【5套打包】商丘市初三九年级数学上(人教版)第21章《一元二次方程》单元小结(解析版)

合集下载

(人教版新课标)九年级数学第21章《一元二次方程》知识小结

(人教版新课标)九年级数学第21章《一元二次方程》知识小结

- 1 -一元二次方程是初中数学的重要内容,在初中数学中占有重要的地位,它和二次函数的联系非常密切.这部分内容是各地考试热点和同学们容易出错的地方,是历年各地中考的必考内容之一,在试卷中占有较大的分值比例.考试中不仅基础题会考查,更重要的是后面的综合题也会重点考查,一般以函数等知识为背景进行综合考查,因此同学们应对这部分内容予以高度重视. 【知识网络】【知识解读】1.一元二次方程的定义只含有一个未知数,并且未知数的次数是二次的整 式方程,叫做一元二次方程.它的一般形式:20ax bx c ++=(0a ≠). (1)判断一个方程是不是一元二次方程时应抓住三点:①只含有一个未知数;②未知数的最高次数是2;③方程是整式方程(即含有未知数的式子是整式).三者必须同时满足,否则就不是一元二次方程.(2)20ax bx c ++=(a ,b ,c 为常数,0a ≠)称为一元二次方程的一般形式,其中0a ≠是定义中的一部分,不可缺少,否则就不是一元二次方程. 2ax 叫做二次项,a 叫做二次项系数,二者是不同的概念,不可混淆.2.一元二次方程的解法注意事项:解一元二次方程常见的思维误区是忽略几个关键:用因式分解法解方程的关键是先使方程的右边为0;用公式法解方程的关键是先把一元二次方程化为一般形式,正确写出a、b、c的值;用直接开平方法解方程的关键是先把方程化为(mx-n) 2=h的形式;用配方法解方程的关键是先把二次项系数化为1,再把方程的两边都加上一次项系数一半的平方.解具体的一元二次方程时,要分析方程的特征,灵活选择方法.公式法是解一元二次方程的通法,而配方法又是公式法的基础(公式法是直接利用了配方法的结论).分解因式法可解某些特殊形式的一元二次方程.掌握各种方法的基本思想是正确解方程的根本.一般说来,先特殊后一般,即先考虑分解因式法,后考虑公式法.没有特别说明,一般不用配方法.4.一元二次方程的是实际应用方程是解决实际问题的有效模型和工具,解方程的技能训练要与实际问题相联系,在解决问题的过程中体会解方程的技巧,理解方程的解的含义.利用方程解决实际问题的关键是找出问题中的等量关系,找出题目中的已知量与未知量,分析已知量与未知量的关系,再通过等量关系,列出方程,求解方程,并能根据方程的解和具体问题的实际意义,检验解的合理性.列一元二次方程解应用题的一般步骤可归纳为审、设、列、解、验、答.审:读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系;设:设元,也就是设未知数;列:列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程;解:解方程,求出未知数的值;验:检验方程的解能否保证实际问题有意义;答:写出答语.相等关系的寻找应从以下几方面入手:①分清本题属于哪一类型的应用题,如行程问题,则其基本数量关系应明确(v t s=).②注意总结各类应用题中常用的等量关系.如工作量(工程)问题.常常是以工作量为基础得到相等关系(如各部分工作量之和等于整体1等).③注意语言与代数式之间的转化.题目中多数条件是通过语言给出的,我们要善于将这些语言转化为我们列方程所需要的代数式.④从语言叙述中寻找相等关系.如甲比乙大5应理解为“甲=乙+5”等.⑤在寻找相等关系时,还应从基本的生活常识中得出相等关系.总之,找出相等关系的关键是审题,审题是列方程的基础,找相等关系是列方程解应用题的关键.【易错点】一、忽视一元二次方程定义中的条件例 1 关于x的一元二次方程(01)122=-+++axxa的一个根为0,则a=_______.错解:∵0是一元二次方程的根,∴将0=x代入方程得,012=-a∴1±=a。

数学人教九年级上册(2014年新编)第二十一章 一元二次方程(章末总结)

数学人教九年级上册(2014年新编)第二十一章 一元二次方程(章末总结)


相等
2)当p=0时,根据平方根的意义,方程有两个________________的实数

x1=x2=−
根______________________;

3)当p<0时,因为对于任意实数x,都有(mx+n)2 ____0,所以方程


_______实数根。
01
基础巩固(配方法)
完全平方
将方程通过配成____________形式来解一元二次方程的方法,叫
(韦达定理)
应用
x1 x2
b
a
x1 x2
c
a
01
基础巩固(利用一元二次方程解决实际问题)
利用一元二次方程解决实际问题:
传染源
总数
1)传播问题:明确每轮传播中的___________个数,以及这一轮被传染的__________.
2) 增长率问题:
①如果增长率问题中的基数为a,平均增长率为x,则第一次增长后的数量为
降次
做配方法。配方是为了___________,把一个一元二次方程转化成
两个
______一元一次方程来解。
用配方法解一元二次方程的关键:将一元二次方程配成完全平方形式。
(若方程二次项系数为1时,方程两边加 一次项系数一半的平方
)
01
基础巩固(公式法)
判别式概念:一般地,式子b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)根的判别式。
2
a(1+x)
a(1+x)
____________,第二次增长后的数量为____________.
②如果下降率问题中的基数为a,平均下降率为x,则第一次下降后的数量为
a(1-x)

初三数学上册(人教版)第二十一章一元二次方程21.7知识点总结含同步练习及答案

初三数学上册(人教版)第二十一章一元二次方程21.7知识点总结含同步练习及答案

描述:例题:初三数学上册(人教版)知识点总结含同步练习题及答案第二十一章 一元二次方程 21.7 公共根(补充)一、学习任务1. 理解公共根的概念,已知几个方程有公共根会求方程的系数.二、知识清单公共根三、知识讲解1.公共根解一元二次方程公共根问题的一般步骤:① 设公共根为 ,则 同时满足这两个一元二次方程;② 用加减法消去 的项,求出公共根或公共根的有关表达式;③ 把共公根代入原方程中的任何一个方程,就可以求出字母系数的值或字母系数之间的关系式.四、课后作业m m m 2若两个关于 的方程 与 只有一个公共的实数根,求 的值.解:设方程的公共的实数根为 ,则两式相减得解得将 带入方程得 .x +x +a =0x 2+ax +1=0x 2a m {+m +a =0,m 2+am +1=0.m 2(a −1)m +1−a =0.m =1.m =1a =−2答案:1. 试求满足方程 与 有公共根的所有的 值及所有公共根和所有相异根.不妨设两个方程的公共根为 ,则有两式相减可得即当 时,两个方程均为此时有公共根 和 ,无相异实根.当 时,,两个方程为所以 的根为 ,.的根为 ,.此时公共根为 ,相异根为 和 .−kx −7=0x 2−6x −(k +1)=0x 2k x 0{−k −7=0,x 02x 0−6−(k +1)=0.x 02x 0⋯⋯①⋯⋯②(6−k )+(k +1)−7=0,x 0(6−k )(−1)=0.x 0k =6−6x −7=0,x 27−1=1x 0k =−6+6x −7=0,−6x +5=0.x 2x 2+6x −7=0x 2=−7x 1=1x 2−6x +5=0x 2=5x 1=1x 21−75答案:2. 为何值时,使得一元二次方程 , 有相同的根,并求两个方程的相同根.不妨设 是这两个方程相同的根,由方程根的定义有① ②有即所以 或 .当 时,两个方程都变为解得k +kx −1=0x 2+x +(k −2)=0x 2a {+ka −1=0,a 2+a +(k −2)=0.a 2⋯⋯①⋯⋯②−ka −1−a −(k −2)=0,(k −1)(a −1)=0.k =1a =1k =1+x −1=0.x2。

