速 也 正 好 进 入 空 载 转 速 区 域。此 时, 导 ! !"# " !# $ %, $% 最小。如果调速器的控制性能不佳, 叶过晚打开或打开速度较慢, 超调量很大; 导叶过早打 开, 甚至在机组甩负荷后导叶就根本没有关到零, 转速 下降速度缓慢, $% 势必很大。
&] ・![ 。 !! 为相对升速时间, !! $ ) & , / ) & )))0. ) 可以看出, 相对升速时间!! 随比转速的增加而减
此时转速仍 制时, ", ! "% 。由于接力器只能关闭到零, 在空载转速之上, 因此 ", 2 "% 。对于低水头、 大流量、 高比速的水轮机, 空载开度较大, 水力降速阻力矩与升 速主动力矩作用时间基本接近, 再加上机械摩擦阻力 矩较大, 相对升速时间!! 较小, ", 与 "% 相差不大。而 对于高水头、 小流量、 低比速的水轮机, 空载开度较小, 水力降速阻力矩远小于升速主动力矩, 而且机械摩擦 阻力矩较小, ", " "% 。
[.] 。 01
(%)调节时间 "# 从图 * 中可以看出, 可将调节时间分解成三部分, 即 "# $ "% - ", - "式中 ", 为转速下降时间, 它表示机组甩负荷后,
导叶直线关闭到零并一直保持到零开度情况下, 自最 高转速下降到空载转速区域为止的时间, 或称为最快 降速时间。在最高转速时, 机组的主动力矩等于阻力 矩。之后, 由于水轮机进入制动和反水泵工况, 转轮区 的水起阻力作用, 再加上机械摩擦阻力矩及电磁阻力 矩等, 机组转速开始下降。 转速下降时间 ", 取决于水轮机阻力矩和机组惯 性力矩之比。当水轮机力矩特性近似线形, 水力降速 阻力矩与升速主动力矩对称, 并且接力器关闭不受限

水轮发电机组带负荷试验

水轮发电机组带负荷试验

水轮发电机组带负荷试验水轮发电机组带负荷试验?1、水轮发电机组带、甩负荷试验应相互穿插开展。

机组初带负荷后,应检查机组及相关机电设备各部运行情况,无异常后可根据系统情况开展甩负荷试验。

2、水轮发电机组带负荷试验,有功负荷应逐级增加,观察并记录机组各部位运转情况和各仪表指示。

观察和测量机组在各种负荷工况下的振动范围及其量值,测量尾水管压力脉动值,观察水轮机补气装置工作情况,必要时开展补气试验。

3、开展机组带负荷下调速系统试验。

检查在速度和功率控制方式下,机组调节的稳定性及相互切换过程的稳定性。

对于转桨式水轮机,应检查调速系统的协联关系是否正确。

4、开展机组快速增减负荷试验。

根据现场情况使机组突变负荷,其变化量不应大于额定负荷的#&‘,并应自动记录机组转速、蜗壳水压、尾水管压力脉动、接力器行程和功率变化等的过渡过程。

负荷增加过程中,应注意观察监视机组振动情况,记录相应负荷与机组水头等参数,如在当时水头下机组有明显振动,应快速越过。

5、开展水轮发电机组带负荷下励磁调节器试验:1)有条件时,在发电机有功功率分别为0、50%和100%额定值下,按设计要求调整发电机无功功率从零到额定值,调节应平稳、无跳动。

