材料科学基础回复与再结晶
合集下载
【材料科学基础考研讲义】材料的回复与再结晶

6
Hale Waihona Puke 冷变形金属在加热时的组织变化
recovery recrystallization grain growth
• 晶粒长大grain growth是指再结晶结束后晶粒的 长大过程,在晶界界面能的驱动下,新晶粒会发 生合并长大,最终达到一个相对稳定的尺寸。
7
冷变形金属在加热时的性能变化
A:强度、硬度和塑性 strength, hardness and ductility:
• 1、金属的预先变形度:金属预先变形程度越大, 再结晶温度 越低。当变形度达到一定值后,再结晶温度趋于某一最低值, 称最低再结晶温度。
• 纯金属的最低再结晶温度与其熔点之 间的近似关系: T再≈(0.35-0.4)T熔, 其 中T再、T熔为绝对温度K.
• 金属熔点越高, T再也越高.
Fe的再结晶温度?
• 由于再结晶后组织的复原,因而金属的强度、硬 度下降,塑性、韧性提高,加工硬化消失。
20
铁素体变形80% 650℃加热 670℃加热
21
新晶粒的形核
形核:是在现存的局部高能区域内,以多边化形成 的亚 晶为基础形核
形核机制
1. 晶界弓出形核(应变诱导晶界移动、凸出形核)
变形程度较小 时(小于20%), 各晶粒间由于变形不均匀而引起 位错密度不同,相应亚晶尺寸不 同,为降低系统的自由能,位错 密度小的晶粒中的亚晶通过晶界 凸入另外晶粒中,以吞食方式开 始形成无畸变的再结晶晶核。
(b)经过580ºC保温3秒后,试样 上开始出现白色小的颗粒,即再结 晶出的新的晶粒。
(c)是在580ºC保温4秒后,显示 有更多新的晶粒出现。
(d)在580ºC保温8秒后,粗大的 带有滑移线的晶粒已完全被细小的 新晶粒所取代,即完成了再结晶。
Hale Waihona Puke 冷变形金属在加热时的组织变化
recovery recrystallization grain growth
• 晶粒长大grain growth是指再结晶结束后晶粒的 长大过程,在晶界界面能的驱动下,新晶粒会发 生合并长大,最终达到一个相对稳定的尺寸。
7
冷变形金属在加热时的性能变化
A:强度、硬度和塑性 strength, hardness and ductility:
• 1、金属的预先变形度:金属预先变形程度越大, 再结晶温度 越低。当变形度达到一定值后,再结晶温度趋于某一最低值, 称最低再结晶温度。
• 纯金属的最低再结晶温度与其熔点之 间的近似关系: T再≈(0.35-0.4)T熔, 其 中T再、T熔为绝对温度K.
• 金属熔点越高, T再也越高.
Fe的再结晶温度?
• 由于再结晶后组织的复原,因而金属的强度、硬 度下降,塑性、韧性提高,加工硬化消失。
20
铁素体变形80% 650℃加热 670℃加热
21
新晶粒的形核
形核:是在现存的局部高能区域内,以多边化形成 的亚 晶为基础形核
形核机制
1. 晶界弓出形核(应变诱导晶界移动、凸出形核)
