德国脑洞大开的抽水蓄能技术
抽水蓄能电站建设中的国际先进经验借鉴

抽水蓄能电站建设中的国际先进经验借鉴抽水蓄能电站作为一种重要的储能设施,在现代电力系统中扮演着越来越重要的角色。
其通过在低电价时段泵水到高位水库,利用重力势能在高电价时段发电,兼具了储能和调节负荷的功能。
随着全球对可再生能源需求的激增,抽水蓄能电站的建设也日益受到重视。
各国在这一领域积累了丰富的经验,对于其他国家或地区的项目建设具有重要的借鉴意义。
在欧洲,瑞士的抽水蓄能电站被认为是行业的标杆。
这个国家的多山地形为水资源的开发提供了得天独厚的条件。
瑞士的多个电站运用了先进的水流管理技术,通过精准的水位监控和流量调整,实现了高效的能量转换。
瑞士在环境保护方面也采取了严谨的措施,确保水轮机和泵的环境影响降至最低。
这种平衡可持续发展与电力需求的模式,对其他国家的抽水蓄能项目提供了重要的参考。
另一方面,日本在抽水蓄能电站建设中强调震后恢复能力。
作为一个多地震的国家,日本的许多电站设计时考虑到了抗震功能,不仅确保了设备的安全,还增加了电网的可靠性。
例如,在福岛的一些抽水蓄能电站,设计团队采用了多重保护措施,能够在突发事件中快速恢复运作。
这种高度重视安全和稳定性的问题,是其他国家在建设电站时应当优先考虑的因素。
美洲地区以巴西为代表,其在水资源管理方面同样具有先进的经验。
巴西的抽水蓄能电站采用了先进的水资源调度系统,可以根据季节和用电负荷的变化灵活调节发电量和水库蓄水。
利用云计算和大数据技术,巴西的电力公司能够对水源进行实时监控,实现精细化管理。
这种数据驱动的决策过程,为抽水蓄能电站的运营效率提升提供了新的思路。
在中国,随着新能源的快速发展,抽水蓄能电站也逐渐崭露头角。
中国在水资源开发和大规模工程建设方面具有悠久的历史。
各省份根据当地的水资源条件,巧妙地设计了多个抽水蓄能电站。
例如,云南省的大坝设计不仅考虑了发电量,还注重了生态功能,对周围环境的影响进行了全面评估。
中国政府鼓励绿色能源的发展,同时促进了水蓄能技术的创新,取得了不小的成果。
Goldisthal抽水蓄能电站的创新设计(1)

Goldisthal抽水蓄能电站的创新设计(1)摘要:XX年9月30日,德国图林根州为1060MW的Goldisthal 抽水蓄能电站举行了正式的落成典礼。
本文着重对发电机组及其在线监测系统的创新设计做了总结回顾。
关键词:Goldisthal抽水蓄能电站创新设计经过了六年多的施工建设,XX年2月3日,VattenfallEuropeGeneration1060MW的Goldisthal抽水蓄能电站第一台水泵-水轮机投入运行。
Goldisthal电站位于德国图林根州南部的Schwarza河上,是欧洲最大的抽水蓄能电站之一。
最早的两个电站装机容量都是265MW,已经投入使用,并且成功地为Vattenfall 的高压输电网送电。
XX年伊始,另外两个变速机组也将投入运营。
Goldisthal电站将会跻身于世界上最大的、最先进的抽水蓄能电站行列。
负责水泵-水轮机组(KonsortiumGoldisthal水力发电站)的集团包括VATECHEscherWyss股份有限公司、Voith西门子水力发电站和CKDBlansko工程部门等等。
发电机由ARGEAEV集团提供,包括AlstomEnergietechnik股份有限公司和VATECHELIN股份有限公司。
土建工程包括发电主厂房、隧洞和上游水库,其承建者是ARGEPSWGoldisthal集团。
上游水库环形坝的沥青衬砌是由瑞士的WaloBertschinger施工,下库主坝的沥青衬砌由Strabag完成。
1.创新与协作Goldisthal是德国新近修建的唯一一座最大的水力发电设计方案,至少超前20年。