2)有条件时,测定并计算水轮发电机端电压调差率,调差特性应有较好的线性并符合设计要求。

3)有条件时,测定并计算水轮发电机调压静差率,其值应符合设计要求。

当无设计规定时,对电子型不应大于)、0.2%、-、1%,对电磁型不应大于1%、-3%.、4)对于晶闸管励磁调节器,应分别开展各种限制器及保护的试验和整定。

5)对于装有电力系统稳定装置(PSS)的机组,应突然变更10%、-、15%额定负荷,检验其功能。

6、调整机组有功负荷与无功负荷时,应先分别在现地调速器与励磁装置上开展,再通过计算机监控系统控制调节。

水轮发电机甩负荷试验技术措施

水轮发电机甩负荷试验技术措施

水轮发电机甩负荷试验技术措施
水轮发电机甩负荷试验是对水轮发电机负荷能力和稳定性进行验证的重要环节。

为了确保试验顺利进行,并保证设备和人员的安全,需要采取一系列技术措施。

1. 设备准备:在甩负荷试验前,需要对水轮发电机进行全面检查和维护,确保设备正常运行。

同时,对液压、电气系统等进行检测,以确保其稳定性和可靠性。

2. 调整参数:在试验前需要根据设备的额定负荷和额定转速,调整水轮发电机的参数,如转速控制、流量控制等,以满足试验的要求。

3. 准备备用能源:由于甩负荷试验会将大量的负荷突然断开,为了保证电网的稳定运行,需要准备备用能源,如备用发电机或电池组等,以供电网供应稳定的电力。

4. 安全措施:在进行甩负荷试验时,需要严格执行安全操作规程,确保试验过程中不会对设备和人员造成危险。

比如要求操作人员佩戴防护装备,并将试验场所进行隔离和标识。

5. 监测和记录:在试验过程中,需要密切监测水轮发电机的运行状态,如转速、温度等参数,并及时记录。

这些数据有助于评估设备的性能和变化趋势。

6. 试验报告:试验结束后,需要将试验结果进行整理和分析,并撰写试验报告。

这些报告可以为日后的设备维护和改进提供
参考。

通过以上技术措施的采取,可以有效保证水轮发电机甩负荷试验的准确性和安全性,为进一步提升设备的性能和稳定性提供有效的参考。

水轮发电机小知识

水轮发电机小知识

1、导叶分段关闭规律的作用导叶分段关闭规律的作用是:在机组发生事故或甩负荷时要求导叶迅速关闭,在导叶迅速关闭过程中,输水管道的压力和机组转速均要暂态上升,特别是轴流式机组,由于水锤的作用还会导致机组转轮上抬,严重威胁水轮发电机组的安全运行。

为此,在满足调节保证值的条件下,将接力器关闭特性设计为折线关闭特性,有效地减少关机过程中水压上升值和抬机量。

2、水轮机转轮静平衡试验的目的水轮机转轮静平衡试验的目的是为了消除由于水轮机转轮在铸造加工,尤其是经过多次补焊处理过程中出现的质量偏心。

由于质量偏心的存在使机组在运行中产生一个附加离心力,如果该力较大,很可能导致水轮机转轮的水力不平衡,主轴摆度增大,轴承偏磨以及不同形式、不同程度的机组振动等不良现象,影响机组安全稳定运行。

3、立式水轮发电机导轴承有何作用?一个性能良好的导轴承的主要标志是什么?立式水轮发电机导轴承的作用是:承受机组转动部分的径向机械不平衡力和电磁不平衡力,使机组轴线在规定数值范围内摆动。

一个性能良好的导轴承的主要标志是:(1)能形成足够的工作油膜厚度;(2)瓦温应在允许范围之内,一般在50℃左右;(3)循环油路畅通,冷却效果好;(4)油槽油面和轴瓦间隙满足设计要求;(5)密封结构合理,不甩油;(6)结构简单,便于安装和检修。