变形程度较小 时(小于20%), 各晶粒间由于变形不均匀而引起 位错密度不同,相应亚晶尺寸不 同,为降低系统的自由能,位错 密度小的晶粒中的亚晶通过晶界 凸入另外晶粒中,以吞食方式开 始形成无畸变的再结晶晶核。
(b)经过580ºC保温3秒后,试样 上开始出现白色小的颗粒,即再结 晶出的新的晶粒。
(c)是在580ºC保温4秒后,显示 有更多新的晶粒出现。
(d)在580ºC保温8秒后,粗大的 带有滑移线的晶粒已完全被细小的 新晶粒所取代,即完成了再结晶。
材料科学基础I 回复与再结晶

§9-7 回复
一、回复过程的特征
1、回复过程中组织不发生变化; 2、宏观一类应力全部消除,微观二类应力部分消除; 3、力学性能变化很小,电阻率显著降低,密度增加; 4、变形储存的能量部分释放。
二、回复过程机制
低温回复 (0.1~0.3)Tm 低温回复阶段主要是空位浓度明显降低。原因: 1、空位迁移到金属表面或晶界而消失; 2、空位与间隙原子结合而消失; 3、空位与位错交互作用而消失; 4、空位聚集成片,晶体崩塌而转变成位错环。
经常需要将冷变形金属加热退火,以使其性能恢复到变形前。
冷变形金属与合金随 着被加热温度升高,依 次发生回复、再结晶和 晶粒长大。
右图为冷变形黄铜随 温度身高组织与性能的 变化情况。可以分为三 个阶段:回复、再结晶 和晶粒长大。其中,再 结晶阶段性能变化最大: 强度迅速下降,塑性迅 速升高。
冷变形金属在加热过程中性能随温度升高而变化,在再结晶 阶段发生突变。
注意:图中纵坐标,向上表示晶粒数少,尺寸大。
§9-9 再结晶后的晶粒长大
冷变形金属完成再结晶后,继续加热时会发生晶粒长大。 晶粒长大又可分为正常长大和异常长大(二次再结晶)。
一、晶粒的正常长大
再结晶刚完成时得到的是细小的、无畸变和内应力的等轴晶 粒。温度继续升高或延长保温时间,晶粒仍可以继续长大,若 是均匀地连续生长,就称为正常长大。
三、再结晶图
把再结晶退火后的晶粒大小、冷变形程度及退火温度间的关 系绘制成三维图形,称为再结晶图。
四、退火孪晶
一些面心立方结构的金属或合金,如铜、铜合金、奥氏体不 锈钢等,经再结晶退火后,其晶粒中出现孪晶组织,称为退火 孪晶。
一般认为退火孪晶 是在晶粒生长过程中 形成的。当晶粒通过 晶界移动而生长时, (111)晶面发生堆垛层 错而产生孪晶。
材料科学基础——回复再结晶

塑性变形对金属组织与性能的影响
4. 力学性能
强度、硬度↑ 塑性、韧性↓
加工硬化
利:提高材料强度 弊:增加变形抗力,不利于进一步加工
塑性变形对金属组织与性能的影响
5. 残余应力(remnant stress)
金属形变时,外力做功 的大部分以热的形式散 掉,只有一小部分 (10%-15%)以残余内 应力的方式储存在形变 金属中(储存能),它 随形变量加大而加大, 但占形变总功的分数却 随形变量加大而减小。
Tm(Tm为金属熔点),经过一定时间后, 就会有晶体缺陷密度大为降低的现象,新等 轴晶粒在冷变形的基体内形核长大,直到冷 变形晶粒完全耗尽为止。
0.6 mm
0.6 mm
33% cold worked brass
New crystals nucleate after 3 sec. at 580C.