由于它包括4个发电能力331MVA的机组,它不仅是世界上同类电站发电量最多的一座,最具能量的设备之一,而且还有一些创新点。
完全自动化环形焊接技术(TIG-Hot金属丝过程)首次应用于焊接钢制隧道内衬的环形接缝,达到了很高的安全性和焊接质量,其效率是手工焊接的两倍,而且证明对于高强度QT钢焊接是最好的。
抽水蓄能电站的工作原理及发电过程解析

抽水蓄能电站的工作原理及发电过程解析概述:抽水蓄能电站(Pumped Storage Power Station)是一种利用电力供需差异进行储能的电站。
它通过抽水将低峰时段的多余电能转化为储能水位,待高峰时段再将水通过涡轮发电机组放回水库,以供电网消纳峰时负荷的发电方式。
本文将详细解析抽水蓄能电站的工作原理以及发电过程。
一、工作原理:1. 抽水阶段:在电力供应过剩的低峰时段,抽水蓄能电站通过启动抽水泵将水从较低的水库抽送至较高的水库,以提升水位。
这些水库通常是通过一座高程较大的水坝相连,其中一个水库位于较高处,被称为上池,而另一个位于较低处,被称为下池。
抽水泵以电机作为动力源,通过消耗电能将水从下池抽送至上池。
2. 发电阶段:在电力需求高峰时段或电网电力供应不足时,抽水蓄能电站将水从上池释放回下池。
在水流下落的过程中,通过水轮机或涡轮发电机组将水能转换为电能。
这些发电机组以抽水泵的角色相反,将水流能量转化为机械能,进而传递给发电机。
发电机通过电磁感应原理将机械能转换为电能,并将其送入电网以满足消耗者的电力需求。
二、发电过程:1. 抽水阶段的主要流程:(1)湖泊水库供水:抽水蓄能电站以湖泊、溪流、河流等自然水源作为原水供给,通过引水系统将水引入下池。
(2)水泵抽水:启动抽水泵将水抽往上池,抽水泵通过电机提供动力并将机械能转化为电能。
(3)上池水储存:抽水阶段完成后,将水储存在上池中,以便在发电阶段利用。
(4)抽水发布区域调节:根据电力需求和电网频率的变化,调节抽水速度和泄水速度,维持电网的稳定运行。
2. 发电阶段的主要流程:(1)水流下泄:通过开启下池底部的泄水闸门,将储存的水自上池中释放下泄至下池。
(2)水轮机/涡轮发电机组转动:水流经过水轮机或涡轮发电机组时,水流的动能转化为机械能,并将其传递给发电机组。
(3)发电机组发电:通过电磁感应原理,发电机组将机械能转化为电能,并将其输出到电网中。
(4)电力供应:通过电网将发电的电能输送至消耗者,满足电力需求。
抽水蓄能电站的工作原理

抽水蓄能电站的工作原理抽水蓄能电站是一种利用水的高低水位差进行能量转换的电站。
它不仅可以提供清洁、可再生的电力,还能在电网负荷不稳定的情况下进行能量调峰。
本文将介绍抽水蓄能电站的工作原理以及其在电力系统中的应用。
一、工作原理抽水蓄能电站由上层水库、下层水库和中间的压力差装置组成。
当电力系统负荷较低时,电站会利用超低负荷时段的电力将下层水库的水抽到上层水库中,形成高位水库和低位水库之间的水头差。
当负荷高峰到来时,电站停止抽水,而是开启水轮机,利用高水头驱动水轮机发电。
在电站运行阶段,上层水库的水经过进口管道进入压力差装置,而下层水库的水则通过出口管道流回下层水库。
压力差装置通常采用调节阀,它的作用是调节水流的流量和水头,以匹配电网负荷需求。
二、运行过程1. 抽水阶段:在低负荷时段,电站通过启动抽水泵,将下层水库的水抽到上层水库中。
抽水过程中要保持一定的流量和水头,以满足后续发电时的需求。
2. 发电阶段:当负荷高峰到来时,电站停止抽水并启动水轮机发电。
水从上层水库通过压力差装置进入水轮机,水轮机转动带动发电机产生电能。
之后,水从水轮机出口流回下层水库,完成一次发电周期。
3. 调峰阶段:在电网负荷波动剧烈或需要调节电力供应时,抽水蓄能电站能够快速响应,并通过调整抽水和发电的比例来实现能量调峰。
当电网负荷较高时,电站增加发电量;当电网负荷较低时,电站增加抽水量。
