蛋白质分子的结构基础

合集下载

蛋白质结构

蛋白质结构

c. 链由141AA残基组成, 链由146AA残基组成。
3.3.2 蛋白质的二级结构
• 指蛋白质分子中多肽链本身的折叠和盘绕的方式,它仅涉及肽 链中主链的构象,并不涉及侧链的构象。 • 蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨 架原子的相对空间位置。
酰胺平面是构成主链构象的基本单元.
酰胺平面
多肽链可以看成由Cα串联起来的无数个酰胺平面组成
a .一条多肽链,153个氨基酸残基,一个血红素辅基,分子
量17600。 折叠成8段较直的-螺旋体(A-H),最长的有23个氨基酸残基, 最短的有7个氨基酸残基。拐弯处多由Pro、Ser、Ile、Thr等组 成。
b.肌红蛋白的整个分子具有外圆中空的不对称结构,肽链共
c.具有极性侧链的氨基酸残基分布于分子表面,而带非极性
5
βββ
5
回形拓扑结构
2 3 4 1 回形拓扑结构
平行-折叠的结构比较
卵溶菌酶
黄素蛋白 丙糖磷酸异构酶 乳酸脱氢酶结构域1
丙酮酸激酶结构域4
羧肽酶
腺苷酸激酶
(a)
(b)
next
木瓜蛋白酶
ห้องสมุดไป่ตู้
3.3.5.蛋白质的三级结构(Tertiary Structure)
是指多肽链在二级结构、超二级结构、结构域的基础上,进 一步盘绕、折叠形成的包括主链和侧链构象在内的特征三维 结构。即多肽链上的所有原子(包括主链和侧链)在三维空 间的分布。
蛋白质中相邻的二级结构单位(即单个α -螺旋或β -折叠或β -转角)组合 在一起,形成有规则的、在空间上能辩认的二级结构组合体称为蛋白质的超二 级结构. 基本组合方式:α α ;β
αβ ; β β β

蛋白质二级级结构 基础医学院生

蛋白质二级级结构 基础医学院生

蛋白质二级级结构基础医学院生物物理系余子璘 10589031蛋白质结构的研究很早就受到许多科学家的关注,并提出了多种假说,但是一直没有一个令人满意的理论。

直到1952年丹麦生物化学家Linderstrom—Lang第一次提出蛋白质三级结构的概念,才使蛋白质结构的研究走上了正确的道路。

Linderstrom—Lang的三级结构概念包括:一级结构指多肋链中氨基酸的一定的顺序,靠共价键维持多脓链的连接,而不涉及其空间排列;二级结构,指多肤链骨架的局部空间结构,不考虑侧链的构象及整个肽链的空间排列;三级结构则是指整个肽链的折叠情况,包括侧链的排列,也就是蛋白质分子的空间结构或三维结构。

这一概念提出之后,立即被各国科学家所接受。

1958年,英国晶体学家Bernal在研究蛋白质晶体结构时发现,并非所有蛋白质的结构都达到三级结构水平.而有些蛋白质则有更复杂的结构,即由几个蛋白质的亚基结合成几何状排列。