a. 单个位错滑移、攀移,形成亚晶界。 b. 亚晶合并成Y结点。 c. Y结点移动,亚晶长大,完成多边形化。
多边形化
内容回顾
回复的不同阶段
形变形成位错缠结和胞状结构(如图a,b)→胞内位 错重排列和对消(如图c)→胞壁的峰锐化形成亚晶(如图 d)→亚晶长大(如图e)
低温回复( 0.1Tm < T<0.3Tm)
晶界是有利的再结晶形核 位置,原始晶粒小,再结 晶形核位置多,有利于再 结晶;但原始晶粒小,变 形较均匀,减少形核位置, 不利于再结晶。 总体是前者影响大于后者。 原始晶粒尺寸还可能影响 形变织构,从而影响再结 晶动力学。
亚晶合并机制 亚晶蚕食机制 晶界弓出机制
再结晶核心的长大
再结晶晶核一经形成,就开始自发地长大。 晶核在畸变能的作用下,背离其曲率中心, 向畸变能较高的变形晶粒推移,直到全部形 成无畸变(或畸变很少)的等轴晶粒为止。
材料科学基础课件第六章金属及合金的回复与再结晶

二、储存能及内应力的变化
1.储存能的变化
冷变形造成的偏离平衡位置 大、能量较高的原子,在加热 过程中向能量较低的平衡位置 迁移,使内应力得以松弛,储 存能随之逐渐释放出来。
2.残余内应力的变化
在回复阶段,第一类内应力 得到较为充分的消除,第二类 或第三类内应力部分得到消除。
1-纯金属;2-不纯金属;3-合金。
回复机制:
空位与间隙原子的合并
①空位迁移到金属的自由表面或 晶界处而消失;
②空位与间隙原子合并,空位与 间隙原子同时消失;
③空位与位错发生交互作用而消 失;
④空位聚集成空位片,然后崩塌 成位错环而消失。
位错环
空位聚集成空位片,然后崩塌成位错环
第六章 金属及合金的回复与再结晶-§6.2 回复
2.中温回复
2.再结晶阶段的变化
硬度和强度显著下降,塑性和韧性 显著提高,电阻率显著地降低。
再结晶阶段位错密度下降明显,点 缺陷继续减少,导致上述性能变化。
冷拉伸变形后的工业纯铜在加 热时性能的变化
第六章 金属及合金的回复与再结晶-§6.2 回复
第二节 回复(Recovery)
回复是冷变形金属在较低温度加热时,在光学显微组织发生改变前所产 生的某些亚结构和性能变化的过程。
冷变形金属在加热过程中能量的释放
在再结晶阶段,因冷变形造成的残余内应力得以完全消除。
第六章 金属及合金的回复与再结晶-§6.1 冷变形金属在加热时的组织和性能变化
三、性能的变化
1.回复阶段的变化
硬度和强度略有下降,塑性和韧性 略有提高,电阻率较显著地降低,应 力腐蚀倾向显著减小。
回复阶段位错密度减少有限,但点 缺陷数量明显降低,导致上述性能的 变化。
第7章 《材料科学》回复与再结晶.

§7.3.1 再结晶的形核及长大
2)亚晶直接长大机制
某些取向差较大的亚晶界具有较高的活性,可以直接吞食周围亚晶, 并逐渐转变为大角晶界,实际上是某些亚晶的直接长大,如图所示。
图 亚晶直接长大形核机制
§7.3
再结晶
§7.3.1 再结晶的形核及长大
(3)再结晶晶核的长大
以凸出方式形成的再结晶核心,一旦超过临界半径,便自发向高 畸变能的晶粒中生长;
①回复机制与性能的关系 ----内应力降低:弹性应变基本消除;硬度、强度下降不多:位错密度降低不明显, 亚晶较细; ----电阻率明显下降:空位减少,位错应变能降低。 ②去应力退火 ----降低应力(保持加工硬化效果),防止工件变形、开裂,提高耐蚀性。
§7.3
再结晶
§7.3.1 再结晶的形核及长大
(7.4)
说明:与其它热激活过程一样,回复的速度随温度升高而增大。
§7.2 回复
§7.2.2 回复动力学
如果采用两个不同温度将同一冷变形金属的性能回复到同样程度,则有:
§7.2.3 去应力退火
----冷变形金属的回复过程能使内应力得到很大程度的消除,同 时又能保持冷变形强化状态。