这种能量调峰的机制能够保证电力系统的平稳供应,并提高电网的可靠性。
三、应用及优势抽水蓄能电站在电力系统中具有重要的应用价值和广阔的发展前景。
它的主要优势包括以下几个方面:1. 能量调峰:抽水蓄能电站可以根据电网负荷需求进行快速调节,满足电力系统的负荷波动,保持电网的稳定运行。
2. 能源储备:电站利用低峰时段的电力将下层水库的水抽到上层水库中,形成能量储备,以备高峰时段使用。
这种储能方式可以提高能源利用率,减少能源浪费。
3. 清洁环保:抽水蓄能电站主要利用水力能进行发电,不会产生二氧化碳和其他污染物,不会对环境造成污染,具有良好的环境效益。
抽水蓄能电站技术概况简介概要

抽水蓄能电站技术概况简介概要抽水蓄能电站(Pumped Storage Power Station,简称PSPS)是一种储能技术,通过利用地势高低差和水能将电力转化为潜在能量存储起来,然后在需要时将潜能能量转变为电能并输出到电网,从而实现电力的储存与调节。
下面是抽水蓄能电站技术的概况简介。
首先,抽水蓄能电站由上库和下库两个水池组成,两个水池之间有一条贯通两个水池的水轮机蓄能通道。
这个蓄能通道的上端连接着一台水轮发电机,下端连接着一台水泵机组。
当电力需求不高时,电网将过剩的电能用于驱动水泵,将上库中的水抽到下库中,将电能转化为潜在能量储存。
当电力需求增加时,可以通过开启水泵机组将下库中的水向上库中抽,通过水轮机将潜能能量转化为电能输出到电网。
其次,抽水蓄能电站的优势主要有以下几个方面。
首先,抽水蓄能电站具有较高的储能效率,通常可以达到70%以上。
其次,抽水蓄能电站的响应速度较快,可以在数分钟内完成从储能到输出的切换,具有较好的调节能力。
再次,抽水蓄能电站具有较长的寿命,通常可使用50年以上。
最后,抽水蓄能电站的建设和运行对环境影响较小,不会产生污染物排放和温室气体排放。
另外,抽水蓄能电站的应用领域非常广泛。
首先,抽水蓄能电站可以用于峰谷电价的调节。
在电力供需不平衡的情况下,可以利用抽水蓄能电站将低谷时段的电能储存起来,高峰时段释放输出,达到平衡供需,降低电力成本。
其次,抽水蓄能电站可以用于风力和太阳能发电的储能。
由于风力和太阳能发电具有波动性,利用抽水蓄能电站可以将风力和太阳能在储能时段储存,然后在供电需求高峰时段释放输出,增加可再生能源的可靠性和稳定性。
此外,抽水蓄能电站还可用于调节输电线路的频率和电压,提高电网的稳定性和可靠性。
最后,抽水蓄能电站的发展趋势主要有两个方向。
一方面,随着可再生能源的发展和普及,抽水蓄能电站对可再生能源的储能需求将会增加,更多的抽水蓄能电站将会被建设。
另一方面,随着技术的不断创新和突破,抽水蓄能电站的效率将会进一步提高,新型材料和控制系统的应用将会降低建设和运营成本。
抽水蓄能电站技术概况简介

抽水蓄能电站技术概况简介抽水蓄能电站(Pumped hydro storage,简称PHS)是一种利用两个水库之间的高低水位差进行电能转换的储能技术。
在低电负荷时,电站将水从低水库抽到高水库,同时将电能转化为水势能。
在高电负荷时,电站放水使高水库的水通过涡轮发电机组发电,将水势能转化为电能。
抽水蓄能电站是一种可再生储能技术,具有巨大的容量和长周期性。
它能够在短时间内将电能转化为储存,同时又能在需要时以高效率将储存的电能迅速转化为电力供应。
因此,抽水蓄能电站不仅可以用于平衡电网负荷波动,还可以用于电力系统备用、调峰、调频等功能。
1.电能转化为水势能:在低电负荷时,电站通过抽水机将水从低水库抽到高水库;同时,涡轮发电机组充当泵的反向,将电能转化为水势能。
这个过程可以在较长时间内进行。
2.水势能转化为电能:在高电负荷时,电站通过放水阀门将高水库的水流经过涡轮发电机组,驱动涡轮旋转发电,将水势能转化为电能。
