万方科技学院10年素质教育概览-- 提纲4

合集下载

江苏自考29767基础教育概论重点知识点汇总速记宝典

江苏自考29767基础教育概论重点知识点汇总速记宝典

基础教育概论(29767适用江苏)速记宝典简答题命题来源:基础教育概论的基本概念、原理、特点及内容。

答题攻略:(1)不能像名词解释那样简单,也不能像论述题那样长篇大论,但需要加以简要扩展。

(2)答案内容要简明、概括、准确,即得分的关键内容一定要写清楚。

(3)答案表述要有层次性,列出要点,分点分条作答,不要写成一段;(4)如果对于考题内容完全不知道,利用选择题找灵感,找到相近的内容,联系起来进行作答。

如果没有,随意发挥,不放弃。

考点1:依据教育的正规化程度划分答:(1)正规教育:指学校教育,是学生在有组织的教育机构中所受到的教育,近来也用制度化教育的术语来指称。

(2)非正规教育:对有组织的教育机构以外所从事的教育活动的统称教育的形态是指教育的组织形态。

(3)二者的区别:正规教育与非正规教育的区别:第一,在制度化上,正规教育在某种意义上是一个“真正的“体制,至少它的所有组成部分是相互联系和相互依附的;而各种非正规教育活动一般是各自独立的,虽然它有时是某一发展系统的一个组成部分,例如农业系统中的农民识字计划,但它们彼此之间缺乏严密的联系。

第二,在稳定性上,正规教育一般是在相对稳定的课程结构中全日制的、延续几年的连续性学习;而非正规教育更多的是部分时间的时间较短的、内容局限于特定学习者能很快使用的专门的实践类型的知识和技能,内容具有内在的灵活性。

第三,在管理体制上,正规教育具有集中的计划、管理和财政。

非正规教育在这些方面正好相反,它具有许多不同的发起者、管理者和资金来源,几乎包括所有政府部门和各类非政府机构。

考点2:教育术语、教育口号、教育隐喻的区别和联系答:一、区别教育术语:主要是以概念、范畴形式出现,是人们对教育现象的概括性反映(教育的理论工作者)。

教育口号:以人们的理性分析、判断为基础,但毕竟以一种情绪化的形式表现出来(多属于实践工作者)。

教育隐喻:介于两者之间。

二、联系(一)在于三者间的相互依存上。

2010-2011-2万方学院教材使用计划

2010-2011-2万方学院教材使用计划

26
08网络工程
侯守明 电气 15139115856 系 张静 电气 13939176736 系 李赓 电气 13569158980 系 李赓 电气 13569158980 系 张新良 电气 系 电气 系 电气 系 电气 系
132
计算机网络
必修
9787121053863
计算机网络
第5版 (第五 版) (第五 版) 第一版 教师未 定 教师未 定 教师未 定
测控仪器设计
3
国家规划 面向21世纪 课程教材 普通高等教 育"十一五" 国家级规划 行业规划 十一五国家 级规划教材 国家规划 普通高等教 育"十一五" 国家级规划 21世纪机械 类课程系列 教材 优秀教材
浦昭邦编 杨世铭 陶 文铨 丁立新
机械工业出 版社 高等教育出 版社
30
08测控
张明军 机械 13203960707 系 李海霞 机械 13707688068 系 周龙 机械 13203989007 系 王红星 机械 13783886092 系 王华 机械 15039138423 系 机械 系 机械 系
08热能
谢希仁
35
08计算机
133
计算机网络
必修
9787121053863
计算机网络
谢希仁
35
08通信
134
计算机网络
必修
9787121053863
计算机网络
谢希仁
35
09电信
136
检测技术与自动化 专业限 ISBN978-7-5083仪表 选课 6079-9 软件技术基础 专业任 教师未定 选课 专业任 教师未定 选课 专业任 教师未定 选课