水轮机补气装置的作用是什么?常用的有哪几种补气方式?混流式水轮机一般在30%~60%额定出力时容易在尾水管内发生水流涡带,引起空腔汽蚀和机组振动。

补气装置的作用,就是在机组出现不稳定工况时,补入空气,可增加水的弹性,改善机组的运行条件。

同时,由于补气破坏了真空,还能防止机组突然甩负荷导水机构紧急关闭时,由于尾水管内产生负水击,下游尾水反冲所产生的强大冲击力或抬机现象。

补气分自然补气和强迫补气两种方式。

一般均采用自然补气,只有在水轮机吸出高度H。

的负值较大,尾水管内压力较高,很难用自然补气方式补气时,才采用压缩空气强迫补气方式。

水电站水轮发电机组运行中甩负荷危害及应对措施

水电站水轮发电机组运行中甩负荷危害及应对措施

水电站水轮发电机组运行中甩负荷危害及应对措施摘要:在水电站水轮发电机组的运行过程中,常常会出现甩负荷的情况,导致系统运行过程的安全风险显著增大,严重影响到水电站的正常工作。

面对这种情况,本文就针对水电站水轮发电机组运行中甩负荷的产生原因及危害进行分析,并提出一些具体的应对及预防措施,希望能为水电站水轮发电机组的运行管理提供有效参考依据。

关键词:水电站;水轮发电机组;甩负荷;应对措施近年来,随着我国社会经济的发展,我国人民对电力资源的需求不断提高,这就给我国电力事业的发展带来更多机遇和挑战,在加快水电站建设步伐的同时,对水电站的运行管理提出了更高要求。

但是在水电站水轮发电机组的运行过程中,常常出现甩负荷情况,严重影响到水电站的正常工作,不利于水力发电事业的发展。

因此,有必要深入分析水电站水轮发电机组运行中甩负荷的产生原因及危害,采取有效措施进行处理,使水电站水轮发电机组能够处于更加安全、稳定的运行环境。

1.水电站水轮发电机组运行中甩负荷的产生原因及危害分析1.1甩负荷的产生原因就目前来看,造成水轮发电机组运行中甩负荷的原因主要体现在以下几个方面:①在水轮发电机组的运行过程出现电气、励磁、水机事故,进而出现保护动作,引起发电机出口断路器的跳闸操作。

②调速器油压装置出现故障,事故低油压引起紧急停机,进而出现发电机出口断路器的跳闸情况。

③主变压器出现线路故障或保护动作,以致主变压器或线路的断路器出现跳闸情况。

④电力系统出现故障,进而出现线路开关跳闸情况[1]。

1.2甩负荷的危害首先,在水轮发电机组运行过程中出现甩负荷的时候,势必会出现机组转速升高、轴向推力变化的情况,进而产生一系列的安全风险,其主要体现在以下几个方面:①在转速升高、导叶开发减小的情况下,轴向水推力与转动部分的重力是相反的,那么反方向的轴向力就会将机组抬起。

同时,也会出现尾水管的负水锤情况,导致转叶下出现过大的水锤压力,最终出现反水锤抬机情况。

探讨水电站水轮发电机组运行中 甩负荷危害及应对措施

探讨水电站水轮发电机组运行中 甩负荷危害及应对措施

探讨水电站水轮发电机组运行中甩负荷危害及应对措施发表时间:2020-03-05T17:37:32.843Z 来源:《基层建设》2019年第29期作者:康留臣[导读] 摘要:随着社会的发展,人们的生活水平也在不断的提升,人们在社会中对于电力的要求也越来越高。

中国水利水电第三工程局有限公司陕西西安 710000摘要:随着社会的发展,人们的生活水平也在不断的提升,人们在社会中对于电力的要求也越来越高。

水电站水轮发电机组运行中甩负荷现象发生后,如果不能及时有效的解决,将会对电力的供应、存储等都造成了一定的危害,不利于电力的发展,也不能很好的满足人们对电力的要求。

因此,我们在面对水电站水轮发电机组运行中甩负荷现象时,应积极寻找正确的应对措施以此来保证水电站的顺利运行。

关键词:水电站;水轮发电机组;运行;甩负荷危害一、水电站水轮发电机组运行中甩负荷危害的应对措施研究1、水电站水轮发电机组甩负荷表现形式水电站水轮发电机组运行过程之中,因为某些原因出现甩负荷现象,或者因为变电站开关出现故障,产生跳闸现象,使得运行机组快速与电网脱离,发电机转速快速提升,机组发出异常的运行声音,发电机组出现较为显著的过电压现象,此种现象被技术人员称作水电站水轮发电机组甩负荷现象。