初三数学上册(人教版)第二十一章一元二次方程21.4知识点总结含同步练习及答案

初三数学上册(人教版)第二十一章一元二次方程21.4知识点总结含同步练习及答案
答案:

0、1、2
高考不提分,赔付1万元,关注快乐学了解详情。
答案: C
2
)
C.y 2 + 2y − 1 = 0
B.y 2 − 2y + 1 = 0
D.y 2 − 2y − 1 = 0
3. 方程 (x2 + 3) (x 2 − 2) = 0 的实数解的个数是 ( A.1
答案: B
)
C.3 D.4
B.2
4. 方程 x (x − 1) (x − 2) = 0 的解是
(查看更多本章节同步练习题,请到快乐学)
1. 对于方程 x 3 + 8 = 0 的解,下列正确的是 ( A.2
答案: B
)
C.±2 D.无解
B.−2
2. 用换元法解方程 (x 2 + x) + 2 (x 2 + x) − 1 = 0,若设 y = x2 + x,则原方程可变形为 ( A.y 2 + 2y + 1 = 0
2
− 4 − 12 = 0
t 2 − 4t − 12 = 0,
解这个方程得
t 1 = −2,t 2 = 6.
当 t = −2 时,
x2 − x = −2
方程无解.当 t 2 = 6 时,
x2 − x = 6.
解得
x1 = 3,x2 = −2 .
综上原方程的解为x 1 = 3,x 2 = −2 .
四、课后作业
初三数学上册(人教版)知识点总结含同步练习题及答案
第二十一章 一元二次方程 21.4 高次方程(补充)
一、学习任务 1. 会解可化为一元二次方程的高次方程,体会“降次”的基本思想. 二、知识清

人教版九年级数学上册第21章《一元二次方程》知识点小结与复习

人教版九年级数学上册第21章《一元二次方程》知识点小结与复习
当 a 0 时,它是一元二次方程;
当 a 0 时,它不是一元二次方程.
方程2ax2 -2bx+a=4x2, (1)在什么条件下此方程为一元二次方程? (2)在什么条件下此方程为一元一次方程?
解: 原方程转化为(2a-4)x2 -2bx+a=0 当a≠2时是一元二次方程; 当a=2,b≠0时是一元一次方程;
m=

3、当m
时,关于x的方程3x2-
2(3m+1)x+3m2-1=0有两个不相等的实数
根。
4、关于x的一元二次方程mx2+(2m-1)x-
2=0的根的判别式的值等于4,则m=

一元二次方程的根与系数的关系: (韦达定理)
如果方程ax2+bx+c=0(a≠0)的两个根是X1 , X2 ,
那么X1+x2= -
2(a-2)x+a2-5=0有实数根,且两 根之积等于两根之和的2倍,求a的值。
【例4】已知x1,x2是关于x的方程 x2+px+q=0的两根,x1+1,x2+1是关 于x的方程x2+qx+p=0的两根,求常 数p、q的值。
拓展练习:
1、当a,c异号时,一元二次方程ax2+bx+c=0的根的
情况是
一元二次方程的解法:(公式法)
例:(3) 2x2 3x 4 0
解: a 2,b 3,c 4
b2 4ac 32 4 24
9 32 41
3 41
x 22
3 41 3 41 x1 4 , x2 4
注:当一元二次方程二次项系数不为1且
难以用因式分解时常用公式法比较简便。
b2 4ac 0,

九年级数学上册第二十一章一元二次方程基础知识点归纳总结(带答案)

九年级数学上册第二十一章一元二次方程基础知识点归纳总结(带答案)

