《遥感图像处理》:曲靖市landsat8遥感影像植被覆盖度反演
Landsat8 TIRS 地表温度反演

热红外遥感(Infrared Remote Sensing)是指传感器工作波段限于红外波段范围之内的遥感。
即利用星载或机载传感器收集、记录地物的热红外信息,并利用这种热红外信息来识别地物和反演地表参数如温度、湿度和热惯量等。
目前有很多的卫星携带了热红外传感器,包括ASTER、AVHRR、MODIS、TM/ETM+/ TIRS等。
目前,地表温度反演算法主要有以下三种:大气校正法(也称为辐射传输方程:Radiative Transfer Equation——RTE)、单通道算法和分裂窗算法。
本实例是基于大气校正法,利用Landsat8 TIRS反演地表温度。
基本原理:首先估计大气对地表热辐射的影响, 然后把这部分大气影响从卫星传感器所观测到的热辐射总量中减去, 从而得到地表热辐射强度, 再把这一热辐射强度转化为相应的地表温度。
具体实现为:卫星传感器接收到的热红外辐射亮度值Lλ由三部分组成:大气向上辐射亮度L↑,地面的真实辐射亮度经过大气层之后到达卫星传感器的能量;大气向下辐射到达地面后反射的能量。
卫星传感器接收到的热红外辐射亮度值Lλ的表达式可写为(辐射传输方程):Lλ = [εB(T S) + (1-ε)L↓]τ+ L↑(1.1)式中,ε为地表比辐射率,T S为地表真实温度(K),B(T S)为黑体热辐射亮度,τ为大气在热红外波段的透过率。
则温度为T的黑体在热红外波段的辐射亮度B(T S)为:B(T S) = [Lλ - L↑- τ(1-ε)L↓]/τε(1.2)T s可以用普朗克公式的函数获取。
T S = K2/ln(K1/ B(T S)+ 1) (1.3)对于TM,K1 =607.76 W/(m2*µm*sr),K2 =1260.56K。
对于ETM+,K1=666.09 W/(m2*µm*sr),K2 =1282.71K。
对于TIRS Band10,K1= 774.89 W/(m2*µm*sr),K2 = 1321.08K。
植被检测实验报告

摘要:本实验旨在通过实地调查和遥感技术相结合的方法,对某地区的植被类型、覆盖度和生长状况进行检测和分析。
实验采用样方法进行实地调查,并结合遥感图像处理技术对植被覆盖度进行估算。
通过对实验数据的分析,得出该地区植被类型丰富,覆盖度较高,生长状况良好的结论,并对植被与人类活动的关系进行了探讨。
关键词:植被检测;样方法;遥感技术;植被覆盖度;生长状况一、引言植被是地球上重要的自然生态系统,对维持地球生态平衡、调节气候、保护土壤、提供生物多样性等方面具有重要作用。
准确了解植被的类型、覆盖度和生长状况,对于生态保护和资源管理具有重要意义。
本实验通过实地调查和遥感技术相结合的方法,对某地区的植被进行检测和分析。
二、实验材料与方法1. 实验地点与时间:实验地点位于我国某地区,时间为2021年8月。
2. 实验材料:(1)实地调查工具:GPS定位仪、数码相机、卷尺、样方框等;(2)遥感数据:某地区2021年7月Landsat 8遥感影像。
3. 实验方法:(1)实地调查:采用样方法进行实地调查,设置100个样方,每个样方面积为10m×10m。
在样方内,记录植被类型、覆盖度和生长状况等数据。
(2)遥感数据处理:利用遥感图像处理软件对Landsat 8遥感影像进行预处理,包括辐射校正、几何校正等。