许多蛋白质是由相同的或不同的亚基组成,靠非共价键结合在一起.他将这种结构称为四级结构[3]。

现在蛋白质的一、二、三、四级结构的概念已由国际生物化学与分子生物学协会(IUBMB)的生化命名委员会采纳并做出正式定义。

蛋白质的一级结构一般是指构成蛋白质肽链的氨基酸残基的排列次序,有时也称为残基的序列。

这一定义对只含氨基酸的简单蛋白是适用的。

但是在生物体内还有很多复合蛋白,它们除了氨基酸外,还有其他的组成。

对复合蛋白,完整的一级结构概念念应该包括肤链以外的其他成分(例如糖蛋白上的糖链,脂蛋白中的脂质部分等)以及这些非肽肤链部分是以何种方式,接在脓链中哪些残基上。

蛋白质的一级结构是一个无空间概念的一维结构。

蛋白质的一个引入注目的特征是它们都有确定的三维结构。

一个伸展的或随机排布的多肽肋链没有任何生物活性,多肽肤链必须按照一定的规律折叠成三维结构,才具有生物活性。

生物功能来自构象,构象指的是原子在一个分子结构中的三维排布方式。

蛋白质的一二三四级结构

蛋白质的一二三四级结构

蛋白质的一二三四级结构
蛋白质的一级结构:
是蛋白质分子的空间结构基础。

主要的化学键是肽键。

此外还可能有二硫键。

例如胰岛素A链与B链之间是二硫键。

蛋白质二级结构:
主要化学键是氢键。

基本形式有α-螺旋、β-转角、β-折叠和无规卷曲。

主要的化学键是氢键。

蛋白质粉三级结构:
一些只有一条多肽链组成的蛋白质结构能形成的最高空间结构就是三级结构。

形成和稳定主要依靠次级键,包括疏水作用,离子键,氢键,等。

蛋白质的四级结构:
两条及以上的独立三级结构的多肽链相互作用,由非共价键连接成特定的空间构象。

每条独立的三级结构多肽链称为一个亚基,单独存在时不具有生物学活性。

蛋白质的结构与功能

蛋白质的结构与功能

2. β-折叠结构特点
(1) 相邻肽键平面的夹角为1100 ,呈锯齿状排列; 侧链R基团交错地分布在片层平面的两侧。
(2) 2~5条肽段平行排列构成,肽段之间 可顺向平行(均从N-C),也可反向平行 。 (3)由氢键维持稳定。其方向与折叠的长轴 接近垂直。
(三)β-转角(β-turn)
1.概念
以氨基末端开始→羧基末端结束,依次编1、
2、3………
蛋白质多肽链中氨基酸残基的排列顺 序称为蛋白质的一级结构
NH2 Met Phe Lys Cys Ser Thr Val COOH
各种蛋白质的根本差异在于一级结构的不同
人胰岛素的一级结构
二、蛋白质二级结构
概念:
是指蛋白质分子中一段多肽链的局部空
蛋白质的二级结构类型
蛋白质的二级结构主要包括α-螺旋,β-折 迭,β-转角及无规卷曲等
(一)α -螺旋 (α -helix)
1.概念 由肽键平面盘旋 形成的螺旋状构象
2.α -螺旋的结构特征 (1)以肽键平面为 单位,以α -碳原 子为转折盘旋形成 右手螺旋
(2) 每3.6个氨基酸残基 绕成一个螺圈(3600) 螺距为0.54nm 每个氨基酸上升0.15nm 肽键平面与中心轴平行
*类型
全a-螺旋、全β-折叠、
无规卷曲
由这些结构域缔合成具有三级结构的分 子或亚基
蛋白质三级结构的意义: 蛋白质的三级结构决定了蛋白质的
生物学功能。
维持三级结构稳定的键
侧链基团之 间形的 氢 键、 离子键、 疏水作用、 分子引力、 二硫键
维系蛋白质分子结构的作用力
1. 肽键 共价键
维系蛋白质一级结构
第二节
蛋白质的分子结构
一、 蛋白质的一级结构—基本结构

蛋白质的结构基础

蛋白质的结构基础

第二章蛋白质的结构基础一、蛋白质结构的层次体系一级、二级、结构模体(超二级结构)、结构域、三级、四级1.一级结构一级结构是指多肽链中氨基酸的顺序,或氨基酸沿线性多肽链的排列。

(包含二硫键的数量和配对方式)一级结构决定高级结构,这是蛋白质结构组织的基本原理。

2.二级结构多肽主链局部区域的规则结构,它不涉及侧链的构象和与多肽链其他部分的关系。

规则构象主要被其内部形成的主链氢键所稳定,因此氢键的排布方式也是二级结构的重要特征。

3.结构模体一级顺序上相邻的二级结构在三维折叠中靠近,彼此按特定的几何排布形成简单地组合,以同一结构模式出现在不同的蛋白质中,这些组合单位称为结构模体。

是三级结构的建筑模块。

有的模体与特定的功能相关,如与DNA结合;许多模体并没有专一的生物功能,只是大结构和组装体的一个组成部分。

4.结构域二级结构和结构模体以特定的方式组织连接,在蛋白质分子中形成两个或多个在空间上可以明显区分的三级折叠实体。

结构单位:结构域是蛋白质三级结构的基本单位,一个分子中的结构域区之间以共价键相连接,这是与蛋白质亚基结构(非共价缔合)的基本区别。

功能单位:不同的结构域常常与蛋白质的不同功能相关联。

5.三级结构结构域在三维空间中以专一的方式组合排布,或者二级结构、结构模体及其与之相关联的各种环肽链在空间中的进一步协同盘曲、折叠,形成包括主链、侧链在内的专一排布。

6.四级结构亚基的数目、类型、空间排布方式和亚基间相互作用二、蛋白质结构分类1) α型结构(αstructure)主要由α螺旋组成,其螺旋含量一般在60%以上,有的高达80%。