回复退火的应用
(3)内应力的变化
①回复阶段:内应力部分消除; ②再结晶阶段:内应力全部消除。
各阶段性能变化示意图
§7.1 冷变形金属在加热时的变化
§7.1.3 储存能的释放
冷变形阶段形成的储存能使金属处于亚稳态,在退火阶段组织和性 能的变化过程既是储存能的释放过程。 储存能是变形金属加热时发生回复与再结晶的驱动力。
特点: ①无孕育期; ②开始变化快,随后变慢; ③长时间处理后,性能趋于一平衡值; ④加热温度越高,回复程度也越高; ⑤变形量越大,初始晶粒尺寸越小, 有助于加快回复速率。
《回复和再结晶》课件

回复的类型和特点
动态回复
发生在高温快速冷却过程中,晶格缺陷快速消失。
静态回复
发生在相对较低温度下,晶格缺陷比较稳定,回复速度较慢。
回复特点
包括晶粒形状恢复、细化晶粒、消耗应变能以及调整晶格结构等。
再结晶的过程和影响因素
1
晶粒长大
原先晶粒消失,新的晶粒长大,形成新的晶界。
2
再结晶温度
温度过高或过低都会影响再结晶的进行。
钢材再结晶
通过控制再结晶过程,可以调整 钢材的晶粒尺寸和结构,提高其 强度和耐腐蚀性。
半导体制造
回复和再结晶在半导体制造中起 到重要的作用,通过微结构调控 改善半导体器件性能。
总结与展望
通过本课件的学习,我们了解了回复和再结晶的概念、类型以及影响因素。 同时,我们也看到它们在材料加工、强化技术和材料改性中的重要应用。未 来,随着科学技术的发展,回复和再结晶将继续在材料科学领域发挥重要作 用。
3
应力状态
应力存在会抑制再结晶的发生。
回复和再结晶的应用
1 材料加工
通过控制回复和再结晶过程,可以改善材料的塑性和强度。
2 强化技术
再结晶可以改变材料的微观结构,提高其性能和使用寿命。
3 材料改性
回复和再结晶可以改变材料的结构和性能,满足特定需求。
实例分析
金属锻造
通过应用回复和再结晶技术,可 以改善金属锻件的塑性和韧性, 提高产品质量。
回复和再结晶 PPT课件
欢迎各位观众参加我们今天的演讲,本PPT课件将介绍回复和再结晶的概念、 类型、过程、影响因素以及应用,并通过实例分析,最终给出总结和展望。
回复与再结晶的概念
回复和再结晶是材料学中重要的两个概念。回复是材料在高温条件下晶格重 新排列,消除应力和调整晶体
8材料科学基础课件-第四章回复与再结晶

ln t 如图:
斜率=Q/R
ln t D Q / RT
或: ln
t1 Q 1 1 ( ) t2 R T1 T2
1 T
由实验斜率可求得Q,据此推算其机制。
返回
一般来讲,激活能Q ln t
不只是一个,常按回复温
度高低分为低温、中温和 高温回复。对应的激活能 为Q1、Q2、Q3。
Q3 Q2
第四章
回复与再结晶
变形金属的热行为
返回
章目录:
4.1 4.2 4.3 4.4 冷变形金属在加热时的变化 回 复
再结晶 再结晶后的晶粒长大
4.5
4.6 4.7
再结晶退火及其组织
金属的热变形 超塑性加工
返回
经冷变形的金属具有如下特点:
• 机械性能和理化性能发生明显变化。强度、硬度升高,塑性韧性下降。
迁移的大角度晶界,成为核心。
• 特点:
(高层错能材料Al,Ni等)
位错易于攀移,位错重排成稳定的亚晶界,胞内位错密度低。
返回
② 亚晶生长
通过亚晶界移动生长,成为大角度晶界。
(低层错能材料,位错难以重组,胞内位错密度高。如 Co、Ag、Cu、Au变量较小时)
A • 作ΔP — T℃曲线如图,能量释放 峰对应于新晶粒的出现 — 再结 0 A — 纯金属,B — 合金
返回
B
T℃
晶,在此之前为回复。
三、性能的变化
经冷变形的金属
缓慢加热,测其性能
的变化,如图所示。
性能急变区对应于新
晶粒的出现,再结晶
之前为回复,之后为
晶粒长大。
返回