九年级数学上册第二十一章一元二次方程基础知识点归纳总结单选题1、方程3x2+10=2x2+6根的情况是()A.有两个不相等的实数根B.有两个相等的实数根名C.没有实数根D.无法判断答案:C分析:根据一元二次方程根的判别式判断即可.原方程变形为,3x2+10−2x2−6=0,即x2+4=0,则a=1,b=0,c=4,∴Δ=b2−4ac=0−4=−4即Δ<0;故原方程没有实数根.故选C.小提示:本题考查一元二次方程根的判别式,解决本题的关键是找准方程的各系数.2、若关于x的一元二次方程ax2+2x−1=0有两个不相等的实数根,则a的取值范围是()A.a≠0B.a>−1且a≠0C.a≥−1且a≠0D.a>−1答案:B分析:根据一元二次方程的定义和根的判别式得出a≠0,Δ=22-4a×(-1)=4+4a>0,再求出即可.解:∵关于x的一元二次方程ax2+2x-1=0有两个不相等的实数根,∴a≠0,Δ=22-4a×(-1)=4+4a>0,解得:a>-1且a≠0,故选:B.小提示:本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2-4ac>0时,方程有两个不相等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程没有实数根.3、若关于x的一元二次方程ax2+bx+5=0(a≠0)有一根为2022,则方程a(x+1)2+b(x+1)=−5必有根为()A.2022B.2020C.2019D.2021答案:D分析:设t=x+1,即a(x+1)2+b(x+1)=−5可改写为at2+bt+5=0,由题意关于x的一元二次方程ax2+bx+5=0(a≠0)有一根为x=2022,即at2+bt+5=0有一个根为t=2022,所以x+1=2022,x=2021.由a(x+1)2+b(x+1)=−5得到a(x+1)2+b(x+1)+5=0,对于一元二次方程a(x+1)2+b(x+1)=−5,设t=x+1,所以at2+bt+5=0,而关于x的一元二次方程ax2+bx+5=0(a≠0)有一根为x=2022,所以at2+bt+5=0有一个根为t=2022,则x+1=2022,解得x=2021,所以一元二次方程a(x+1)2+b(x+1)=−5有一根为x=2021.故选:D.小提示:本题考查一元二次方程的解.掌握换元法解题是解答本题的关键.4、用配方法解一元二次方程x210x+11=0,此方程可化为()A.(x-5)2=14B.(x+5)2=14C.(x-5)2=36D.(x+5)2=36答案:A分析:移项后两边都加上一次项系数一半的平方,写成完全平方式即可.x210x+11=0,x2-10x=-11,x2-10x+25=-11+25,即(x-4)2=14,故选:A.小提示:本题考查了运用配方法解一元二次方程,熟练掌握配方法是解题的关键.5、南宋数学家杨辉所著《田亩比类乘除算法》中记载:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步.”意思是:一块矩形田地的面积是864平方步,它的宽和长共60步,问它的宽和长各多少步?设它的宽为x步,则可列方程为()A.x⋅(60+x)=864B.x⋅(60−2x)=864C.x⋅(30−x)=864D.x⋅(60−x)=864答案:D分析:设它的宽为x步,则长为(60-x)步,根据面积列出方程即可得出结果.解:设它的宽为x步,则长为(60-x)步,∴x(60-x)=864,故选:D.小提示:题目主要考查一元二次方程的应用,理解题意是解题关键.6、已知x=a是一元二次方程x2−2x−3=0的解,则代数式2a2−4a的值为()A.3B.6C.﹣3D.﹣6答案:B分析:把x=a代入一元二次方程x2−2x−3=0,得a2-2a-3=0,再变形,得a2-2a=3,然后方程两边同乘以2,即可求解.解:把x=a代入一元二次方程x2−2x−3=0,得a2-2a-3=0,∴a2-2a=3,∴2a2-4a=6,故选:B.小提示:本题考查一元二次方程的解,代数式求值,熟练掌握方程的解是使方程左右两边相等的未知数值是解题的关键.7、已知关于x 的一元二次方程x 2+mx +3=0有两个实数根x 1=1,x 2=n ,则代数式(m +n )2022的值为( ) A .1B .0C .32022D .72022答案:A分析:直接利用根与系数的关系得出两根之和,进而得出答案.解:∵关于x 的一元二次方程x 2+mx +3=0有两个实数根x 1=1,x 2=n ,∴1+n =-m ,解得:m +n =-1,故(m +n )2022=1.故选:A .小提示:此题主要考查了根与系数的关系,正确得出m +n 的值是解题关键.8、设方程x 2−3x +2=0的两根分别是x 1,x 2,则x 1+x 2的值为( )A .3B .−32C .32D .−2答案:A分析:本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可. 由x 2−3x +2=0可知,其二次项系数a =1,一次项系数b =−3,由韦达定理:x 1+x 2 =−b a =−(−3)1=3,故选:A .小提示:本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率.9、有一块矩形铁皮,长50cm ,宽30cm ,在它的四个角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,要制作的无盖方盒的底面积为800cm 2.设切去的正方形的边长为x cm ,可列方程为( )A.4x2=800B.50×30−4x2=800C.(50−x)(30−x)=800D.(50−2x)(30−2x)=800答案:D分析:根据题意求得底面的长为(50−2x),宽为(30−2x),即可求解.设切去的正方形的边长为x cm,则底面的长为(50−2x),宽为(30−2x),则(50−2x)(30−2x)=800故选:D小提示:本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.10、关于x的方程x2−3kx−2=0实数根的情况,下列判断正确的是()A.有两个相等实数根B.有两个不相等实数根C.没有实数根D.有一个实数根答案:B分析:根据根的判别式直接判断即可得出答案.解:对于关于x的方程x2−3kx−2=0,∵Δ=(−3k)2−4×1×(−2)=9k2+8>0,∴此方程有两个不相等的实数根.故选B.小提示:此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.填空题11、某海洋养殖场每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖场第一年的可变成本为2.6万元,第三年的养殖成本为7.146万元,设可变成本平均每年增长的百分率为x,则可列方程为_____.答案:2.6(1+x)2=7.146−4分析:根据题意可求出第三年的可变成本为(7.146-4)万元,再用x表示出第三年的可变成本,即可列出等式,即得出答案.设可变成本平均每年增长的百分率为x,则可列方程为:2.6(1+x)2=7.146−4.所以答案是:2.6(1+x)2=7.146−4.小提示:本题考查由实际问题抽象出一元二次方程.理解题意,找出等量关系,列出等式是解题关键.12、设x1,x2是关于x的方程x2−6x+k=0的两个根,且x1=2x2,则k=______.答案:8分析:根据根与系数的关系得出x1+x2=6、x1⋅x2=k,再根据x1=2x2求得x2=2,代入k的表达式,求解即可.解:x1,x2是关于x的方程x2−6x+k=0的两个根,∴x1+x2=6,x1⋅x2=k,∵x1=2x2,∴2x2+x2=3x2=6,即x2=2,则k=x1⋅x2=2(x2)2=2×4=8,所以答案是:8.小提示:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.13、如图1,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD 向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图2所示,则AD边的长为________.答案:5分析:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为5,得到AB与BC的积为20;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为9,得到AB与BC的和为9,构造关于AB的一元二方程可求解.解:由图象与题意知可知,当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为5,∴12AB⋅12BC=5,即AB⋅BC=20.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为9,∴AB+BC=9.则BC=9−AB,代入AB·BC=20,得AB2−9AB+20=0,解得AB=4或AB=5,∵AB<AD,即AB<BC,∴AB=4,BC=5,∴AD=BC=5.所以答案是:5.小提示:本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.14、一元二次方程(x−2)(x+7)=0的根是_________.答案:x1=2,x2=−7分析:由两式相乘等于0,则这两个式子均有可能为0即可求解.解:由题意可知:x −2=0或x +7=0,∴x 1=2或x 2=−7,所以答案是:x 1=2或x 2=−7.小提示:本题考查一元二次方程的解法,属于基础题,计算细心即可.15、对于实数m ,n ,先定义一种断运算“⊗”如下:m ⊗n ={m 2+m +n ,当m ≥n 时n 2+m +n ,当m <n 时,若x ⊗(−2)=10,则实数x 的值为___.答案:3分析:根据定义,分x ≥-2和x <-2两种情况进行解方程,得出x 的值.解:当x ≥-2时,x 2+x -2=10,解得:x 1=3,x 2=-4(不合题意,舍去);当x <-2时,(-2)2+x -2=10,解得:x =8(不合题意,舍去);∴x =3.所以答案是:3.小提示:本题考查了解一元二次方程,体现了分类讨论的数学思想,分x ≥-2和x <-2两种情况进行解方程是解题的关键.解答题16、已知长方形硬纸板ABCD 的长BC 为40cm ,宽CD 为30cm ,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),剩余部分恰好能折成一个有盖的长方体盒子,设剪掉的小正方形边长为x cm (纸板的厚度忽略不计)(1)EF= cm,GH= cm;(用含x的代数式表示)(2)若折成的长方体盒子底面M的面积为300cm2,求剪掉的小正方形的边长.答案:(1)(30-2x);(20-x)(2)5cm分析:(1)根据所给出的图形可直接得出EF与GH即可;(2)根据(1)得到EF与GH,结合M的面积列出方程(30-2x)(20-x)=300,求出x的值即可.(1)解:由图示可得:EF=(30-2x)cm,GH=(40÷2-x)cm=(20-x)cm.故答案为(30-2x),(20-x).(2)解:设剪掉的小正方形边长为x cm,x<30由题意可得(30-2x)(20-x)=300解得:x=5或x=30(舍去).答:剪掉的小正方形的边长5cm.小提示:本题主要考查了列代数式、一元二次方程的应用等知识点,根据图示列出一元二次方程是解答本题的关键.17、解方程:(1)x2﹣4x+2=0:(2)(x﹣1)2﹣x+1=0.答案:(1)x1=2+√2,x2=2−√2(2)x1=1,x2=2分析:(1)方程利用配方法求出解即可;(2)方程利分解因式法求出解即可.(1)x2﹣4x+2=0方程整理得:x2-4x=-2,配方得:x2-4x+4=2,即(x-2)2=2,开方得:x-2=±√2解得,x1=2+√2,x2=2−√2;(2)(x﹣1)2﹣x+1=0(x﹣1)2﹣(x-1)=0(x−1)(x−2)=0x−1=0,x−2=0∴x1=1,x2=2小提示:此题考查了解一元二次方程-公式法,以及配方法,熟练掌握各自的解法是解本题的关键.18、解方程:(1)(x−1)2−9=0.(2)x2−2x−5=0.答案:(1)x1=4,x2=−2;(2)x1=1+√6,x2=1−√6.分析:(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)先配方,再开方,即可得出两个一元一次方程,求出方程的解即可.(1)解:(x−1)2−9=0,∴x−1=±3,解得:x1=4,x2=−2;(2)解:x2−2x−5=0,x2−2x=5,x2−2x+1=5+1,(x−1)2=6,∴x−1=±√6,∴x1=1+√6,x2=1−√6.小提示:本题考查了直接开平方法和配方法解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.。