然后,采用监督分类方法对遥感影像进行植被分类,得到植被覆盖度图。
三、实验结果与分析1. 植被类型:通过实地调查和遥感分类,共识别出6种植被类型,分别为乔木、灌木、草本、水生植物、农作物和裸地。
2. 植被覆盖度:根据实地调查和遥感估算,该地区植被覆盖度为85%,其中乔木覆盖度为45%,灌木覆盖度为20%,草本覆盖度为20%。
3. 植被生长状况:通过对植被生长状况的观察和数据分析,得出以下结论:(1)乔木生长状况良好,树冠茂密,树干粗壮;(2)灌木生长状况一般,部分灌木生长不良,存在病虫害现象;(3)草本生长状况较好,种类丰富,分布均匀;(4)农作物生长状况良好,长势旺盛。
Landsat陆地卫星遥感影像数据介绍

Landsat陆地卫星遥感影像数据简介“地球资源技术卫星”计划最早始于1967年,美国国家航空与航天局(NASA)受早期气象卫星和载人宇宙飞船所提供的地球资源观测的鼓舞,开始在理论上进行地球资源技术卫星系列的可行性研究。
1972年7月23日,第一颗陆地卫星(Landsat_1)成功发射,后来发射的这一系列卫星都带有陆地卫星(Landsat)的名称。
到1999年,共成功发射了六颗陆地卫星,它们分别命名为陆地卫星1到陆地卫星5以及陆地卫星7,其中陆地卫星6的发射失败了。
Landsat陆地卫星系列遥感影像数据覆盖范围为北纬83o到南纬83o之间的所有陆地区域,数据更新周期为16天(Landsat 1~3的周期为18天),空间分辨率为30米(RBV和MSS传感器的空间分辨率为80米)。
目前,中国区域内的Landsat陆地卫星系列遥感影像数据(见图1)可以通过中国科学院计算机网络信息中心国际科学数据服务平台免费获得()。
Landsat 陆地卫星在波段的设计上,充分考虑了水、植物、土壤、岩石等不同地物在波段反射率敏感度上的差异,从而有效地扩充了遥感影像数据的应用范围。
在基于Landsat遥感影像数据的一系列应用中,计算植被指数和针对Landsat ETM off影像的条带修复为最常用同时也是最为基础的两个应用。
因此,中国科学院计算机网络信息中心基于国际科学数据服务平台,提供了1)基于Landsat 数据的多种植被指数提取。
2)对Landsat ETM SLC-off影像数据的条带修复。
图1 Landsat 遥感影像中国区示意图数据特征(1)数据基本特征Landsat陆地卫星包含了五种类型的传感器,分别是反束光摄像机(RBV),多光谱扫描仪(MSS),专题成像仪(TM),增强专题成像仪(ETM)以及增强专题成像仪+(ETM+),各传感器拍摄影像的基本特征如下:(2)数据主要参数Landsat陆地卫星携带的传感器,在南北向的扫描范围大约为179km,东西向的扫描范围大约为183km,数据输出格式是GeoTIFF,采取三次卷积的取样方式,地图投影为UTM-WGS84南极洲极地投影。
landsat8植被提取步骤

landsat8植被提取步骤
Landsat8植被提取步骤如下:
打开Landsat8影像。
进行辐射定标,将影像的DN值转换为辐射亮度值。
进行大气校正,消除大气对影像的影响。
进行几何校正,将影像校正到统一的地理坐标系中。
进行投影转换,将影像转换为所需的投影方式。
进行图像裁剪与镶嵌,将感兴趣区域裁剪出来并进行拼接。
提取NDVI,利用NDVI公式计算每个像素的NDVI值。
估算植被覆盖度,根据NDVI值和阈值进行分类,提取出植被覆盖区域。
进行精度验证,评估提取结果的精度和可靠性。