α螺旋在这类蛋白质中大多以反平行方式排布和堆积,所以又称反平行α结构。

A) 线绕式α螺旋(coiled-coil α helix)B) 四螺旋束 (four helix bundle)C) 珠状折叠(globin fold)D) 复杂螺旋组合2) β型结构(β structure)主要由反平行β层构成。

蛋白质结构基础

蛋白质结构基础
Thr Asn Gln Tyr His Asp Glu Lys Arg
简 写
S
T N Q Y H D E K R
生物技术学院
氨基酸的化学组成与结构

均含有C 、H 、O 、N 、S,以一定比例存在。 有些含有微量的金属元素(如铁、锌、钼、镍等) 分子质量大(10 000~ 1 000 000 Da) 易被酸、碱和蛋白酶催化水解为胨、肽。 共同的化学结构(除脯氨酸)
蛋白质工程的概念?

以蛋白质分子的结构规律及其生物功能的关系作为基础,通
过化学、物理和分子生物学的手段进行基因修饰或基因合成,
对现有蛋白质进行改造,或制造一种新的蛋白质,以满足人
类对生产和生活的需求的一门科学。

---Deliberate design and production of proteins with novel or

能如结合小分子。

模体或基序(motif)是结构域的亚单位 通常由2~3二级结构单位组成,一般为α螺旋、β折叠
和环(loop)。
生物技术学院
结构域的特点
(1)结构域是球 状蛋白质的独立 折叠单位。对一 些较小的球状蛋 白质分子或亚基 来说,结构域和 三级结构是一个 意思。 例如红氧还蛋白, 核糖核酸酶、肌 红蛋白等。
生物技术学院
结构域的特点

(2)对于较大 的球状蛋白质或 亚基,其三级结 构往往由两个或 多个结构域缔合 而成也即它们是 多结构域的,例 如免疫球蛋白的 轻链含2个结构 域。
生物技术学院
结构域的特点

(3)结构域有时也指功能域。功能域可以是一个结
构域,也可以是由两个结构域或两个以上结构域组 成,从功能角度看许多多结构域的酶,其活性中心 都位于结构域之间,因为通过结构域容易构建具有 特定三维排布的活性中心。结构域之间常常只有一

第一章蛋白质结构基础第三节

第一章蛋白质结构基础第三节

通常出现的障碍
①中间体通过外露疏水基团的聚合 ②不正确二硫键的形成 ③脯氨酸残基的异构化 为了清除这些障碍,细胞产生了一些特殊蛋 白质来帮助蛋白质正确折叠,如伴侣蛋白、 二硫键异构酶等
4.帮助正确折叠的蛋白质和酶
(1) 分子伴侣(molecular chaperone) (2) 帮助正确二硫键形成的酶 (3) 肽酰脯氨酰异构酶
N
C
β链以反平行的上-下方 式顺序连接,最后一股连 与第一股链以氢键结合, 形成一个类似桶状的结构
平行β螺旋折叠
1993年在细菌果胶酶的晶体结构中首次发现。这些β螺旋结构中, 多肽链卷曲折叠为由β链与环链区相间构成的宽松螺旋
双层螺旋
钙离子 钙离子 钙离子
每圈螺旋由2股β链与2 段环链区相间构成,在 形成结构域时这一基本 结构单位重复3次,产生 一个右手缠绕螺旋结构, 中间形成疏水内核
最大限度满足氢键的形成而达到的能量最低状态 。
1.蛋白质折叠的热力学基础
(1)Anfinsen提出 “热力学假说”
认为多肽链的氨基酸顺序包含 了形成其热力学上稳定的天然 构象所必需的全部信息,即最 终的天然构象是由氨基酸序列 决定的。不需要别的任何信息、 诱导或能量,蛋白质就可自发 折叠成天然构象,折叠过程是
第三节 多肽链的生物合成与折叠
• 蛋白质是具有高度组织、结构极复杂的生物大分子 • 了解这种复杂蛋白质结构的形成机理,对于以设计
和构建新型蛋白质为目标的蛋白质工程的战略性考 虑和具体途径选取,都有十分重要的意义
一、多肽链的生物合成
• 自然界中的蛋白质可以由几十个氨基酸组成,也 可以由上千个氨基酸组成
(1) 分 子 伴 侣
(2) 帮助正确二硫键形成的酶