3.过剩电能储存:当再生能源发电超过电网负荷需要时,抽水蓄能电站可以将多余的电能转化为储存,将水从低水库抽到高水库,类似于充电的过程。
4.对电网提供调整能力:抽水蓄能电站可以通过控制水流量和发电机的工作,根据电网负荷的变化,平衡供需差,提供调整能力。
1.高效能:抽水蓄能电站的效率通常高达80%以上,是目前储能技术中效率最高的一种。
2.可调度性:抽水蓄能电站可以根据需要进行灵活调度,随时将储存的水势能转化为电能,满足电网的需求。
3.容量大:由于可以利用山谷地形建设大型水库,抽水蓄能电站的容量通常比其他储能技术大得多。
4.储存时间长:抽水蓄能电站可以在较长时间内储存电能,并能够多次循环利用。
5.环保:抽水蓄能电站不会产生温室气体和其他污染物,对环境影响较小。
抽水蓄能电站在能源转型和电力系统调整中发挥着重要的作用,它可以提高可再生能源的可靠性和可用性,平衡电力系统的供需差,并提供安全稳定的电力供应。
随着再生能源的快速发展,抽水蓄能电站在未来将发挥更大的作用,为清洁能源的普及和可持续发展做出贡献。
抽水蓄能的原理及其应用

抽水蓄能的原理及其应用1. 原理介绍抽水蓄能是一种利用低峰电力时段将水从低处抽到高处储存,然后在高峰电力时段放水发电的技术。
其主要原理如下:1.抽水工作阶段:在低峰电力时段,将大量的水从低处的水库抽到高处的蓄能池中。
这个过程需要耗费一定的能量,通常会利用电力进行抽水。
2.储能阶段:抽水完成后,水被储存在高处的蓄能池中,等待高峰电力时段使用。
3.发电工作阶段:在高峰电力时段,将储存在蓄能池中的水放下来,通过水力发电机组产生电力。
2. 应用举例抽水蓄能技术的应用非常广泛,以下是几个典型的应用例子:2.1 智能电网抽水蓄能技术可以作为智能电网的一种重要的调峰手段。
通过在低峰电力时段将水抽到蓄能池中储存,然后在高峰电力时段放水发电,可以帮助平衡电网的供需差异,提供稳定的电力供应。
2.2 太阳能和风能的储能太阳能和风能是可再生能源,但其能源波动性较大,不易调控,抽水蓄能可以作为储能技术的一种选择。
在太阳能和风能供电不稳定的情况下,将多余的电能用于抽水蓄能,然后在需要电力时发电,以平衡供需差异。
2.3 水资源利用抽水蓄能技术可以帮助优化水资源的利用。
将水从低处水库抽到高处蓄能池,可以在水资源丰富的时候储存水,等到水资源紧缺的时候再放下来用于灌溉、供水等用途。
2.4 防洪调度在洪水来临时,可以利用抽水蓄能技术将水从低洼地区抽到高处的蓄能池中,减少洪水的灾害程度。
等到洪水消退后,再将蓄存的水放下来,以防止水库溢出或河道决口等灾害事件的发生。
3. 抽水蓄能的优势抽水蓄能技术具有许多优势,包括但不限于:•可调度性强:抽水蓄能可以根据电力需求情况进行调度,提供稳定可靠的电力供应。
•高效能转换:抽水蓄能系统利用水力发电机组将水能转换为电能,具有较高的能量转换效率。
•可再生能源集成:抽水蓄能技术可以与太阳能、风能等可再生能源进行集成,提供稳定的可再生能源发电。
•水资源利用:抽水蓄能可帮助优化水资源的利用,储存水资源,减少浪费。
抽水蓄能电站的工作原理

抽水蓄能电站的工作原理抽水蓄能电站是一种利用地势高低差和流体动能进行能量转换的电力发电方式。
它将低水位时的多余电力转化为储能,然后在用电高峰期将储存的能量转化为电能供应给电网。
本文将详细介绍抽水蓄能电站的工作原理及其具体的运行流程。
一、工作原理抽水蓄能电站主要由水库、上游和下游水道、电力负荷和涡轮机组等组成。
其工作原理可以简单概括为以下三个步骤:1. 低峰期储能:在用电低峰期,当电网供电能力充裕时,电力公司会通过电网将多余的电力用来抽水,将水从下游抽送到上游的水库中。
这样就可以将电能转化为势能,达到储能效果。
同时,水库的水位随着抽水的进行而逐渐提高。
2. 峰期出力:在用电高峰期或紧急情况下,当电网需要额外的电力供应时,电力公司会停止抽水,将储存在水库中的水释放至下游,通过涡轮机组来产生电力,以满足电网需求。