以上步骤仅供参考,具体操作可能因软件和需求而有所不同。
使用遥感图像进行植被覆盖度测量的方法

使用遥感图像进行植被覆盖度测量的方法植被覆盖度是评估地表生态系统的重要指标之一,可以帮助我们了解植被分布、生长状况以及生态环境的变化。
通过遥感技术,我们可以借助航天器、无人机等高空平台获取的图像数据,来进行植被覆盖度的测量与分析。
本文将介绍一些使用遥感图像进行植被覆盖度测量的方法及其应用。
一、光谱指数法光谱指数法是使用遥感图像中的光谱信息来推断植被覆盖度的一种方法。
光谱指数是根据植被对不同波段的反射特性而计算得出的。
其中,植被指数(Vegetation Index,VI)是光谱指数法中最常用的一种指数计算方法。
常见的植被指数包括归一化植被指数(Normalized Difference Vegetation Index,NDVI)、简化型植被指数(Simple Ratio Index,SR)等。
在使用光谱指数法进行植被覆盖度测量时,首先需要根据遥感图像计算出相应的植被指数值。
然后,通过与实地采样数据进行对比,建立植被指数与植被覆盖度之间的关系模型,从而推算出植被覆盖度。
这种方法具有简单、快速、非破坏性的优点,并能够进行大范围的植被分布调查,因此被广泛应用于植被覆盖度的监测与评估。
二、面向对象的分类方法面向对象的分类方法是利用遥感图像中的纹理、形状、空间分布等特征,将图像中的像素分成不同的类别,并将每个类别与相应的植被覆盖度关联起来的方法。
通过这种方法,我们可以得到植被覆盖度变化的空间分布图,并进一步进行植被生态系统调查和分析。
面向对象的分类方法需要先进行图像分类,将图像中的不同景物、地物分割成不同的对象。
然后,根据所建立的训练样本库,将这些对象分类为与植被覆盖度相关的类别。
最后,通过对每个类别中的对象进行统计,得到相应的植被覆盖度。
三、机器学习方法机器学习方法是一种将遥感图像与实地采样数据进行关联的高级技术。
通过训练模型,机器学习方法可以从遥感图像中学习到特定的植被覆盖度信息,并将其应用于未知区域的植被覆盖度估计。
实验课1-定量遥感--植被覆盖度反演

说明文档中会注明是经过辐射校正的,其实这个辐射校正指的是粗的辐射校
正,只是做了系统大气校正,就跟系统几何校正的意义是一样的。
实验一 植被覆盖度的遥感反演
(二) 植被覆盖度的计算 1、计算NDVI 2、确定NDVIv和NDVI0值
在 Availabel Bands List 窗口中右键点击NDVI 数据,在弹 出的右键菜单中选择 Quick Stats,对NDVI 数据进行统计分析,
方法二:(两种方法都要做)
(1)主菜单Basic Tools > Band Math,在波段运算 窗口输入植被覆盖度计算公式:
(b1-NDVI0)/(NDVIv- NDVI0) ,将变量 b1 赋给 NDVI 。
计算得到初步结果,但是并没有完成整个工作。因为 该结果中有 5% 像元的 NDVI 值小于 NDVI0 ,这部分像元的 植被覆盖度计算结果为负值,需要通过掩膜操作将这部 分像元的植被覆盖度值修改为0;同样需要将5%NDVI值大 于0.425 的像元植被覆盖度值修改为1。
• • • 当NDVI小于NDVI0 , fv取值为0; NDVI大于NDVIv , fv取值为1; 介于两者之间的像元使用公式(1)计算。
利用ENVI主菜单->Basic Tools->Band Math,在公式 输入栏中输入进行计算.
