几何证明题解题技巧
几何证明尺规作图的解题规范与解题技巧

几何证明尺规作图的解题规范与解题技巧几何证明是高中数学中的重要内容,而尺规作图是几何证明中不可或缺的方法之一。
尺规作图是通过使用尺规等工具,将已知条件用线段长度的比来表示,从而得到所需的未知量与如何构造的方法。
下面我们将详细介绍几何证明尺规作图的解题规范与解题技巧。
一、解题规范1. 了解题目要求在做题之前,先要看清题目要求,明确自己要证明的结论与所给条件。
了解题目要求可以帮助我们更好地把握证明的方向和方法。
2. 审题慎思细心审题可以发现题目中隐藏的一些线索,例如特殊的几何图形、相似三角形、等分线段等,这些都是解决尺规作图问题的有力工具。
审题还可以发现题目中的难点和易错点,帮助我们专注于解决问题的关键。
3. 掌握几何知识尺规作图是几何证明的一种方法,因此掌握几何知识是必不可少的。
在解题过程中,我们需要运用一些基本的几何定理和定向线段的概念,在能充分运用几何知识才能更好地解决问题。
4. 认真细致在做尺规作图的题目时,需要认真细致地推敲每一步,因为一个细节的错误会导致整个证明的失败。
要尽可能地避免粗心大意和漫不经心,特别是在标记线段、角度时,要用尽一切手段保证准确无误。
5. 多角度考虑尺规作图的证明方法有时并不唯一,有些题目可能有多种可能性,因此需要多角度思考。
可以考虑不同的角度进行证明,或者换一种方式来描述线段长度的比,寻找解题的突破口。
二、解题技巧1. 正确标记相似三角形相似三角形是尺规作图中常用的几何单元,正确标记相似三角形对于解决问题非常关键。
在标记相似三角形时,可以根据题目给定的线段长度比例来确定线段的长度关系,从而帮助我们找到相应的相似三角形。
2. 确定相应角和高线在寻找尺规作图的策略时,需要特别关注相应角和高线。
相应角是指两个三角形中相对应的角度相等,高线则是指垂直于底边的线段。
通过找到相应角和高线,可以帮助我们更好地利用相似三角形求解问题。
3. 使用中垂线和平分线中垂线和平分线可以将一个线段等分成两个相等的线段,在解决尺规作图问题时非常有用。
初中平面几何解题技巧与证明方法

初中平面几何解题技巧与证明方法平面几何是初中数学课程中的一大重点内容,它涉及到图形的性质与关系、解题技巧等方面。
本文将介绍一些初中平面几何解题的技巧,并探讨一些常用的证明方法。
一、解题技巧1. 观察图形性质:在解题过程中,要善于观察图形的性质。
例如,对于平行四边形,我们可以利用对角线相等、同位角互补等性质来解题。
对于等腰三角形,我们可以利用底角相等、等腰三角形的高相等等性质来解题。
因此,在解题之前,仔细观察图形的性质对于解题是非常有帮助的。
2. 利用辅助线:辅助线是解决平面几何问题的常用方法。
通过引入辅助线,可以将原有的几何问题转化为更简单的几何问题。
例如,对于一个矩形,我们可以通过引入一条对角线将它分成两个等腰直角三角形,从而简化问题。
利用辅助线进行解题,可以帮助我们更好地理解图形,找到解题的关键。
3. 运用相似性质:相似是平面几何中一个非常重要的概念。
相似性质可以用来推导出一些未知的长度或角度。
在解题过程中,可以利用相似三角形的比例关系来求解未知量。
此外,相似性质还可以用来证明两个图形全等或相似。
二、证明方法1. 数学归纳法:数学归纳法是一种常用的证明方法,特别适用于证明一些与自然数有关的命题。
在平面几何中,数学归纳法可以用来证明一些与图形次数有关的命题,如证明正多边形的内角和公式。
数学归纳法的基本思想是,先证明命题在某个特定情况下成立,然后假设命题在某个情况下成立,证明它在下一个情况下也成立。
2. 反证法:反证法是证明一些命题的常用方法。
通过假设命题的否定,然后推导出一个矛盾的结论,从而证明了原命题的正确性。
在平面几何中,反证法可以用来证明一些关于垂直、平行关系的命题,如证明垂直平分线与角平分线互相垂直。
3. 作图法:在某些情况下,通过合理的作图可以帮助我们观察并找到证明的思路。
在平面几何中,作图法可以用来证明一些关于线段比例、角平分线等命题。
通过合理的构造和作图,可以帮助我们更好地理解几何问题,并找到证明的依据。
中考数学几何证明题答题技巧及解题思路

中考数学几何证明题答题技巧及解题思路1500字中考数学几何证明题是中考数学中的重点和难点部分,要想在考试中得到高分,需要具备一定的解题思路和答题技巧。