内部交流

内部交流

内部交流文科科研简报2006年第2 期总第19期社会科学处编2006年6月10日本期要目科研管理在线教育部日前发出《关于树立社会主义荣辱观进一步加强学术道德建设的意见》2006年中山大学科研工作会议召开2005—2006年度广东省高等教育学会社会科学研究管理专业委员会年会召开基地建设我校两个广东省人文社科重点研究基地在2005年度评估中获得优秀中国非物质文化遗产研究中心编撰的《广东民俗大典》出版中国非物质文化遗产研究中心参与主办的“双三角论坛”学术在上海隆重召开行政管理研究中心参与主办的“国家治理与公共预算”国际研讨会在我校隆重举行项目园地我校2006年国家社科基金立项情况黄天骥教授获得全国高校古籍整理重点项目立项国家社科基金重大招标项目“城市化进程中的农民工问题”课题论证会召开教育部重大攻关项目“信息技术与大都市政府管理体制创新研究”开题学术会议第三届「心灵环保与人文关怀」学术研讨会简讯人类学系召开“田野中的宗教”国际学术研讨会中国体育产业与体育管理发展战略国际论坛暨中山大学与美国春田学院体育交流十周年庆典活动举行“中山大学教育学院池田大作思想与亚洲教育研究中心”成立揭幕典礼暨“池田大作思想与亚洲教育”学术研讨会举行学术讲坛中外优秀文化讲座“文化:差异与沟通”大型系列专题讲座陈春声教授:与古人对话:历史研究如何跨越时代差异周大鸣教授:族群差异与跨族群交流黎红雷教授:儒家和谐哲学及其在当代中国的运用李萍教授:中西伦理文化的比较著名市场营销学专家Paul Chao为管理学院师生做学术讲座著名经济学家张曙光教授莅临管理学院作“案例写作的理论与方法”学术讲座管理学院第八届管理文化节开幕式暨“步入管理咨询”主题讲座举行我校第一届心理宣传月开幕式暨社会心理学讲座举办岭南大讲堂之博雅教育系列讲座在珠海校区开讲为师与为学——管理学院在东校区举办会计知识前沿系列讲座交流与合作香港中文大学工商管理学院访问岭南学院韩国社会科学院金俊烨理事长访问我校宋俊华副教授考察日本非物质文化遗产综合信息夏书章教授荣获2006年度“国际公共管理杰出贡献奖”管理学院欧阳洁教授新著成为GMC全球赛区培训教程我校学科建设再创佳绩服务社会“城市化进程中的农民工问题”课题组向政府有关部门提交调查报告新加坡举办泛珠三角区域合作研讨会李江帆教授作主题演讲保继刚教授主持的《新疆喀纳斯旅游区总体规划》顺利通过专家评审“前沿大讲坛”获2005年度广东理论宣传奖“前沿大讲坛”继续关注社会热点:刘林平教授:外来工及其高流动性值得各方关注于海涌副教授:物权法与我们每个人的生活息息相关孙立平教授:调整利益关系与转变发展模式马骏教授:中国公共预算改革的政治MPAcc财智论坛第三讲举行社会反映热烈我校发布《2006年泛珠三角区域合作与发展研究报告》“广东百村调查”项目正式启动教育部日前发出《关于树立社会主义荣辱观进一步加强学术道德建设的意见》二○○六年五月,教育部发出了《关于树立社会主义荣辱观进一步加强学术道德建设的意见》。

现代教育学(扈中平等)复习提纲

现代教育学(扈中平等)复习提纲

现代教育学(扈中平等)复习提纲(识记、理解、应用)第一讲教育与教育学教育教育学的概念教育的构成(基本要素)及其相互关系。

教育产生的主要原因和条件。

教育的历史发展过程独立形态教育学创立的主要标志是什么?著名教育家的思想及其代表作对“现代教育”和“传统教育”的基本认识与评价。

第二讲人、社会、教育教育的基本着眼点是什么?为什么?理解教育的个体功能。

教育的两个基本规律。

影响人的发展的基本要素及其各自的作用。

对环境因素的基本理解。

教育的社会功能的含义及其特点。

为什么说教育是劳动者再生产的基本手段社会生产力、文化对教育的制约作用。

对教育的人的制约性的理解和认识。

第三讲教育目的什么是教育目的?教育目的具有哪些功能。

教育目的的个人本位论的价值取向。

教育目的的社会本位论的价值取向。

如何理解人的全面发展的教育观点?第四讲教师怎样全面认识教育的劳动特点及其价值?如何理解教师的社会地位(专业地位、经济地位、政治地位、职业声望)你认为新时代教师应具备哪些基本素质?(教师的职业态度和教师的信念、高尚的师德修养、良好的职业形象、多元的知识结构、多向的教育交往、完善的能力结构、健康的心理素质)什么是教师专业化?什么是师生关系?你认为在学校教育中,良好的师生关系的基本特征是什么?应该如何构建良好的师生关系。