请回顾ENVI中公式的写法
实验一 植被覆盖度的遥感反演
◦ 3、计算植被覆盖度
实验一 植被覆盖度的遥感反演
(3)然后类似操作将NDVI 值大于0.425 的像元植被覆盖 度值修改为1,设为1。 最终得到一个单波段的植被覆盖度图像文件,其像元值表 示这个像元内的平均植被覆盖度。 (4)对上述求取的植被覆盖度进行假彩色密度分割。
(完整)landsat 遥感影像地表温度反演教程(大气校正法)

基于辐射传输方程的Landsat数据地表温度反演教程一、数据准备Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。
同时需提前查询影像的基本信息(详见下表)标识日期采集时间中心经度中心纬度LC81280402016208LGN002016/7/263:26:56106.1128830.30647…………………………注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间。
二、地表温度反演的总体流程三、具体步骤1、辐射定标地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。
(1)热红外数据辐射定标选择Radiometric Correction/Radiometric Calibration 。
在File Selection 对话框中,选择数据LC81230322013132LGN02_MTL_Thermal ,单击Spectral Subset 选择Thermal Infrared1(10.9),打开Radiometric Calibration 面板。
(2)多光谱数据辐射定标选择要校正的多光谱数据“LC81230322013132LGN02_MTL_MultiSpectral ”进行辐射定标。
因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings ,如下图。
2、大气校正本教程选择Flaash 校正法。
FLAASH Atmospheric Correction ,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。
注意:如果在多光谱数据辐射定标时Scale factor 值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为0.1,若已设置,则默认值为1即可。
1) Input Radiance Image :打开辐射定标结果数据;2) 设置输出反射率的路径,由于定标时候;3) 设置输出FLAASH 校正文件的路径,最优状态:路径所在磁盘空间足够大;4) 中心点经纬度Scene Center Location :自动获取;5) 选择传感器类型:Landsat-8 OLI ;其对应的传感器高度以及影像数据的分辨率自动读取;6) 设置研究区域的地面高程数据;7) 影像生成时的飞行过境时间:在layer manager 中的Lc8数据图层右键选择View Metadata ,浏览time 字段获取成像时间;注:也可以从元文件“LC81230322013132LGN02_MTL.txt ”中找到,具体名称:DATE_ACQUIRED = 2013-05-12;SCENE_CENTER_TIME =02:55:26.6336980Z ;8) 大气模型参数选择:Sub-Arctic Summer (根据成像时间和纬度信息选择);9) 气溶胶模型Aerosol Model :Urban ,气溶胶反演方法Aerosol Retrieval :2-band (K-T );10)其他参数按照默认设置即可。
基于Landsat 8数据反演地表发射率的几种不同算法对比分析

收稿日期:2018-07-08 责任编辑:李克永基金项目:国家自然科学基金(41471452);中央高校基本科研业务资助项目(300102269201,300102299206)通信作者:王丽霞(1979-),女,山西大同人,博士,副教授,E mail:zylxwang@chd.edu.cn第39卷 第2期2019年3月西安科技大学学报JOURNALOFXI’ANUNIVERSITYOFSCIENCEANDTECHNOLOGYVol.39 No 2Mar 2019基于Landsat8数据反演地表发射率的几种不同算法对比分析王丽霞1,2,孙津花3,刘 招4,张双成1,杨 耘1(1.长安大学地质工程与测绘学院,陕西西安710054;2.国土资源部退化及未利用土地整治工程重点实验室,陕西西安710075;3.长安大学地球科学与资源学院,陕西西安710054;4.长安大学环境科学与工程学院,陕西西安710054)摘 要:为了分析研究不同地表发射率反演算法的精度和适用性,文中选取西安市的遥感影像Landsat8为基础数据,运用ENVI,ArcGIS等软件,首先对Landsat8数据进行预处理,提取西安市的NDVI影像;然后,建立决策树模型得到西安市地表分类影像,并基于像元二分模型反演得到植被覆盖度,基于NDVI得到4种不同算法的地表发射率;最后,以精度0.01的MODISLSE产品为标准数据,从像元尺度上对比分析了4种算法的精度,并依据回归决策树方法的分类结果,对比分析了不同算法在各类地表覆盖类型上的发射率反演差异。