蛋白质分子基础5-蛋白质一级结构测定

蛋白质分子基础5-蛋白质一级结构测定

C末端分析

a)肼解法 b)还原法:硼氢化锂还原剂 c)羧肽酶法

还原法
肽链C末端AA ↓硼氢化锂 α-氨基醇 ↓水解 C末端氨基酸+ α-氨基醇 ↓ 色谱法鉴定
羧肽酶法

羧肽酶法:
最有效,最常用的测C端殘基方法 性质:肽链外切酶,专一地从肽链的C端逐个降 解,释放出游离AA。
巯基含量测定
DTNB法(5.5’-二硫代双(-2-硝基苯甲酸)
Protein-S- +R-S-S-R(DTNB) Protein-S-S-R+RSProtein-SH Protein-S-S-Protein+RS-(CNT) R
-
-COOH -NO2
反应产物(CNT)在412nm处可产生光吸收, 根据光吸收值可以相应地计算出巯基的含 量。

优点:Trp在水解中不受破坏。
蛋白质的水解
磺酸水解




4mol/L 甲基氨酸 ( 含 0.2%β- 吲哚乙胺 ) 色氨酸可 回收90%以上,Ser与Thr的回收接近定量值。 用二硫苏糖醇还原胱氨酸,再用过量的连四硫酸 钠氧化,得到S-磺基半胱氨酸再测定。 缺点: 水解环境需中性,条件苛刻。 水解液中含较多碳水化合物时,色氨酸容易被破 坏。 优点:中性水解液可以直接上机,色氨酸稳定。
蛋白质化学
蛋白质一级结构的测定
序列测定的基本方法学