在这一过程中,水流经过涡轮机组时,水的动能会转化为机械能,再通过发电机转化为电能,供应给电网。
3. 电力平衡:当电网供电能力再次充裕时,电力公司会重新启动抽水过程,将水从下游抽送到水库中,以便再次储存电能。
这样,抽水蓄能电站便可以根据电网的需求动态地进行电能的储存和释放,实现了对电力供应的平衡调控。
二、运行流程下面将详细介绍抽水蓄能电站的运行流程,以更好地理解其工作原理。
1. 抽水过程在用电低峰期,电网供电能力充裕时,电力公司通过电网将多余的电力输送到位于下游的涡轮机组。
涡轮机组将电能转化为机械能,带动抽水泵将水从下游抽送至位于上游的水库中。
这一过程中,电能转化为了储存于水库中的势能。
2. 储能过程随着抽水的进行,水库的水位逐渐提高,将水的势能存储起来。
当水位达到一定高度时,抽水过程停止,此时抽水蓄能电站便完成了储能的目标。
3. 发电过程在用电高峰期或紧急情况下,当电网需要额外的电力供应时,抽水蓄能电站会启动发电过程。
即停止抽水,将水释放至下游,水流经过涡轮机组,带动涡轮机组旋转。
涡轮机组将水的动能转化为机械能,同时通过发电机将机械能转化为电能,供应给电网。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
德国脑洞大开的抽水蓄能技术
有望解锁全球8170亿千瓦时的储能
抽水蓄能已经不是什么崭新的技术了。
早在数十年前就有传统的水库类抽水蓄能电站被建成,其的工作原理很简单:在电网负荷低谷,电力价格便宜时,使用多余电力把水抽进水库;而在电网负荷高峰,电力价格持高时,放水出库发电。
这种抽水蓄能电站通常是作为其他主发电厂的配套副发电厂存在的,作为“电池”来调节电厂负载。
但是,由于需要水库配套,传统抽水蓄能发电站对选址的要求极高,山水缺一不可。
而由于适合修建抽水蓄能电站的地点大多为山区丘陵地带,这类选址往往又不适合建造风力和太阳能等可再生能源电厂。
这意味着,由于其间歇性而
最需要储电能力的风力和太阳能电厂无法使用“水力”电池提高其发电的持续性。
为了扩大抽水蓄能技术的选址范围,德国弗劳恩霍夫协会风能和能源系统研究所发明了一种崭新的蓄能方法,并于上周宣布成功完成了一次为期四周的探索性试验。
左图为耗电抽空球中水,右图为放水入球发电
该技术名为海中蓄能(StEnSea),是一种全新的思路。
其蓄能主体为多个内直径30米的混凝土空心球。
这些球会被放在600-800米深的海床上。
每个球里都有一台水轮发电机和一台水泵。
当电网负载低,电力多余时,水泵就会耗电把海水抽出,进行蓄能。
当电网负载高,需要峰值发电时,这些球体的阀门就会打开,让涌进的海水驱动水轮发电。
研究人员们预计,如果使用5兆瓦的水轮发电机,每个30米直径空球可以最高连续发电4小时。
意味着每个空球都可以存储20兆瓦时的电力。
如果有80个
以上的蓄能球被并联在一起,其总蓄能效果足以有效的影响电网。
该项目负责人Matthias Puchta表示,通过全球探测,适合建造该系统的地点的总储能,加起来一共有8170亿千瓦时。
为了验证该技术的可行度和搜集数据,研究人员建造了一个1:10比例的缩小版进行探索性实验。
这个缩小版空心球被放在了博登湖水下100米的湖底,进行了一次为期四周的实验。
该实验于本周结束,整个球体被打捞出来。
由于该探测性实验的成功,研究人员们表示他们将会着手进行一次为期更长,体积更大的实验。
图为上周从博登湖中取出,为期4周的探索性试验所使用的直径3米混凝土空心球
由于该探测性实验的成功,研究人员们表示他们将会着手进行一次为期更长,体积更大的实验。
虽然该项目离海底实验还有3到5年,但是其创新性已经引起了业界投资者的注意。
毕竟,这是一款将会解决离岸风能最大的问题——间歇性发电——的技术。