人教版九年级上册数学第21章一元二次方程知识点复习总结

人教版九年级上册数学第21章一元二次方程知识点复习总结

人教版九年级上册数学第21章一元二次方程知识点复习总结一元二次方程知识点复习总结1. 一元二次方程的一般形式: a ≠0时,ax 2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、 b 、 c ;其中a 、 b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法: 一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式: 当ax 2+bx+c=0 (a ≠0)时,Δ=b 2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0 <=> 有两个不等的实根;Δ=0 <=> 有两个相等的实根;Δ<0 <=> 无实根;Δ≥0 <=> 有两个实根(等或不等).4. 一元二次方程的根系关系:当ax 2+bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式:.a c x x ab x x )2(a 2ac 4b b x )1(212122,1=-=+-±-=,;※ 5.当ax 2+bx+c=0 (a ≠0) 时,有以下等价命题:(以下等价关系要求会用公式 a c x x a b x x 2121=-=+,;Δ=b 2-4ac 分析,不要求背记) (1)两根互为相反数 ? a b -= 0且Δ≥0 ? b = 0且Δ≥0;(2)两根互为倒数 ?a c =1且Δ≥0 ? a = c 且Δ≥0;(3)只有一个零根 ?a c = 0且ab -≠0 ?c = 0且b ≠0;(4)有两个零根 ? ac = 0且a b -= 0 ? c = 0且b=0;(5)至少有一个零根 ?a c =0 ? c=0;(6)两根异号 ? ac <0 ? a 、c 异号;(7)两根异号,正根绝对值大于负根绝对值? ac <0且a b ->0? a 、c 异号且a 、b 异号;(8)两根异号,负根绝对值大于正根绝对值?a c <0且ab -<0? a 、c 异号且a 、b 同号;(9)有两个正根 ? ac >0,a b ->0且Δ≥0 ? a 、c 同号, a 、b 异号且Δ≥0;(10)有两个负根 ? ac >0,a b -<0且Δ≥0 ? a 、c 同号, a 、b 同号且Δ≥0. 6.求根法因式分解二次三项式公式:注意:当Δ<0时,二次三项式在实数范围内不能分解.ax 2+bx+c=a(x-x 1)(x-x 2) 或 ax 2+bx+c=???? ??----???? ??-+--a 2ac 4b b x a 2ac 4b b x a 22.7.求一元二次方程的公式:x 2 -(x 1+x 2)x + x 1x 2 = 0. 注意:所求出方程的系数应化为整数.8.平均增长率问题--------应用题的类型题之一(设增长率为x ):(1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.(2)常利用以下相等关系列方程:第一年+第二年+第三年=总和.9.分式方程的解法:.0)1(≠),值(或原方程的每个分母验增根代入最简公分母公分母两边同乘最简去分母法.0.2≠分母,值验增根代入原方程每个换元凑元,设元,换元法)( 10. 二元二次方程组的解法:.0)3(0)2(0)4(0)1(0)4(0)2(0)3(0)1(0)4)(3(0)2)(1()3(;02;1?===========------分组为应注意:的方程)()(中含有能分解为方程组)分解降次法(程中含有一个二元一次方方程组法)代入消元(※11.几个常见转化:;;或;;;<-+-=--≥-+=-=-+-=+-+=+-+=--+=+)x x (x x 4)x x ()x x ()x x (x x 4)x x ()x x (x x 2)x 1x (x 1x 2)x 1x (x 1 x x x 4)x x ()x x (x x 2)x x (x x )1(212122122121212212212122222221221221212212221=--=-=-?=-4x x .22x x 2x x .12x x )2(221212121)两边平方为(和分类为;-==?==.,)2(34x x 34x x )1()916x x (34x x )3(2121222121因为增加次数两边平方一般不用和分类为或; .0x ,0x :.1x x Bsin A cos ,1A cos A sin ,90B A B sin x ,A sin x )4(2122212221>>=+==+?=∠+∠==注意隐含条件可推出由公式时且如.0x ,0x :.x ,x ),,(,x ,x )5(212121>>注意隐含条件的关系式推导出含有公式等式面积例如几何定理,相似形系可利用图形中的相等关时若为几何图形中线段长.k ,)6(”辅助未知元“引入些线段的比,并且可把它们转化为某比例式、等积式等条件角三角形、三角函数、如题目中给出特殊的直.,;,)7(知数的关系但总可求出任何两个未般求不出未知数的值少一个时,一方程个数比未知数个数一般可求出未知数的值数时方程个数等于未知数个。