下面将介绍几种常见的数学几何证明题的解题思路和答题技巧。
1. 利用已知条件进行推理对于数学几何证明题,往往会给出一些已知条件,这些条件可以用来进行推理和证明。
在解题时,需要先理清题意,理解已知条件,然后运用相关的定理和性质进行推导。
2. 运用余角性质和对称性质在几何证明题中,角的余角和角的对称性质经常被使用。
如果已知两个角互为余角,可以根据余角定理进行推理;如果已知两个角互为对称角,可以根据对称性质进行推导。
3. 利用平行线性质几何证明题中经常会涉及到平行线的性质。
如果已知两条直线平行,可以根据平行线的性质来进行推理和证明。
比如,如果已知两个角的对边分别平行,可以推出这两个角相等。
4. 运用等腰三角形和相似三角形的性质在几何证明题中,等腰三角形和相似三角形的性质也经常会被使用。
如果已知两边等长,可以推导出两个角相等;如果已知两个角相等,可以推导出两边等长。
如果已知两个三角形相似,可以运用相似三角形的性质来进行推理。
5. 利用三角形的角平分线和垂直平分线的性质在几何证明题中,三角形的角平分线和垂直平分线的性质也经常会被使用。
如果已知一个角的平分线和垂直平分线重合,可以推导出这个角是直角。
6. 运用勾股定理和正弦定理勾股定理和正弦定理是解决几何证明题中常用的工具。
如果已知一个三角形是直角三角形,可以利用勾股定理进行推导;如果已知三角形的边长和角度,可以利用正弦定理进行推导。
总结起来,解决几何证明题的关键在于理清题意,抓住已知条件,灵活运用相关的定理和性质,进行推理和证明。
熟练掌握几何证明题的解题思路和答题技巧,对于提高解题效率和得到高分非常有帮助。
初一数学证明题解题技巧总结

初一数学证明题解题技巧总结数学立体几何证明解题技巧1平行、垂直位置关系的论证的策略:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
2空间角的计算方法与技巧:主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
(1)两条异面直线所成的角:①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。
②用公式计算.(3)二面角:①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。
②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式.3空间距离的计算方法与技巧:(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。
在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。
(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。
求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。
4熟记一些常用的小结论诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。
弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。
初中数学几何证明题解题技巧

初中数学几何证明题解题技巧
初中数学几何证明题是学生在学习几何学时经常遇到的一种题型。
解题时,不仅需要掌握一定的几何知识,还需要运用一些解题技巧。
首先,对于几何证明题,学生需要熟悉几何学中常用的基本命题和定理,如平行线的性质、三角形的性质、四边形的性质等。
只有掌握了这些基本知识,才能更好地理解题目中的条件和要求。
其次,解决几何证明题时,学生需要灵活运用画图和标注技巧。
通过画图,可以更直观地理解题目中的几何图形,并帮助分析和推导。
在画图时,应该注意保持图形的准确和清晰,以便于观察和推理。
同时,可以通过在图中标注角度、边长、相等关系等,帮助理清思路,找到解题的关键点。
另外,学生在解决几何证明题时,需要运用一些常用的证明方法。
例如,利用反证法证明、利用归纳法证明、利用逆否命题等。