总之:由以上变化说明,冷变形金属在加热时要 经历三个阶段:回复、再结晶和晶粒长大。
材料科学基础-回复与再结晶

— 电阻: 回复阶段已有大的变化(与点缺陷有
关) — 内应力:
回复阶段消除大部或全部内应力; 再结晶阶段全部消除微观内应力 — 亚晶粒尺寸: 回复阶段变化小; 接近再结晶时,显著增大 — 密度: 再结晶阶段急剧增高(缺陷减少) — 储存能的变化: 再结晶阶段释放多
第二节:回复
现象:除内应力大大减少外,在光学显微镜下看不到金 相组织的变化。在电子显微镜下观察,点缺陷有所减少,位 错在形态上也有变化,但数量没有明显减少。
正常长大影响因素
1)温度:温度影响界面迁移速度,温度越高,界面迁移速 度越大,因而晶粒长大速度也越快。
2)时间:正常晶粒长大时,一定温度下,平均晶粒直径随 保温时间的平方根而增大。
3)第二相粒子:第二相粒子对界面迁移有约束力,阻碍界 面迁移、晶粒长大。粒子尺寸越小,粒子的体积分数越大, 极限的平均晶粒尺寸也越小。
再结晶织构的形成机制
— 定向生长理论:晶核位向各异,只有特殊位向的容易长大 — 定向形核理论:再结晶晶核具有择优取向
制耳现象:在冲制筒形和杯形零件时,各向变形不均匀, 造成薄厚不均、边缘不齐的现象。
第五节:金属的热变形
金属的热变形:金属在再结晶温度以上进行的加工、变形。
热变形的实质是:变形中形变硬化和动态软化同时进行的过程, 形变硬化为动态软化所抵消,因而不显示加工硬化作用。
— 退火温度的影响:
退火温度对刚完成再结晶时晶粒尺寸的影响不 大;但对再结晶速率影响很大,降低临界变形 度数值;促进再结晶后的晶粒的长大,温度越 高晶粒越粗
第四节:晶粒长大
晶粒长大:再结晶结束后,材料通常得到新的细小的无畸变的 等轴晶粒,若继续提高加热温度或延长加热时间,引起晶粒进 一步长大的现象 驱动力:总晶界能的降低 按特点分类: — 正常长大:大多数晶粒几乎同时逐渐均匀长大 — 异常长大:少数晶粒突发性的不均匀长大
关) — 内应力:
回复阶段消除大部或全部内应力; 再结晶阶段全部消除微观内应力 — 亚晶粒尺寸: 回复阶段变化小; 接近再结晶时,显著增大 — 密度: 再结晶阶段急剧增高(缺陷减少) — 储存能的变化: 再结晶阶段释放多
第二节:回复
现象:除内应力大大减少外,在光学显微镜下看不到金 相组织的变化。在电子显微镜下观察,点缺陷有所减少,位 错在形态上也有变化,但数量没有明显减少。
正常长大影响因素
1)温度:温度影响界面迁移速度,温度越高,界面迁移速 度越大,因而晶粒长大速度也越快。
2)时间:正常晶粒长大时,一定温度下,平均晶粒直径随 保温时间的平方根而增大。
3)第二相粒子:第二相粒子对界面迁移有约束力,阻碍界 面迁移、晶粒长大。粒子尺寸越小,粒子的体积分数越大, 极限的平均晶粒尺寸也越小。
再结晶织构的形成机制
— 定向生长理论:晶核位向各异,只有特殊位向的容易长大 — 定向形核理论:再结晶晶核具有择优取向
制耳现象:在冲制筒形和杯形零件时,各向变形不均匀, 造成薄厚不均、边缘不齐的现象。
第五节:金属的热变形
金属的热变形:金属在再结晶温度以上进行的加工、变形。
热变形的实质是:变形中形变硬化和动态软化同时进行的过程, 形变硬化为动态软化所抵消,因而不显示加工硬化作用。
— 退火温度的影响:
退火温度对刚完成再结晶时晶粒尺寸的影响不 大;但对再结晶速率影响很大,降低临界变形 度数值;促进再结晶后的晶粒的长大,温度越 高晶粒越粗
第四节:晶粒长大
晶粒长大:再结晶结束后,材料通常得到新的细小的无畸变的 等轴晶粒,若继续提高加热温度或延长加热时间,引起晶粒进 一步长大的现象 驱动力:总晶界能的降低 按特点分类: — 正常长大:大多数晶粒几乎同时逐渐均匀长大 — 异常长大:少数晶粒突发性的不均匀长大