人教版九年级数学上册第21-25章《小结与复习》课件全套精选全文完整版

人教版九年级数学上册第21-25章《小结与复习》课件全套精选全文完整版







(1)审题:通过审题弄清已知量与未知量之间的数量关系. (2)设元:就是设未知数,分直接设与间接设,应根据实际需要恰当选取设元法. (3)列方程:就是建立已知量与未知量之间的等量关系.列方程这一环节最重 要,决定着能否顺利解决实际问题. (4)解方程:正确求出方程的解并注意检验其合理性. (5)作答:即写出答语,遵循问什么答什么的原则写清答语.
不相等的实数根,则m的值可能是 0 (写出一个即
可).
考点五 一元二次方程的根与系数的关系 例5 已知一元二次方程x2-4x-3=0的两根为m,n, 则m2-mn+n2= 25 .
解析 根据根与系数的关系可知,m+n=4,mn=-3. m2-mn+n2 =m2+n2-mn=(m+n)2-3mn=42-3 ×(-3)=25.故填25.
人教版九年级数学上册
第二十一章 一元二次方程 小结与复习
要点梳理
一、一元二次方程的基本概念
1.定义: 只含有一个未知数的整式方程,并且都可以化为
ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的 方程叫做一元二次方程. 2.一般形式:
ax2 + bx +c=0 (a,b,c为常数,a≠0)
(注意:这里的横坚斜小路的的宽度都相等)
课堂小结
一元二次方 程的定义
概念:①整式方程; ②一元; ③二次. 一般形式:ax2+bx+c=0 (a≠0)
直接开平方法
一元二次方 程的解法
一元二次方程
配方法 公式法
x b b2 4ac (b2 4ac 0) 2a
因式分解法
根的判别式及 根与系数的关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级上册第二十一章一元二次方程单元检测(含答案)一、单选题1.下列方程中,属于一元二次方程的是( ) A .213x x -=B .2 4x =C .2310x y ++=D .31x x +=2.关于x 的方程240x mx --=的一个根是13x =,则它的另一个根2x 是( ) A .3B .43C .43-D .533.关于 的一元二次方程 有两个实数根,则 的取值范围是( ) A . B . C . 且 D . 且 4.一元二次方程配方后可化为( )A .B .C .D .5.若m 是方程2210x x --=的根,则212m m +-的值为( ) A .0B .1C .1-D .26.下列方程,是一元二次方程的是( )①234y x +=, ②22340x x -+=, ③213x x-=, ④ 20x = A .①②B .①②④C .①③④D .②④7.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣2 8.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( ) A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠9.某电子产品经过连续两次降价,售价由4900元降到了3600元.设平均每月降价的百分率为x ,根据题意列出的方程是( ) A.()2490013600x += B.()2490013600x -= C.()24900123600x -=D.()2360014900x -=10.方程2230x x --=的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.有且只有一个实数根D.没有实数根11.已知关于x 的一元二次方程230x x a ++=有一个根是2-,那么a 的值是( ) A.2-B.1-C.2D.1012.为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动,已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x 折,则有A.500(12)320x -=B.2500(1)320x -=C.250032010x ⎛⎫= ⎪⎝⎭D.2500132010x ⎛⎫-= ⎪⎝⎭二、填空题 13.已人教新版九年级数学上第21章一元二次方程单元练习试题(含答案)一.选择题(共14小题)1.下列方程中,是一元二次方程的是( ) A .x 2﹣4=0 B .x =C .x 2+3x ﹣2y =0D .x 2+2=(x ﹣1)(x +2)2.已知a 是方程2x 2﹣4x ﹣2019=0的一个解,则a 2﹣2a =( ) A .2019B .4038C .D .3.若2是关于x 的方程x 2﹣(m ﹣1)x +m +2=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的长,则△ABC 的周长为( ) A .7或10B .9或12C .12D .94.若方程(x ﹣4)2=a 有实数解,则a 的取值范围是( ) A .a ≤0B .a ≥0C .a >0D .a <05.用配方法解方程x 2﹣4x ﹣9=0时,原方程应变形为( ) A .(x ﹣2)2=13B .(x ﹣2)2=11C .(x ﹣4)2=11D .(x ﹣4)2=136.已知a ,b ,c 满足4a 2+2b ﹣4=0,b 2﹣4c +1=0,c 2﹣12a +17=0,则a 2+b 2+c 2等于( ) A .B .C .14D .20167.一元二次方程2x 2﹣2x ﹣1=0的较大实数根在下列哪两个相邻的整数之间( )A.4,3 B.3,2 C.2,1 D.1,08.点P的坐标恰好是方程x2﹣2x﹣24=0的两个根,则经过点P的正比例函数图象一定过()象限.A.一、三B.二、四C.一D.四9.若x2﹣2px+3q=0的两根分别是﹣3与5,则多项式2x2﹣4px+6q可以分解为()A.(x+3)(x﹣5)B.(x﹣3)(x+5)C.2(x+3)(x﹣5)D.2(x﹣3)(x+5)10.关于x的方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.m>B.m<﹣C.m=D.m<11.已知m,n是关于x的方程x2+(2b+3)x+b2=0的两个实数根,且满足+1=,则b 的值为()A.3 B.3或﹣1 C.2 D.0或212.如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2.若设AD=xm,则可列方程()A.(50﹣)x=900 B.(60﹣x)x=900C.(50﹣x)x=900 D.(40﹣x)x=90013.2018年一季度,华为某地销售公司营收入比2017年同期增长22%,2019年第一季度营收入比2018年同期增长30%,设2018年和2019年第一季度营收入的平均增长率为x,则可列方程()A.2x=22%+30%B.(1+x)2=1+22%+30%C.1+2x=(1+22%)(1+30%)D.(1+x)2=(1+22%)(1+30%)14.为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动.已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x 折,则有()A.500(1﹣2x)=320 B.500(1﹣x)2=320C.500()2=320 D.500(1﹣)2=320二.填空题(共4小题)15.若关于x的一元二次方程ax2+2ax+c=0有一个根是0,此时方程的另一个根是16.