这些方法可以帮助学生更好地推理和论证,并达到有力证明的目的。
此外,解决几何证明题还需要注意合理的推理和逻辑思维。
在解题过程中,要灵活运用几何学中的基本定理和性质,通过推理推导出结论。
同时,要注意推理的逻辑严谨性和合理性,避免出现漏洞或错误的推
理。
最后,对于一些较难的几何证明题,学生可以通过尝试反证法、辅助线构造、角度追踪等方法来解决。
这些方法可以帮助学生发现题目中隐藏的特殊性质或规律,从而更好地解决问题。
总而言之,初中数学几何证明题的解题技巧主要包括掌握基本知识、灵活运用画图和标注技巧、运用常用的证明方法、合理的推理和逻辑思维等。
通过不断的练习和积累,学生可以提高解决几何证明题的能力,并在考试中取得好的成绩。
八年级数学几何证明题技巧

八年级数学几何证明题技巧对于八年级的学生来说,几何证明题是一个全新的挑战。
如何更好地理解和解决这些题目,掌握相应的技巧至关重要。
以下,是我为八年级学生整理的一些几何证明题技巧。
一、理解基本概念首先,你需要理解并掌握几何的基本概念,如线段、角、三角形、四边形等。
这些基本元素及其之间的关系是证明题的基础。
理解这些概念,可以帮助你更好地理解题目的要求,从而找到正确的解题方向。
二、熟悉常用证明方法在几何证明中,有许多常用的证明方法,如直证法、间接证法、辅助线法等。
辅助线法尤其重要,它是解决许多复杂问题的关键。
通过添加辅助线,可以将复杂的图形分解成更易于处理的子图形,从而找到解题的突破口。
三、培养观察力和想象力几何证明需要你具备出色的观察力,能够看到题目中的关键信息,以及想象出题目未直接给出的信息。
通过观察和分析,你可以找到解决问题所需的各种条件,并将其转化为证明语句。
四、学会找规律几何证明题有时会有一定的规律可循。
通过观察和分析不同类型的题目,你可以发现一些常见的模式和技巧。
掌握了这些规律,可以大大提高解题速度和准确性。
五、练习是关键几何证明需要大量的练习来提高你的解题能力。
只有通过不断的练习,你才能更好地掌握各种方法和技巧,提高你的解题速度和自信心。
六、学会自我反思和总结在解题过程中,要学会自我反思和总结。
哪些地方做得好?哪些地方需要改进?如何改进?只有不断地反思和总结,才能不断提高你的解题能力。
七、使用几何工具和软件现代科技为几何证明提供了许多便利。
你可以使用几何工具如直尺、圆规等,也可以使用一些数学软件来帮助你绘制图形和进行计算。
这些工具可以帮助你更好地理解题目和图形,提高解题效率。
八、培养逻辑思维能力在几何证明中,逻辑思维能力至关重要。
你需要按照一定的逻辑顺序来思考和证明问题,从已知条件出发,逐步推导出结论。
通过不断地练习和思考,你可以培养出更加严密的逻辑思维能力。
九、注意细节和规范书写在几何证明中,细节决定成败。
几何证明尺规作图的解题规范与解题技巧

几何证明尺规作图的解题规范与解题技巧几何证明是几何学中重要的一部分,它要求使用严密的逻辑和几何性质来证明一个命题的正确性。
而尺规作图是解决几何证明问题的常用方法之一。
下面将介绍几何证明尺规作图的解题规范与解题技巧。
一、解题规范1. 我们需要明确题目的要求和条件,仔细阅读题目中给出的已知条件,并且画出所给图形。
2. 我们需要明确证明的结论,推理过程需要围绕这个结论展开。
有时候,在解题过程中,我们需要找到并证明一些中间结论。
中间结论可以是题目本身给出的,也可以是通过推理得到的。
3. 然后,我们需要分析题目给出的条件和结论,寻找其中的几何性质和特点。
这需要对几何定理和公理有一定的了解,并且有一定的几何直觉。
4. 接下来,我们可以运用几何性质和特点来进行推理和证明。
在推理过程中,我们可以使用尺规作图来构造一些新的几何图形,并且通过观察和比较这些图形的性质来推理得到结论。
5. 在推理过程中,我们需要使用严密的逻辑,遵循正确的证明格式和证明步骤。
我们需要使用明确的几何术语和符号,以确保我们的推理过程清晰和准确。
6. 我们需要总结和归纳得到的结论,并且验证这些结论是否满足题目的要求。
我们需要检查我们的证明过程,确保没有漏掉任何重要的步骤或者推理。
二、解题技巧1. 运用已知条件构造辅助线。
有时候,题目给出的条件可能不足以直接推导出结论,这时候我们可以构造一些辅助线来帮助我们解决问题。
辅助线能够将原来的复杂问题简化为若干个简单的几何问题。
2. 利用相似三角形和比例关系。