如果水电站水轮发电机组出现甩负荷现象,因为机组的机械能不能够有效地转换为电能被输送,机组动力矩超过了其阻力矩,使得机组转速越来越高,引水管的水压不断提高。

机组中的各项保护装置处于良好的运行状态,机组转速提升到最大数值之后,在调速器的控制之下,导叶会呈现快速关闭现象,机组转速缓慢下降,最终进入到稳定状态。

若水电站水轮发电机组运行出现故障,发电机会突然将全部负荷甩出,在此期间,调速器若出现故障,或者水轮机导叶无法有效的关闭,机组转速会随着对应开度的不断升高而提升,最终超过额定的转速,机组发出较大的声音,其内部出现较大破坏。

通常来讲,机组的飞逸出转速会达到额定转速的2.7倍左右,甩负荷之后,水电站水轮发电机组的转速突然提升,机端电压明显提高,引水管水压突然上升,机组设备与压力管道安全性受到较大影响。

水电站水轮发电机组运行中甩负荷危害及应对措策分析

水电站水轮发电机组运行中甩负荷危害及应对措策分析

水电站水轮发电机组运行中甩负荷危害及应对措策分析摘要:对于一些规模较大且结构复杂的水电站水轮发电机组来说,一旦设备在运行过程中发生了甩负荷故障,这将对水电站发电机组的稳定运行造成严重影响,不利于水电站经济效益的提升。

基于此,本文以发电机组的甩负荷作为研究对象,分析水轮发电机组甩负荷带来的危害,通过采取有效的处理措施和预防措施实现对甩负荷的积极应对,保证机组稳定运行。

关键词:水电站;水轮发电机组;甩负荷引言:水轮发电机组是水电站发电中的核心系统,机组在运行时如果出现了甩负荷现象,这将降低系统运行效率,导致能源利用率和供水水平的降低,从而无法满足当地居民对用水用电的需求。

了解水轮发电机组运行时存在的甩负荷危害,有利于实现能源的高效利用,使水资源更好的转化为电能,推动水电系统的安全运行,提升水电站的经济效益。

1.水电站水轮发电机组甩负荷危害分析1.1甩负荷现象和表现形式水轮发电机组在运行时会因某些故障原因而产生甩负荷现象,有时也会因变电站开关故障而出现跳闸情况。

这些问题都会导致水轮发电机组和电网快速脱离,水轮发电机的转速提升,整个机组开始出现异常运行声音,并伴随着明显的过电压现象,即甩负荷现象。

水轮发电机组的甩负荷与机组机械能无法转化为电能有关,电能不能为输送,水轮发电机组的动力矩超过阻力矩,使机组转速不断提升,而引水管位置的水压升高。

当水轮发电机组内的保护装置在良好状态下运行时,转速提升到最大值时,受调速装置的影响,导叶会快速关闭,此时水轮发电机组的转速逐渐下降,慢慢的从快速转动状态转为稳定运行状态。

如果水轮发电机组出现了故障,设备将所有负荷甩出,这一段时间内,一旦调速器发生故障或导叶不能及时关闭,水轮发电机组的转速将会不断提升直到超过额定转速,此时发电机组的噪音较大,机组内部零部件出现不同程度的破坏。

一般情况下,甩负荷故障时的机组转速将会是额定转速的2.7倍,同时机端电压提升,设备和压力管道的应用将会受到故障威胁[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水轮机甩负荷定义中文名称:甩负荷英文名称:load rejection定义:机组在运行中突然失去负荷。