已知关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,则方程a(x﹣h ﹣1)2+k=0的解为.17.若等腰三角形(不是等边三角形)的边长刚好是方程x2﹣9x+18=0的解,则此三角形的周长是.18.对任意的两实数a,b,用min(a,b)表示其中较小的数,如min(2,﹣4)=﹣4,则方程x•min(2,2x﹣1)=x+1的解是.三.解答题(共5小题)19.选择合适的方法解一元二次方程(1)x2﹣x=1;(2)(2x﹣1)2=9;(3)3y(y﹣1)=2y﹣2;(4)(x﹣3)2+x2=9;(5)x2﹣6x﹣2=0;(6)x2+2x+10=0.(7)x2+10x+21=0 (8)7x2﹣x﹣5=0 (9)(2x﹣1)2=(3﹣x)2(10)x2+2x=0.20.关于x的方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β.(1)求k的取值范围;(2)α+β+αβ=6,求(α﹣β)2+3αβ﹣5的值.21.已知关于x的一元二次方程2x2+4x+m=0(1)x=1是方程的一个根,求方程的另一个根;(2)若x1,x2是方程的两个不同的实数根,且x1和x2满足x12+x22+2x1x2﹣x12x22=0,求m 的值.22.如图,将一幅宽20cm,长30cm的图案进行装裱,装裱后的整幅画长与宽的比与原画的长宽比相同,四周装裱的面积是原图案面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?23.如图,要设计一幅宽20cm、长30cm的图案,其中有两横三竖的彩条,横、竖彩条的宽度比为3:2.如果要使彩条所占面积是图案面积的,应如何设计彩条的宽度?参考答案一.选择题(共14小题)1.解:A、x2﹣4=0是一元二次方程,符合题意;B、x=不是整式方程,不符合题意;C、x2+3x﹣2y=0是二元二次方程,不符合题意;D、x2+2=(x﹣1)(x+2)整理得:x﹣4=0,是一元一次方程,不符合题意,故选:A.2.解:∵a是方程2x2﹣4x﹣2019=0的一个根,∴2a2﹣4a﹣2019=0,∴a2﹣2a=,故选:C.3.解:将x=2代入方程得:4﹣2(m﹣1)+m+2=0,解得:m=8,则方程为x2﹣7x+10=0,即(x﹣5)(x﹣2)=0,解得:x=5或x=2,当三角形的三边为2、2、5时,2+2<5,不能构成三角形;当三角形的三边为5、5、2时,三角形的周长为5+5+2=12,综上所述,三角形的周长,12.观察选项,选项C符合题意.故选:C.4.解:∵方程(x﹣4)2=a有实数解,∴x﹣4=±,∴a≥0;故选:B.5.解:∵x2﹣4x=9,∴x2﹣4x+4=9+4,即(x﹣2)2=13,故选:A.6.解:由题意,知4a2+2b﹣4+b2﹣4c+1+c2﹣12a+17=0,整理,得(b2+2b+1)+(4a2﹣12a+9)+(c2﹣4c+4)=0,所以(b+1)2+(2a﹣3)2+(c﹣2)2=0,所以b+1=0,2a﹣3=0,c﹣2=0,所以b=﹣1,a=,c=2.故a2+b2+c2=+1+4=.故选:B.7.解:解方程2x2﹣2x﹣1=0得:x=,设a是方程2x2﹣2x﹣1=0较大的根,∴a=,∵1<<2,∴2<1+<3,即1<a<.故选:C.8.解:x2﹣2x﹣24=0,(x﹣6)(x+4)=0,x﹣6=0,x+4=0,x1=6.x2=﹣4,∵点P的坐标恰好是方程x2﹣2x﹣24=0的两个根,∴P(6,﹣4)或(﹣4,6),故经过点P的正比例函数图象一定过二、四象限.故选:B.9.解:∵x2﹣2px+3q=0的两根分别是﹣3与5,∴2x2﹣4px+6q=2(x2﹣2px+3p)=2(x+3)(x﹣5),故选:C.10.解:∵方程有两个不相等的实数根,a=1,b=﹣3,c=m,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,解得m<.故选:D.11.解:∵m,n是关于x的方程x2+(2b+3)x+b2=0的两个实数根,∴m+n=﹣(2b+3),mn=b2,∵+1=,∴+=﹣1,∴=﹣1,∴=﹣1,解得:b=3或﹣1,当b=3时,方程为x2+9x+9=0,此方程有解;当b=﹣1时,方程为x2+x+1=0,△=12﹣4×1×1=﹣3<0,此时方程无解,所以b=3,故选:A.12.解:设AD=xm,则AB=(60﹣x)m,由题意,得(60﹣x)x=900.故选:B.13.解:设2018年和2019年第一季度营收入的平均增长率为x,根据题意可得:(1+x)2=(1+22%)(1+30%).故选:D.14.解:设该店春装原本打x折,依题意,得:500•()2=320.故选:C.二.填空题(共4小题)15.解:把x=0代入原方程得出c=0,∴方程为ax2+2ax=0,∴ax(x+2)=0,∴该方程的另一个根为﹣2.故答案为:﹣2.16.解:∵关于x的一元二次方程a(x﹣h)2+k=0的解为x1=﹣1,x2=3,∴方程a(x﹣h﹣1)2+k=0的解为x﹣1=﹣1或x﹣1=3,∴x1=0,x2=4.故答案为x1=0,x2=4.17.解:x2﹣9x+18=0,(x﹣3)(x﹣6)=0,x﹣3=0或x﹣6=0,x1=3,x2=6,因为3+3=6,所以这个三角形的底边长为3,腰长为6,所以这个三角形的周长为3+6+6=15.故答案为:15.18.解:①若2<2x﹣1,即x>1.5时,x+1=2x,解得x=1(舍);②若2x﹣1≤2,即x≤1.5时,x(2x﹣1)=x+1,解得x=或x=,故答案为:x=或x=.三.解答题(共5小题)19.解:(1)x2﹣x=1,x2﹣x﹣1=0,a=1,b=﹣,c=﹣1,∴x=,,(2)(2x﹣1)2=9,2x﹣1=±3,2x=1±3,x=,x1=﹣1,x2=2,(3)3y(y﹣1)=2y﹣2,3y(y﹣1)﹣2(y﹣1)=0,(y﹣1)(3y﹣2)=0,,(4)(x﹣3)2+x2=9,x2﹣6x+9+x2﹣9=0,2x2﹣6x=0,x2﹣3x=0,x(x﹣3)=0,x1=3,x2=0,(5)x2﹣6x﹣2=0;x2﹣6x+9=2+9,(x﹣3)2=11,x﹣3=,,(6)x2+2x+10=0,a=1,b=2,c=10,△=b2﹣4ac=﹣4×1×10=20﹣40<0,∴此方程无实数根,(7)x2+10x+21=0,(x+3)(x+7)=0,x1=﹣3,x2=﹣7,(8)7x2﹣x﹣5=0,a=7,b=﹣,c=﹣5,△=﹣4×7×(﹣5)=6+140=146,x=,,(9)(2x﹣1)2=(3﹣x)2,2x﹣1=±(3﹣x),2x﹣1=3﹣x,2x﹣1=﹣3+x,,(10)x2+2x=0,x(x+2)=0,x1=﹣2,x2=020.解:(1)∵关于x的方程x2+(2k﹣3)x+k2=0有两个不相等的实数根,∴△=(2k﹣3)2﹣4k2=﹣12k+9>0,解得:k<.(2)∵关于x的方程x2+(2k+3)x+k2=0有两个实数根α、β,∴α+β=﹣(2k﹣3),αβ=k2.∵α+β+αβ=6,∴k2﹣2k﹣3=6,由(1)可知k=3不合题意,舍去.∴k=﹣1,∴α+β=5,αβ=1,则(α﹣β)2+3αβ﹣5=(α+β)2﹣αβ﹣5=19.21.解:(1)设方程的另一个根是x1,那么x1+1=﹣2,∴x1=﹣3;(2)∵x1、x2是方程的两个实数根,∴x1+x2=﹣2,x1x2=,又∵x12+x22+2x1x2﹣x12x22=0,∴(x1+x2)2﹣(x1x2)2=0,即4﹣=0,得m=±4,又∵△=42﹣8m>0,得m<2,∴取m=﹣4.22.