在几何证明中,相似三角形和比例关系是经常用到的性质。
通过观察图形和条件,我们可以发现一些相似的三角形和长度比例,从而得到一些关于角度和长度的结论。
4. 利用尺规作图。
尺规作图是解决几何证明问题的常用方法之一。
通过使用尺子和圆规来构造一些新的几何图形,我们可以发现一些几何性质和关系,从而得到一些结论。
5. 利用反证法。
有时候,我们无法直接得到结论,但是我们可以假设结论不成立,然后通过逻辑推理来得出一个矛盾,从而证明结论是正确的。
高中数学几何证明解题技巧

高中数学几何证明解题技巧高中数学几何证明题是让很多学生头疼的难题,因为它不仅需要掌握一定的几何知识,还需要灵活运用证明方法和技巧。
下面,我将介绍一些高中数学几何证明解题的技巧,希望能对高中学生及其父母有所帮助。
一、利用相似三角形证明相似三角形是几何证明中常用的重要概念,通过利用相似三角形的性质,可以简化证明过程。
例如,有一道题目要证明两条线段平行,可以先找出两个相似三角形,然后利用相似三角形的对应边比例关系证明两条线段平行。
这种方法可以减少计算量,提高证明的效率。
二、利用等腰三角形证明等腰三角形是另一个常用的几何证明工具,它具有一些特殊的性质,比如底角相等、底边中线与高线重合等。
在证明过程中,如果能够找到等腰三角形,就可以利用其性质进行推理。
例如,要证明一个四边形是平行四边形,可以先证明它有一对对边相等,然后再证明它有一对对边平行。
三、利用垂直证明垂直是几何证明中常见的关系之一,通过利用垂直关系可以推导出很多结论。
例如,要证明两条线段垂直,可以先证明它们的斜率互为相反数,然后再证明它们的斜率积为-1。
这种方法可以简化证明过程,减少计算量。
四、利用面积证明面积是几何证明中重要的概念,通过利用面积的性质可以推导出很多结论。
例如,要证明一个四边形是平行四边形,可以先证明它的对角线平分彼此,然后再证明它的对角线长度相等。
这种方法可以通过计算面积来进行证明,具有一定的准确性。
五、利用反证法证明反证法是几何证明中常用的一种方法,通过假设结论不成立,然后推导出矛盾的结论,从而证明原命题成立。
例如,要证明一个三角形是等边三角形,可以先假设它不是等边三角形,然后推导出矛盾的结论,从而证明原命题成立。
这种方法可以通过推理来进行证明,具有一定的逻辑性。
综上所述,高中数学几何证明解题需要掌握一定的几何知识,同时还需要灵活运用证明方法和技巧。
通过利用相似三角形、等腰三角形、垂直关系、面积和反证法等方法,可以简化证明过程,提高解题效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何证明题解题技巧————————————————————————————————作者:————————————————————————————————日期:ﻩ几何证明题解题技巧息县五中 敖 勇【知识精读】1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
【分类解析】1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
例1. 已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。
求证:DE =D FCF BA ED图1分析:由∆ABC 是等腰直角三角形可知,∠=∠=︒A B 45,由D 是AB 中点,可考虑连结CD,易得CD AD =,∠=︒DCF 45。
从而不难发现∆∆DCF DAE ≅ 证明:连结CDAC BC A BACB AD DBCD BD AD DCB B A AE CF A DCB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆ADE CDF DE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。
显然,在等腰直角三角形中,更应该连结C D,因为CD 既是斜边上的中线,又是底边上的中线。
本题亦可延长ED 到G,使DG=DE,连结BG ,证∆EFG 是等腰直角三角形。
有兴趣的同学不妨一试。
例2. 已知:如图2所示,AB=CD ,AD =BC ,AE =CF 。