结果表明:在像元尺度上,植被指数混合模型法与NDVITEM改进算法精度较高且较为接近;从不同下垫面的反演差异来看,在植被区域4种算法之间的差异较小,而对于水体区域,4种算法之间的差异较大;从反演方法的适用性而言,植被指数混合模型法与NDVITEM改进算法较为适合本研究区。
关键词:地表发射率;遥感反演;归一化植被指数;Landsat8数据中图分类号:P237 文献标志码:ADOI:10.13800/j.cnki.xakjdxxb.2019.0220 文章编号:1672-9315(2019)02-0327-07ComparisonofseveraldifferentalgorithmstoretrievelandsurfaceemissivityusingLandsat8dataWANGLi xia1,2,SUNJin hua3,LIUZhao4,ZHANGShuang cheng1,YANGYun1(1.SchoolofGeologyEngineeringandSurveying,Chang’anUniversity,Xi’an710054,China;2.KeyLaboratoryofDegradedandUnusedLandConsolidationEngineering,TheMinistryofLandandResource,Xi’an710075,China;3.SchoolofEarthScienceandResources,Chang’anUniversity,Xi’an710054,China;4.SchoolofEnvironmentalScienceandEngineering,Chang’anUniversity,Xi’an710054,China)Abstract:Inordertoanalyzetheaccuracyandapplicabilityofdifferentsurfaceemissivityinversional gorithms,theLandsat8dataofremotesensingimageryinXi’anwasselected,andsoftwaresuchasEN VIandArcGISwasused.First,theLandsat8dataispreprocessedtoextractNDVIimagesfromXi’an.Then,thedecisiontreemodelisestablishedtoobtainthesurfaceclassificationimageofthecity,theveg etationcoverageisobtainedbasedontheinversionofthepixelbinarymodel,andthesurfaceemissivityoffourdifferentalgorithmsisobtainedbasedonNDVI.Finally,withtheaccuracyof0.01MODISLSEproductsasthestandarddata,theaccuracyofthefouralgorithmsiscomparedandanalyzedfromthepix elscale,andbasedontheclassificationresultsoftheregressiondecisiontreemethod,thedifferencesofemissivityinversionofdifferentalgorithmsondifferenttypesofsurfacecoveragearecomparedandana©博看网 . All Rights Reserved.lyzed.TheresultsindicatethatthevegetationindexhybridmodelmethodandtheNDVITEMimprovedal gorithmaremoreaccurateandclosetoeachotheronthepixelscale.Fromtheinversiondifferenceofdif ferentunderlyingsurfaces,thedifferencebetweenthefouralgorithmsinthevegetationregionissmall.Forthewaterbodyregion,thedifferencebetweenthefouralgorithmsisgreat;fromtheapplicabilityoftheinversionmethod,thevegetationindexhybridmodelmethodandtheNDVITEMimprovedalgorithmaremoresuitableforthestudyarea.Keywords:surfaceemissivity;remotesensinginversion;normalizedvegetationindex;Landsat8data0 