解:由题意知长:宽=3:2,因装裱后的整幅画长与宽的比与原画的长宽比相同,故上下边衬和左右边衬的比例也为3:2,所以可设上下边衬的宽度为3xcm,左右边衬的宽度为2xcm,则装裱后的面积为:(20+4x)(30+6x),且原面积为:30×20,所以四周装裱的面积为:(20+4x)(30+6x)﹣30×20,根据题意列方程:(20+4x)(30+6x)﹣30×20=×30×20整理得:x2+10x﹣11=0,解得:x1=﹣11(舍去),x2=1,所以上下边衬为3cm,左右边衬为2cm,答:应按上下边衬为3cm,左右边衬为2cm来进行设计.23.解:设竖条的宽度是2xcm,横条的宽度是3xcm,则(20﹣6x)(30﹣6x)=(1﹣)×20×30解得x1=1,x2=(舍去).2×1=2(cm),3×1=3(cm).答:横条宽3cm,竖条宽2cm.人教版数学九年级上册第二十一章一元二次方程单元检测试题一、选择题1.关于x的方程ax2-3x+2=0是一元二次方程,则()A.a>0B.a≥0C.a≠0D.a=12.把方程(8-2x)(5-2x)=18,化成一般形式后,二次项系数、一次项系数分别为()A.4、-26B.-4、26C.4、22D.-4、-223.用配方法解下列方程,其中应在方程左右两边加上4的是()A. x2-2x=5B.2x2-4x=5C.x2+4x=5D.x2+2x=54.已知方程x2+bx+a=0有一个根是-a(a≠0),则下列代数式的值恒为常数的是()A.abB.abC.a+bD.a-b5.下列一元二次方程中,有实数根的是()A.x2-x+1=0B.x2-2x+3=0C.x2+x-1=0D.x2+4=06. 方程(x+1)(x-3)=5 的解是()A.x1=1,x2=-3B.x1=4,x2=-2C.x1=-1,x2=3D.x1=-4,x2=27.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k >-14B.k >-14且k ≠0C.k <-14D.k ≥-14且k ≠0 8.关于x 的方程ax 2-(a +2)x +2=0只有一解(相同解算一解),则a 的值为( )A.a =0B.a =2C.a =1D.a =0或a =29.设a ,b 是方程x 2+x -2020=0的两个实数根,则a 2+2a +b 的值为( )A.2017B.2018C.2019D.202010.有一个面积为16cm 2的梯形,它的一条底边长为3cm ,另一底边长比它的高线长1cm ,若设这条底边长为x cm ,依题意,列出方程整理得( )A.x 2+2x -35=0B.x 2+2x -70=0C. x 2-2x -35=0D.x 2-2x +70=0二、填空题11.已知一元二次方程有一个根是2,那么这个方程可以是___________________________(填上你认为正确的一个方程即可).12.已知实数x 满足4x 2-4x +l =0,则代数式2x +12x的值为___________________________.13.小华在解一元二次方程x 2-4x =0时,只得出一个根是x =4,则被他漏掉的另一个根是x =___________________________.14.当a ___________________________时,方程(x -b )2=-a 有实数解,实数解为___________________________.15.如果α,β是一元二次方程x 2+3x -1=0的两个根,那么α2+2α-β的值是___________________________.16.若(x 2-5x +6)2+|x 2+3x -10|=0,则x =___________________________.17.若一元二次方程x 2-2x -a =0无实数根,则一次函数y =(a +1)x +a -1的图象一定不经过第___________________________象限.18.如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了___________________________元钱?三、解答题19.法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①x 2-3x +l =0;②(x-1)2=3;③x 2-3x =0;④x 2-2x =4.20.关于x 的一元二次方程(x -2)(x -3)=m 有两个不相等的实数根x 1、x 2,试确定m 的取值范围.若x 1、x 2满足等式x 1x 2-x 1-x 2+1=0,求m 的值.21.在直角坐标系内有一点A (2,5)另有一点B 的纵坐标为-1,A 与B 之间的距离为10,求点B 的坐标.22.一个农户用24米长的篱笆围成一排一面靠墙、大小相等且彼此相连的三个矩形鸡舍(如图所示),要使鸡舍的总面积为36m 2,那么每个鸡舍的长、宽各应是多少?23.如图,菱形ABCD 中,AC ,BD 交于O ,AC =8m ,BD =6m ,动点M 从A 出发沿AC方向以2m/s 匀速直线运动到C ,动点N 从B 出发沿BD 方向以1m/s 匀速直线运动到D ,若M ,N 同时出发,问出发后几秒钟时,△MON 的面积为14m 2?24.已知关于x 的一元二次方程x 2+4x +m -1=0.(1)请你为m 选取一个合适的整数,使得到的方程有两个不相等的实数根;(2)设α、β是(1)中你所得到的方程的两个实数根,求α2+β2+αβ的值.25.学校为了美化校园环境,在一块长40米,宽20米的长方形空地上计划新建一块长9米,宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案;(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.26.已知关于x 的两个一元二次方程:方程:x 2+(2k -1)x +k 2-2k +132=0…①;方程:x 2-(k +2)x +2k +94=0…②. (1)若方程①、②都有实数根,求k 的最小整数值;(2)若方程①和②中只有一个方程有实数根;试判断方程①,②中,哪个没有实数根,并说明理由;(3)在(2)的条件下,若k 为正整数,解出有实数根的方程的根.参考答案:一、1.C ;2.D ;3.C ;4.D ;5.D ;6. B. 7.A ;8.D.点拨:当a =0时,方程为一元一次方程-2x +2=0,此时有实数根x =1;当a ≠0时,方程为二次方程.由相同解,得Δ=[-(a +2)]2-8a =(a -2)2=0,解得a =2 ,此时方程有实数根x =1.由此,a =0或a =2时关于x 的方程ax 2-(a +2)x +2=0只有一解,故应选D ;9.C.点拨:因为a ,b 是方程x 2+x -2020=0的两个实数根,所以a 2+a -2020=0,a +b =-1,即a 2=2020-a ,所以a 2+2a +b =2020-a +2a +b =2020+a +b =2020-1=2019;10.A.二、11.答案不惟一.如,x 2-2x =0,等等;12.2.点拨:显然x ≠0,所以在方程两边同除以2x ,得2x -2+12x =0,所以2x +12x =2;13.0;14.≤0、x =b;15.4;16.2;17.一;18.700.三、19.答案不惟一.如,①适合用求根公式法,解得x 1,2;②适合用直接开平方法,解得x 1,2=1x 1=0,x 2=3;④适合用配方法,解得x 1,2=120.将关于x 的一元二次方程(x -2)(x -3)=m 转化为x 2-5x +6-m =0.因为关于x 的一元O D C B A二次方程有两个不相等的实数根,所以(-5)2-4×1×(6-m )>0,解得m >-14.又因为x 1、x 2是方程的两个不等实数根,所以x 1+x 2=5,x 1x 2=6-m ,而x 1x 2-x 1-x 2+1=0,所以6-m -5+1=0,解得m =2.21.(-6,-1)或(10,-1).22.