由于导叶来不及迅速关闭,导致机组的转速与蜗壳压力升高,而尾水管的压力则降低或真空度加大。

应用学科:电力(一级学科);水力机械及辅助设备(二级学科)以上内容由全国科学技术名词审定委员会审定公布甩负荷的英语对应翻译为:load shedding 甩负荷分为两种,一种是主动甩负荷:当电网提供的有功大大小于系统需要的有功,主动甩掉部分不重要的负荷,提高电网供电质量。

一种是故障甩负荷,发生这种事故的原因除了电网不正常之外,发电机的主开关跳闸、汽机主汽门脱扣等都是引起该事故的原因。

当电站突然甩去大量负荷时,二回路蒸汽流量急剧下降,使一回路冷却剂温度及压力迅速上升。

这就是甩负荷事故。

在水电站中甩负荷是一种常见的现象。

水轮发电机组发生甩负荷后,巨大的剩余能量使机组转速上升很快,调速器迅速关闭导叶,并经过一段时间的调整,重新稳定在空载工况下运行。

在甩负荷过程中,除了调节保证计算所关心的最大转速上升值和最大水击压力上升值外,还要对甩负荷动态过程品质指标的优劣进行考核。

1.1、转速上升时间:机组甩100%额定负荷后,由于剩余能量巨大,转速上升很快。

正常情况下,调速器以最大速度关闭导叶到零开度,转速上升时间tM=tc+tn,其中:tc为调速器迟滞时间,取决于调速器的死区大小、机组转速的上升速率以及运行工况等,调速器在非限制条件下,tc一般大约在0.2s~0.3s。

tn为调保计算中的升速时间,被定义为自导叶开始动作到最大转速所经历的时间。

升速时间tn取决于水轮机主动力矩和机组惯性力矩之比,即与机组特性有关。

采用比转速(ns)统计法有:为相对升速时间,τn=0.9-0.00063·ns。

可以看出,相对升速时间τn随比转速的增加而减少,即低比转速、高水头水轮机相对升速时间大,高比转速、低水头水轮机相对升速时间小。

T′s为导叶直线关闭时间。

由于迟滞时间tc较升速时间tn 小得多,一般情况下,可将转速上升时间tm等同于调保计算中的升速时间tn看待。

根据统计资料大多机组的tm=(2~6)s 。

1.2、转速下降时间(tD) 它表示机组甩负荷后,导叶直线关闭到零并一直保持到零开度(相当于机组紧急停机)情况下,自最高转速下降到空载转速区域为止的时间,或称为最快转速下降时间。

在最高转速之前,机组处于水轮机工况,之后,进入制动和反水泵工况,转轮区的水起阻力作用,再加上机械摩擦阻力矩及电磁阻力矩等,机组转速开始下降。

转速下降时间tD大小取决于水轮机阻力矩和机组惯性力矩之比。

当水轮机力矩特性近似为线性时,水力降速阻力矩与升速主动力矩基本对称(如一些可逆式水泵水轮机),并且导叶关闭不受限制时,tD≈tM。

但由于导叶开度只能关闭到零位,水对转轮的阻力作用受到限制,转速下降减缓,因此tD>tM。

对于低水头、大流量、高比速的水轮机,空载开度较大,在甩负荷过程中,水力升速主动力矩作用时间缩短,水力降速阻力矩作用时间延长。

同时由于机组尺寸大、机械摩擦阻力矩亦较大。

因而,相对升速时间较小。

相反,对于高水头、小流量、低比速的水轮机,空载开度较小,水力降速阻力矩作用时间远小于升速主动力矩作用时间,再加上尺寸小、机械摩擦阻力矩较小,相对升速时间τn较大,此时tD>tM。