求证:∠E =∠FDBCF E A图2证明:连结AC在∆ABC 和∆CDA 中,AB CD BC AD AC CA ABC CDA SSS B D AB CD AE CF BE DF===∴≅∴∠=∠==∴=,,,∆∆()在∆BCE 和∆DAF 中,BE DFB D BC DA BCE DAF SAS E F=∠=∠=⎧⎨⎪⎩⎪∴≅∴∠=∠∆∆()说明:利用三角形全等证明线段求角相等。
常须添辅助线,制造全等三角形,这时应注意:(1)制造的全等三角形应分别包括求证中一量; (2)添辅助线能够直接得到的两个全等三角形。
2、证明直线平行或垂直在两条直线的位置关系中,平行与垂直是两种特殊的位置。
证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。
证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。
例3. 如图3所示,设BP 、CQ 是∆ABC 的内角平分线,A H、AK 分别为A 到B P、CQ 的垂线。
求证:KH ∥BCABC MNQ PKH 图3分析:由已知,B H平分∠ABC ,又B H⊥AH ,延长AH 交BC 于N,则BA =BN,AH =HN 。
同理,延长A K交BC 于M ,则C A=CM,AK=KM 。
从而由三角形的中位线定理,知KH ∥BC 。
证明:延长AH 交BC 于N,延长AK 交B C于M ∵BH 平分∠ABC ∴=∠∠ABH NBH 又BH ⊥AH∴==︒∠∠AHB NHB 90 BH =BH∴≅∴==∆∆ABH NBH ASA BA BN AH HN(),同理,CA=CM,AK=KM ∴KH 是∆AMN 的中位线 ∴KH MN // 即KH//BC说明:当一个三角形中出现角平分线、中线或高线重合时,则此三角形必为等腰三角形。
我们也可以理解成把一个直角三角形沿一条直角边翻折(轴对称)而成一个等腰三角形。
例4. 已知:如图4所示,A B=AC,∠,,A AE BF BD DC =︒==90。
求证:FD ⊥EDBCA FED 321图4证明一:连结ADAB AC BD DCDAE DABBAC BD DCBD ADB DAB DAE==∴+=︒==︒=∴=∴==,∠∠,∠∠∠,∠∠∠129090在∆ADE 和∆BDF 中,AE BF B DAE AD BD ADE BDFFD ED===∴≅∴∠=∠∴∠+∠=︒∴⊥,∠∠,∆∆313290说明:有等腰三角形条件时,作底边上的高,或作底边上中线,或作顶角平分线是常用辅助线。
证明二:如图5所示,延长ED 到M,使D M=ED,连结FE ,FM ,BMBCA EFD M图5BD DCBDM CDE DM DE BDM CDE CE BM C CBMBM ACA ABM A AB AC BF AE AF CE BM =∠=∠=∴≅∴=∠=∠∴∠=︒∴∠=︒=∠==∴==,,,∆∆//9090∴≅∴==∴⊥∆∆AEF BFMFE FM DM DE FD ED说明:证明两直线垂直的方法如下:(1)首先分析条件,观察能否用提供垂直的定理得到,包括添常用辅助线,见本题证二。
(2)找到待证三直线所组成的三角形,证明其中两个锐角互余。
(3)证明二直线的夹角等于90°。
3、证明一线段和的问题(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。
(截长法)例5. 已知:如图6所示在∆ABC 中,∠=︒B 60,∠B AC 、∠BCA 的角平分线A D、C E相交于O。
求证:AC=AE +CD图6B CAEDF O142356分析:在AC 上截取AF =A E。
易知∆∆AEO AFO ≅,∴∠=∠12。
由∠=︒B 60,知∠+∠=︒∠=︒∠+∠=︒566016023120,,。
∴∠=∠=∠=∠=︒123460,得:∆∆FOC DOC FC DC ≅∴=,证明:在AC 上截取AF=AE()∠=∠=∴≅∴∠=∠BAD CAD AO AOAEO AFO SAS ,∆∆42又∠=︒B 60∴∠+∠=︒∴∠=︒∴∠+∠=︒∴∠=∠=∠=∠=︒∴≅∴=566016023120123460∆∆FOC DOC AAS FC DC()即AC AE CD =+(二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。