引 言地表发射率是遥感数据获取陆面温度中的一个关键参数,它与地表组成成分、地表粗糙度、含水量等因素有关,普遍应用于辐射传输过程和地气系统的能量平衡[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《遥感图像处理》实验报告实验题目:曲靖市Landsat8遥感影像植被覆盖度反演姓名:___ ____ 学号:专业:___地理科学_ __ 教师:日期:___2017年3月15日__曲靖师范学院城市学院一、实验目的太阳辐射通过大气以某种方式入射到物体表面然后再反射回传感器,由于大气气溶胶、地形和邻近地物等影像,使得原始影像包含物体表面,大气,以及太阳的信息等信息的综合。
如果我们想要了解某一物体表面的光谱属性,我们必须将它的反射信息从大气和太阳的信息中分离出来,这就需要进行大气校正过程。
本实验以曲靖市的一景Landsat 8遥感影像为数据源,利用ENVI大气校正扩展模块( FLAASH)进行大气校正,并对比分析大气校正前后植被、水体、土壤、裸岩等典型底物的光谱特征差异,为后续定量遥感的应用奠定一定的基础。
二、实验准备1.软件准备:ENVI 数据准备:LC8LGN00遥感数据、地形数据三、实验过程(一)遥感影像数据的辐射定标Landsat8数据和其他TM 数据类似,发布的数据标示 L1T,做过地形参与的几何校正,一般情况下可以直接使用而不需要做几何校正。
为了利用其丰富的波段光谱信息,我们需要进行辐射定标处理,将原始图像上的DN值转为反射率。
1.使用下的通用定标工具Radiometric Calibration进行Landsat8的辐射定标。
打开LO8BJC00_MTL全波段文件,选择MultiSpectral多光谱数据进行定标,定标的范围可缩小为ROI区域。
(1).定标参数设置。
为后续的FLAASH大气校正做数据准备,单击Apply FLAASHSettings得到相应的参数。
然后点击OK输出结果。
辐射定标后的结果:通过定标之后的影像DN值可靠。
其中,底下的Data值为定标前影像的像元值,上面的Data值为定标后影像的像元值。
且定标前影像的数据类型为无符号16位整型,定标后影像为浮点型辐亮度值。
(二)遥感影像的大气校正Flassh大气校正,大气校正的意义在于去除一些大气的干扰,首先,在Envi中打开Flaash大气校正工具,Toolbox/Radiometric Correction/FLAASH Atmospheric Correction,(1).Input Radiance Image:打开辐射定标结果数据,要求为BIL存储格式,这时会弹出Radiance?Scale?Factor对话框,它的作用是在单位未知的辐亮度值与浮点型辐亮度值之间做转换,并且Scale?Factor=浮点型或整型亮度图像(单位未知)/?浮点型辐射亮度。
(2).Output Reflectance File:设置输出FLAASH大气校正结果的路径;(3).Output Directory for FLAASH Files:设置输出FLAASH校正文件的路径;(4).Scene Center Location:自动获取;(5).Sensor Type:Landsat-8 OLI;Sensor Altitude:自动读取;Pixel Size:自动读取;(6).Ground Elevation: 。
利用全球900米分辨率DEM数据,首先,点出 Rejion of Interest (ROI) Tool工具,用不规则多边形划一个封闭的多边形并保存。
然后导入全球900米分辨率DEM数据:Open World Data ->Elevation(GMTED2010);在Toolbox下选择Statistics->Compute?Statistics,打开Compute Statistics输入文件对话框,选择数据。
最后用“Date Manager”加载已经保存好的ROI,点击Rejion of Interest (ROI) Tool 中的“计算”,就能得出最后的计算结果。
(7).Flight data/Flight Time:从原始数据“”中找到。
(8).Atmospheric Model:Mid-Latitude Summer(根据成像时间和纬度信息选择),此次成像时间是5月,所以选择Mid-Latitude Summer。
(9).Aerosol Model:Rural;(10).Aerosol Retrieval:2-band(K-T);在Multispectral Settings多光谱设置里,K-T变换选项中,Defaults下拉框:Over-Land Retrieval Standard(660:2100);Filter Function File:选择波谱响应函数;11) 其他参数按照默认设置即可。