由于转速进入大波动范围,主配压阀限幅限制了主接力器的关闭与开启速度,主接力器限幅限制了调速器对水轮机的控制能力的发挥等等。

可把甩负荷过程划分为大波动和小波动两个阶段分别对待。

大波动过渡过程阶段(转速上升时间tM和转速下降时间tD时段内)与调节保证计算结果有关,而与调速器的调节控制性能无关,这一阶段只要求调速器能正常关闭和开启。

转速从大波动到小波动的过渡阶段、以及进入到小波动阶段,甩负荷过程的动态品质才取决于调速器的调节控制性能。

1.3、转速调整时间(tR) 转速调整时间tR是指转速以最快速率第一次下降到进入空载区域开始到最终进入空载稳定区域所经历的时间。

理想情况是当转速以最快速度下降到空载转速区域时,迅速打开导叶到空载开度,使转速不再超出空载稳定区域,此时tR=0。

但是,导叶从全关位置打开到空载开度需要一定的时间,在导叶打开的过程中,转速将继续下降,转速必然存在超调现象,即nmin/nr<1,并随着打开时间越长,超调量越大。

实际上可能达到的最佳情况是当转速下降到接近空载转速时,提前以设定的最大速度即以最短时间打开导叶,并在导叶开到空载开度时,转速也正好进入空载转速区域。

此时,nmin/nr≈1,转速调整时间tR最小。

如果调速器的调节控制性能不佳,或调节参数选择不当,导叶过晚打开或打开速度较慢,超调量很大;导叶过早打开,甚至在机组甩负荷后导叶就根本不能关到零,转速下降速度缓慢,转速调整时间tR势必延长。

2、甩负荷过程的分析水轮机调节系统甩负荷过程,一般用r(s)表示调速器功能模块,Gt(s)+Gg(s)为调节对象(水轮发电机组)功能模块。

调速器中的各环节采用非线性模型,其中:bp=6.0%,第一级液压放大时间常数Tyb=0.01s,第二级液压放大时间常数Ty=0.1s,空载开度Ty=30%,直线关闭时间T′s=4.0s。

在调节对象功能模块中,水轮机为混流式线性模型、引水系统为单元引水刚性水击模型、发电机为单机电网模型,其参数分别为:eg=0,ey=1.0,ex=-1.0,eh=1.5,eqy=1.0,G=EN-US>eqx=-01,eqh=0.5,Tw=1.0s,Ta=5.0s。

2.1、调速器特性对甩负荷过渡过程影响机组甩100%额定负荷。

辅助接力器型和电子调节器型在对应等效的调节参数情况下,其甩负荷过程曲线形态接近,说明并联结构与串联结构控制效果相差不大。

从调节参数的影响看,随着调节参数bt、Td 增大,机组开度开启时刻提前,且开启速度放慢,调整时间tR延长,超调量减小。

对于转速有超调而未超出空载转速的规定偏差范围,调整时间tR可能缩短。

微分时间Tn减小,机组开度开启时刻推后,且开启速度放慢,导致超调增大。

从控制方式看,开度给定只从调差环节输入与开度给定从调差环节和软反馈同时输入相比较,在相同的调节参数情况下,后者机组开度会关的更小,能使转速更快下降,而且过渡过程受调节参数的变化影响较小,均存在一定的超调。