(补短法)例6. 已知:如图7所示,正方形ABC D中,F 在DC 上,E 在BC 上,∠=︒EAF 45。
求证:EF=BE+DFGB E CAFD123图7分析:此题若仿照例1,将会遇到困难,不易利用正方形这一条件。
不妨延长CB 至G,使BG=DF。
证明:延长CB 至G,使BG=DF在正方形ABCD 中,∠=∠=︒=ABG D AB AD 90,∴≅∴=∠=∠∆∆ABG ADF SAS AG AF (),13又∠=︒EAF 45∴∠+∠=︒∴∠+∠=︒23452145即∠GAE=∠FA E ∴=∴=+GE EFEF BE DF4、中考题:如图8所示,已知∆ABC 为等边三角形,延长BC 到D,延长BA 到E,并且使AE =B D,连结CE 、D E。
求证:E C=E DE BDF AC 图8证明:作DF //AC 交BE 于F ∆ABC 是正三角形 ∴∆BFD 是正三角形 又AE =BD∴==∴==AE FD BF BA AF EF即E F=A CAC FDEAC EFD EAC DFE SAS EC ED//()∴∠=∠∴≅∴=∆∆题型展示:证明几何不等式:例题:已知:如图9所示,∠=∠>12,AB AC 。
求证:BD DC >D B A1C 2E图9证明一:延长AC 到E,使AE=AB,连结DE 在∆ADE 和∆ADB 中,AE AB AD AD ADE ADBBD DE E B DCE B DCE EDE DC BD DC=∠=∠=∴≅∴=∠=∠∠>∠∴∠>∠∴>∴>,,,,21∆∆证明二:如图10所示,在AB 上截取A F=AC,连结DFD BA2C1F 图1043则易证∆∆ADF ADC ≅∴∠=∠=>∠∠>∠∴∠>∠∴>∴>3434,,DF DC BFD BBFD BBD DF BD DC说明:在有角平分线条件时,常以角平分线为轴翻折构造全等三角形,这是常用辅助线。
【实战模拟】1. 已知:如图11所示,∆ABC 中,∠=︒C 90,D 是AB 上一点,DE ⊥CD 于D,交BC 于E,且有AC AD CE ==。
求证:DE CD =12C图11ABD E2. 已知:如图12所示,在∆ABC 中,∠=∠A B 2,C D是∠C 的平分线。
求证:B C=A C+ADACBD图123. 已知:如图13所示,过 ABC的顶点A,在∠A内任引一射线,过B、C作此射线的垂线BP和CQ。
设M为BC的中点。
求证:MP=MQBPMQCA图134. ∆ABC 中,∠=︒⊥BAC AD BC 90,于D,求证:()AD AB AC BC <++14【试题答案】1. 证明:取CD 的中点F,连结AF3EAD41CBFAC ADAF CDAFC CDE =∴⊥∴∠=∠=︒90又∠+∠=︒∠+∠=︒14901390,∴∠=∠=∴≅∴=∴=4312AC CEACF CED ASA CF ED DE CD ∆∆()2. 分析:本题从已知和图形上看好象比较简单,但一时又不知如何下手,那么在证明一条线段等于两条线段之和时,我们经常采用“截长补短”的手法。
“截长”即将长的线段截成两部分,证明这两部分分别和两条短线段相等;“补短”即将一条短线段延长出另一条短线段之长,证明其和等于长的线段。
B DCA E证明:延长CA 至E,使CE=CB ,连结ED 在∆CBD 和∆CED 中,CB CE BCD ECD CD CD CBD CEDB EBAC B BAC E=∠=∠=⎧⎨⎪⎩⎪∴≅∴∠=∠∠=∠∴∠=∠∆∆22又∠=∠+∠BAC ADE E∴∠=∠∴=∴==+=+ADE E AD AEBC CE AC AE AC AD,3. 证明:延长PM 交CQ 于RQPBM CA RCQ AP BP APBP CQPBM RCM⊥⊥∴∴∠=∠,//又BM CM BMP CMR =∠=∠,∴≅∴=∆∆BPM CRMPM RM∴QM 是Rt QPR ∆斜边上的中线 ∴=MP MQ4. 取BC 中点E ,连结AEABCD E∠=︒∴=BAC AE BC902AD BC AD AEBC AE AD⊥∴<∴=>,22()AB AC BCBC AB AC BC AD AB AC BC AD AB AC BC +>∴<++∴<++∴<++2414。