将肽段用不同方法专一性地切断,将得到的 肽段分离纯化之后,分别测出各自的序列。 再将不同方法得到的序列进行比对,就可以 得到肽链的一级结构。
序列测定一般步骤

纯度要求:纯度在97%以上。
双向电泳;凝胶电泳;N-末端测定;纯化至恒定酶活; 肽谱分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构域(domain)
三级结构(tertiary structure) 四级结构(quarternary structure)
Nankai University
Nankai University
§1.2.1 构型和构象
•构型(configuration):分子立体异构体中的取代原 子或基团以共价键相连时,他们在空间的取向。构 型变化,一定有化学键的断裂和手性的改变。
Nankai University
§1.2.9 蛋白质的四级结构
蛋白的四级结构是指亚基和亚基之间通过疏水相互作 用,结合成为有序排列的特定空间结构。
构成寡聚蛋白质分子的亚基可以相同,也可以不同。
Nankai University
Nankai University
Nankai University
分子量较大的蛋白,多肽链折叠成两个或多个结构域, 结构域之间以松散肽段连接,从而组装成蛋白质的三 级结构。
Nankai University
Nankai University
Nankai University
Nankai University
Nankai University
Nankai University
Nankai University
Nankai University
Nankai University
Nankai University
Nankai University
Nankai University
Nankai University
有些蛋白质分子可构成非常大的超分子复 合物,其功能多样,如提供动力(肌肉和 鞭毛)、大分子外壳(病毒外壳)、细胞 骨架(微丝、微管、中间纤维)、DNA折 叠(染色质),等。
Nankai University
Nankai University
Nankai University
§1.2.6 蛋白质的超二级结构(motif)
相邻的二级结构单元组合在一起,彼此相互作用, 排列成规则的、在空间结构上能够辨认的二级结构 组合体,并充当三级结构的构件,称为超二级结构。
介于二级结构和结构域之间的结构层次。 常见的超二级结构有:α-loop- α 、β-α- β、 β-loop- β、 Rossmann折叠、 β β β β回形拓扑结构(Greek key topology)
β -转角
Nankai University
a-螺旋 a-螺旋是蛋白质中含量最多,也是最稳定 的二级结构单元。 a-螺旋丰富的蛋白质结构紧密而稳定少变 , 故蛋白质的功能活性区常不在a-螺旋 区,而在其附近。
Nankai University
Nankai University
Nankai University
Nankai University
Nankai University
Nankai University
Nankai University
Adenylyl cyclase
Forskolin
Gsa
GTP
Nankai University
§1.2 蛋白质分子的化学结构
一级结构(primary structure) 二级结构(secondary structure) 超二级结构(supersecondary structure)
Nankai University
Nankai University
Nankai University
Nankai University
amino acid three letter code single letter code
Polar (hydrophilic)
serine threonine cysteine tyrosine asparagine glutamine Ser Thr Cys Tyr Asn Gln S T C Y N Q
Nankai University
Nankai University
Nankai University
§1.2.7 蛋白质的结构域
结构域介于超二级结构和三级结构之间,多肽链在超 二级结构的基础上进一步盘绕折叠,形成紧密的近乎 于球状的结构,称为结构域。 对于较小的蛋白,只有一个结构域,此时结构域就是 三级结构。
§1.2.4 蛋白质的一级结构
蛋白质的一级结构就是蛋白质分子中氨基酸的排列 顺序。
Nankai University
§1.2.5 蛋白质的二级结构
蛋白质的二级结构是指多肽链借助氢键沿一维方 向排列呈具有周期性的结构的构象,它是多肽链 骨架的排列规则,而不涉及侧链的类型与构象。
类型主要包括: a-螺旋 β-折叠
phosphorylated
.
Nankai University
基本氨基酸的性质
Nankai University
Nankai University
Gly, G, 甘氨酸 Ala, A, 丙氨酸 Val, V, 缬氨酸 Leu, L, 亮氨酸 Ile, I, 异亮氨酸 Met, M, 蛋氨酸, 甲硫氨酸
Nankai University
Nankai University
Nankai University
Nankai University
Nankai University
Nankai University
Nankai University
Nankai University
Structural domains in the polypeptide troponin (肌 钙蛋白) C, two separate calcium-binding domains
Lys, K, 赖氨酸; Arg, R, 精氨酸; His, H, 组氨酸
Nankai University
Asp, D,天冬氨酸; Glu, E,谷氨酸
Nankai University
Two additional amino acids have been identified
Selenocysteine: encoded by the RNA nucleotide triplet UGA found in Archaea, eubacteria and animals including mammals. Pyrrolysine: encoded by the RNA nucleotide triplet UAG, found in Archaea, and eubacteria. Science (2002) vol. 296, 1409
•构象(conformation):组成分子的原子或基团围绕 共价单键旋转而形成不同的空间排布。构象变化不 导致化学键的断裂和手性的变化。
Nankai University
Nankai University
Nankai University
Nankai University
§1.2.2 蛋白质分子的基本结构单位 ——氨基酸
glycine alanine valine leucine isoleucine methionine
phenylalanine
tryptophan proline
Gly Ala Val Leu Ile Met Phe Trp Pro
G A V L I M F W P
Electrically Charged (negative and hydrophilic)
的生物学功能
(1)催化功能
(2)运输功能 (3)营养和储存功能 (4)收缩和运动功能 (5)结构功能 (6)防御功能 (7)调控功能 (8)其它功能
Nankai University
Nankai University
Nankai University
Nankai University
第一部分 分子生物物理
—— 生物大分子的功能与结构
Nankai University
第一章 蛋白质分子的结构基础
蛋白质的重要地位:种类繁多,功能复杂,是生命活 动
的主要承担者,是生命活动的主
要物质基础。
蛋白质的组成:C、H、O、N、S P、Cu、Fe、I、Zn、Mo 蛋白质的分类:简单蛋白、结合蛋白 蛋白质的分子量:5kD - 1000kD,甚至更大
Nankai University
Phe, F, 苯丙氨酸; Tyr, Y, 络氨酸; Trp, W, 色氨酸
Nankai University
Ser, S, 丝氨酸 Thr, T, 苏氨酸 Cys, C, 半胱氨酸 Pro, P, 脯氨酸 Asn, N, 天冬酰胺 Gln, Q, 谷氨酰胺
Nankai University
Nankai University
Nankai University
Nankai University
§1.2.8 蛋白质的三级结构
蛋白质的三级结构蛋白质分子内所有原子在三维 空间的立体排布。是二级结构和非二级结构在空 间中的进一步盘曲、折叠,形成包括主侧链在内 的专一性三维排布。
其基本特征是:每个残基的构象符合热力学要求: 水溶性蛋白质中非极性侧链大多处于内部而形成 疏水核,极性或带电侧链分布在分子的表面;极 性基团之间、或蛋白内部的极性基团与邻近肽链 骨架上的集团之间形成氢键,等,从而使蛋白质 分子的自由能最低。
Nankai University
β-折叠 β-折叠在蛋白质中含量仅次于a-螺旋,和 a-螺旋相比,稳定性相对较差,结构参数 较易变化,扭曲程度也可各有不同,一般位 于蛋白质的中心,外面由稳定的a-螺旋包 围。也有蛋白全由β-折叠组成,如免疫球 蛋白,这样的结构相对较柔软,易于发生构 象变化。
Nankai University
相关文档
最新文档