长4米,宽3米.23.设出发后x 秒时,S △MON =14.①当x <2时,点M 在线段AO 上,点N 在线段BO 上,则12(4-2x )(3-x )=14,解得x 1,2=52±s ).因为x <2,所以x =52(s ).②当2<x <3时,点M 在线段OC 上,点N 在线段BO 上,则12(2x -4)(3-x )=14,解得x 1=x 2=52(s ).③当x >3时,点M 在线段OC 上,点N 在线段OD 上,则12(2x -4)(x -3)=14,解得x (s ).,或52s 时,△MON 的面积为14m 2. 24.(1)m <5,此时的答案不惟一.如,取m =4等等.(2)如取m =4,方程x 2+4x +3=0,人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(6)一、选择题1.已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是( )A .1B .0C .0或1D .0或-12.已知a 、b 为一元二次方程0922=-+x x 的两个根,那么b a a -+2的值为( )(A )-7 (B )0 (C )7 (D )113.根据下列表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )A. B.C.6.18 6.19x << D.6.19 6.20x <<4.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( )A.8B.10C.8或10D.不能确定5.新能源汽车节能、环保,越来越受消费者喜爱,各种品牌相继投放市场,我国新能源汽车近几年销量全球第一,2016年销量为50.7万辆,销量逐年增加,到2018年销量为125.6万辆.设年平均增长率为x ,可列方程为( )A .50.7(1+x )2=125.6B .125.6(1﹣x )2=50.7C .50.7(1+2x )=125.6D .50.7(1+x 2)=125.66.现定义某种运算()a b a a b ⊗=>,若2(2)2x x x +⊗=+,那么x 的取值范围是( )(A )12x -<<(B )2x >或1x <-(C )2x >(D )1x <-7、已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b a a b+的值是( )A .22n +B .22n -+C .22n -D .22n -- 8、已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b a a b+的值是( )A .22n +B .22n -+C .22n -D .22n -- 9、关于x 的一元二次方程222310x x a --+=的一个根为2,则a 的值是( )A .1BC .D . 10、一个等腰三角形的底边长是6,腰长是一元二次方程x 2﹣8x +15=0的一根,则此三角形的周长是( )A .16B .12C .14D .12或16二、填空题11.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).12.已知实数x 满足4x 2-4x+l=O ,则代数式2x+x21的值为________. 13.如果αβ、是一元二次方程23 1 0x x +-=的两个根,那么2+2ααβ-的值是___________14.已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .15.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b --的值是 . 16.在实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则,方程05)2(=+*x 的解为17、《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多 步.18、已知三个连续奇数,其中较大的两个数的平方和比最小数的平方的3倍还小25,则这三个数分别为_________19、甲、乙两同学解方程x 2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和-10,则原方程为20、如图1,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了 元钱?三、解答题21、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①2310x x -+=;②2(1)3x -=;③230x x -=;④224x x -=.22、关x 的一元二次方程(x-2)(x-3)=m 有两个不相等的实数根x 1、x 2,则m 的取值范围是 ;若x 1、x 2满 人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(1)一、选择题(每题4分,满分32分)1.已知3是关于x 的方程012342=+-ax x 的一个解,则a 2的值是( ) A.11 B.12 C.13 D.142.用配方法解方程时,配方结果正确的是( )A .B .C .D . 3.一元二次方程0122=--x x 的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根4.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为x ,则可列方程为( )A.()140012002002=++xB. ()()1400120012002002=++++x x C. ()140012002=+x D. ()()1400120012002=+++x x 5.关于x 的方程()01452=---x x a 有实数根,则a 满足( ) A. a ≥1 B. a >1且a ≠5 C. a ≥1且a ≠5 D. a ≠56.若31-是方程022=+-c x x 的一个根,则c 的值为( )2210x x +-=2(2)2x +=2(1)2x +=2(2)3x +=2(1)3x +=图1A .2-B .234- C.33- D .31+7.现定义某种运算,若,那么的取值范围是( )(A )(B )或(C )(D )8. 关于x 的方程ax 2-(a +2)x +2=0只有一解(相同解算一解),则a 的值为( )(A)a =0. (B)a =2. (C)a =1. (D)a =0或a =2.二、填空题(每题4分,满分32分)9.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).10.已知实数x 满足4x 2-4x+l=O ,则代数式2x+的值为________. 11.如果是一元二次方程的两个根,那么的值是___________12.已知是一元二次方程的一个根,则方程的另一个根是 .13.已知是方程的一个解,则的值是 . 14、在Rt △ABC 中, ∠C =90°,斜边c=5,两直角边的长a 、b 是关于x 的一元二次方程x 2-mx +2m -2=0的两个根 ,则Rt △ABC 中较小锐角的正弦值_________15、已知三个连续奇数,其中较大的两个数的平方和比最小数的平方的3倍还小25,则这三个数分别为_________16、若关于的一元二次方程有实数根,则的取值范围是 .三、解答题(满分56分)17. 解方程(1) (2) (3) (4) 3x 2+5(2x+1)=018. 求证:代数式3x 2-6x+9的值恒为正数。

相关文档
最新文档