2.2、调节对象特性对甩负荷过渡过程影响:采用辅助接力器型调速器。

一般取Tw=1.0s、1.5s、2.0s,相应的取Ta=5·Tw,T′s=4·Tw,bt=3·Tw/Ta,Td=2·Tw,Tn=1·Tw。

从结果中可以看出,最大的转速上升值0.40、最大压力上升值0.36保持不变,最小值也保持不变,各特征点值发生的时间与Tw的大小成比例。

在电站设计中,当水流惯性时间常数Tw确定后,根据水击压力上升允许值可计算出导叶直线关闭时间T′s。

当T′s选定后,根据转速上升允许值可计算出机组惯性时间常数Ta,并按推荐公式求出调节参数。

水流惯性时间常数Tw不但集中体现了调节对象特性,而且最佳调节参数也取决水流惯性时间常数Tw,所以,Tw决定了水轮机调节系统的动态过程形态和调节时间的长短。

2.3、线性与非线性水轮机模型对机组甩负荷结果的影响采用非线性水轮机的力矩特性M′与流量特性Q′,和线性水轮机。

此时,引水系统采用单元引水弹性水击。

可以看出,线性与非线性水轮机甩负荷过程曲线存在一定的差异,主要表现在以下两方面:二者转速峰值发生的时间不同。

这是因为在线性水轮机的力矩特性在整个甩负荷过程中不变,转速峰值发生在水轮机力矩等于零时刻,即mt=ey·(y-yk)+ex·X+eh·=0。

而非线性水轮机的力矩特性在甩负荷过程中是变化的,转速峰值也发生在水轮机力矩等于零时刻,即M′=0。

其转速峰值比线性超前,对应的开度大于空载开度,与实际情况比较接近。

二者压力变化曲线不同。

同理,线性的流量特性在甩负荷过程中是不变的,而非线性的流量特性则是变化的,从而造成压力变化曲线不同。

特别是在导叶处于全关位置时,非线性的压力曲线出现了振荡。

这是由于在非线性当导叶开度为零时,水轮机流量等于零,引水管道中压力将产生振荡,振荡周期与弹性水击模型中的水击相长tr=2L/a成比例。

而线性的流量特性Q′=eqy·(y-yk)+eqx·X+eqh·h 在导叶开度为零时,流量Q′并不一定为零,并且还随转速X、水头H变化,相当于导叶开度不为零的情况,水轮机转轮在整个引水管道中起阻尼作用,吸收管道内的能量,因而不会产生压力振荡。

水轮机在甩负荷过程中,一般要经历水轮机工程、制动工况及反水泵工况。

目前仅有极少数水轮机有全特性曲线,而综合特性曲线仅反映水轮机工况。

采用水轮机特性预估的方法可以计算出水轮机的力矩特性和流量特性,但其结果仅在高效率区与实验特性曲线相近,高效率区之外存在缺陷。

水轮机的高效率区特性具有一定的变化规律,不同水轮机的非线性在高效率区之外则存在较大差异,不易掌握其规律性,在研究调速器控制性能时,希望排除其他不确定因素。

在调速器控制方式、调节参数等条件相同的条件下,非线性水轮机模型在高效率工况(水轮机工况)与线性水轮机曲线变化趋势基本一致。

因此,用线性水轮机模型来研究机组甩负荷过程中的调速器控制性能所得到的结果具有代表性。

3、结束语综合以上分析得出以下结论,甩负荷过程应划分为大波动和小波动两个阶段分别对待,大波动过程仅取决于调节对象特性,而与调速器的控制特性关系不大,因此甩负荷过程中转速上升时间(tM)和转速下降时间(tD)与调速器的控制特性关系不大。

小波动过程除了与调节对象有关外,与调速器的控制特性密切相关,因而转速调整时间(tR)和超调量(1-nmin/nr)与调速器的控制特性密切相关;调节参数对甩负荷过程影响较大,在推荐的最佳调节参数条件下,甩负荷过渡过程较好。

但由于在常规控制方式情况下不能解决导叶开启时刻与开启速度之间的矛盾,因此很难达到较为满意的结果;开度给定从调差环节和软反馈同时输入的甩负荷过程受调节参数的变化影响较小。

由于现场试验次数有限,很难整定出最佳参数,该控制方式对参数变化具有很好的适应性。

采用按开度改变软反馈系数控制方式,结合常规调节参数整定,很好地解决了由大波动过程到小波动过程的平稳过渡,由于其算法简单易实现,在实际电站的应用中取得了良好的效果。

用线性水轮机模型代替非线性水轮机模型研究甩负荷过程中的调速器控制性能所得到的结果具有代表性。

因此现代调速器一般采用线性与非线性相结合的方法,运用与水轮机控制,从而达到最佳调节效果。

也是现代调速器的发展方向。

相关文档
最新文档