大气校正结果:下图是建筑的反射波普曲线,从中可看出(注:左边是未校正的影像,右边是校正好的),校正后的基本去除了空气中水汽颗粒等因子的影响,下图是植被的反射波普曲线,左边是未校正的影像,右边是校正好的,校正后的植被反射波普在4波段以前反射很低,主要集中在4-7波段。
下图是植被的反射波普曲线,左边是校正好的影像,右边是未校正好的,大致可以看出大气校正后消除了大气散射的影响。
下图是水体的反射波普曲线,左边是未校正的影像,右边是校正好的,从图中可以看出,校正后的影像,水体反射波普曲线从1波段到7波段,反射值不断降低。
已经消除了空气中水汽等的影响。
从上述的波谱对比曲线中可以看出,经过FLAASH校正的影像基本去除了空气中水汽颗粒等因子的影响,植被、建筑、水体的波谱曲线趋于正常。
(三)去除异常值1.利用波段运算对红波段和近红外波段进行去除异常值处理在Band Math对话框的Enter an expression 中输入(b1 lt 0)*0+(b1 gt 10000)*0+(b1 ge 0 and b1 le 10000)*b1 点击Add to List 添加到Previous Band Math Expression 中,选中该公式,点击OK,在Variables to Bands Pairings对话框中选择红色波段,选择存储位置,点击OK。
通过直方统计查看结果用同样的方法对近红外波段去除异常值,并查看结果。
2.将去除异常值的红波段和近红外波段进行组合(layer stracking)3. 计算NDVI并获取阈值点击Toolbox工具箱中Spectral/Vegetation/NDVI,弹出NDVI Calculation Input File 对话框,选择已经做好的影像作为输入图像。
在NDVI Calculation Parameters中的Input File Type 中选择landsat OLI,NDVI 的红色波段填2,近红外波段填1。
加载提取好的边界(镶嵌数据集)新建ROI>file>import vector提取好的边界>在roi中直接统计(computer statistics)>file>Export to text file用ROI中的不规则多边形把影像全部画下来。
点击Compute Statistics 进行计算,下面我们分析统计结果,取一定置信度获取最大最小NDVI值。
置信区间为5%-95%,将导出的数据加到EXCEL中找到5%和95%所对应的值,分别是最小值和最大值。
4. 植被覆盖度的计算公式如下:四、实验结果1. 覆盖度分类结果:我们再查看结算结果,可以看到波段最小值由刚才的-1变为0。
2.覆盖度分类(密度分割)(1)对反演后的影像进行裁剪,将背景值改为-1 Toolbox > regions of interest > subset data from rois(2)在裁剪后的影像的图层上点击右键,选择New raster color slice,点击清除按钮,添加自己所需区间并设置颜色,单击OK分类结果:五、实验总结(1).在辐射定标中,定标参数设置中,要单击Apply FLAASH Settings得到相应的参数,不然,在后面的大气校正中中找不到相应文件。
(2).在Radiance?Scale?Factor对话框中,它的作用是在单位未知的辐亮度值与浮点型辐亮度值之间做转换,并且Scale?Factor=浮点型或整型亮度图像(单位未知)/?浮点型辐射亮度。
当各波段的辐亮度单位不一致时,选择第一项,否则选择第二项,因做辐射定标时已经使缩放系数符合Flaash校正要求,因此此处的缩放系数为默认值1。
(3).在确定Ground?Elevation的时候,如果利用ENVI自带的全球900米分辨率DEM 数据计算,算出的高程为千米,和实际的相比,出现了错误。
(4).选择气溶胶模型(Aerosol?Model)时,没有城市和工业影响的地区选择Rural (乡村);混合80%乡村和20%烟尘气溶胶选择Urban(城市),该模型适合高密度城市或工业地区;平静、干净条件下(能见度大于40km,即晴朗天气)的陆地,只包含微小成分的乡村气溶胶时选择Tropospheric(对流层);由此可见,气溶胶模型的选择与城市、工业影响程度有关。
(5).利用ENVI软件对landsat8影像进行辐射定标和大气校正,对比校正前和校正后的影像,可以看出大气对地物判读影响还是比较明显,给地物的判读造成一定困难。
(6).在ENVI中灵活运用Bandmath工具,以NDVI值为参数,运用基于像元二分模型设计的植被覆盖度遥感估算方法技术线路简单、可操作性强,也适用于不同分辨率的遥感数据。
(7).选择最大值与最小值的时候具有很强的主观性,需要依据统计学原理,自己制定一套规则,比如我们这里选的5%和95%的累积区间。