第五讲课程课程的基本类型有哪些?理解课程设置在结构应该如何体现均衡性、综合性和选择性。

如何理解隐性课程的内涵与意义。

我国基础教育新课程改革的目标。

第六讲教育理论与实践教学在学校教育中的地位及其作用。

什么是教学观?现代教学观的发展趋势是什么?教学过程的基本矛盾是什么?主要表现在哪些方面。

我国中小学常用的教学原则有哪些?我国中小学教学中常用的教学方法有哪些?选择教学方法的主要依据是什么?教学工作的基本环节有哪些?它们之间的关系如何?上好一堂课所要遵循的课堂教学的基本要求是什么?如何进行教学设计?教学评价的基本类型有哪些。

第七讲德育对德育内涵与外延的理解。

文档(3)

文档(3)

文档(3)第一篇:文档 (3)为深入贯彻《中共中央国务院关于进一步加强和改进未成年人思想道德建设的若干意见》精神,落实《国家中长期教育改革和发展规划纲要(2010—2020年)》相关目标任务,总结“十一五”期间家庭教育工作经验,充分发挥典型引带作用,进一步推动“十二五”家庭教育工作创新发展,努力构建家长学校的新模式,提高了教育的实效性,取得了显著的效果。

家长学校积极做到“五认真”,认真备课、认真上课、认真听取意见、认真考核、认真评选“优秀家长”。

学校定期开展工作开展,制定“家长学校学期工作计划”、“学期工作总结” 等。

平时及时与家长联系:一方面鼓励家长校访,一方面将孩子在园情况通过书面联系、电话联系及时与家长取得沟通,取得家长的支持与配合。

邀请家长来校参加活动,举办“亲子”活动,促进两代人的沟通。

积极向家长宣传“家长教育行为规范” 等中外先进的科学育儿经验论文。

我们还根据家长类型、不同教育对象或教育者方面存在的问题,有针对性地分别培训,校长还随时接待来访家长,虚心听取家长意见,及时了解家长的心理倾向,为家长工作的有关决策提供了一定的依据,同时也加强了校方与家长的亲合力,使家长积极主动参与到学校教育和管理。

随着教育体制改革的深入开展,我们幼儿园也面临着新的机遇和挑战,我们决心在上级领导的正确领导下,在社会各界人士的支持下,充分发挥潜力,做好人才培养的奠基工程,把家长学校办得越来越好!第二篇:3.3倡议书教师节感恩活动倡议书亲爱的同学们:金色九月的天空飘溢着收获的气息,在这秋风送爽大地飘香的季节我们迎来了最值得感恩的节日——教师节。

对每一个人来说,从顽皮孩童到青涩少年再到风华青年的生命历程中,老师永远都是最值得我们尊敬和感恩的人。

春蚕到死丝方尽,蜡炬成灰泪始干。

有人把老师比作红烛,燃烧了自己,照亮别人。

他们默默的耕耘,无私的奉献,在三尺讲台之上挥洒青春与汗水,为国家培养人才与栋梁。

谁言寸草心,报得三春晖。

background effects

background effects

ORIGINAL PAPERHuman breath analysis:methods for sample collection and reduction of localized background effectsAudrey N.Martin &George R.Farquar &A.Daniel Jones &Matthias FrankReceived:13August 2009/Revised:30September 2009/Accepted:5October 2009/Published online:22October 2009#Springer-Verlag 2009Abstract Solid-phase microextraction (SPME)was ap-plied,in conjunction with gas chromatography –mass spectrometry,to the analysis of volatile organic compounds (VOCs)in human breath samples without requiring exhaled breath condensate collection.A new procedure,exhaled breath vapor (EBV)collection,involving the active sampling and preconcentration of a breath sample with a SPME fiber fitted inside a modified commercial breath-collection device,the RTube ™,is described.Immediately after sample collection,compounds are desorbed from the SPME fiber at 250°C in the GC-MS injector.Experiments were performed using EBV collected at −80°C and at room temperature,and the results compared to the traditional method of collecting exhaled breath condensate at −80°C followed by passive SPME sampling of the collected condensate.Methods are compared in terms of portability,ease-of-use,speed of analysis,and detection limits.The need for a clean air supply for the study subjects is demonstrated using several localized sources of VOC contaminants including nail polish,lemonade,and gasoline.Various simple methods to supply clean inhaled air to a subject are presented.Chemical exposures are used to demonstrate the importance of providing cleaned air (organic vapor respirator)or an external air source (tubing stretched to a separate room).These techniques allow for facile data interpretation by minimizing background con-taminants.It is demonstrated herein that this active SPME breath-sampling device provides advantages in the forms of faster sample collection and data analysis,apparatus portability and avoidance of power or cooling requirements,and performance for sample collection in a contaminated environment.Keywords Bioanalytical methods .Breath analysis .GC-MS .VOC .Breath condensateIntroductionThe desire for non-invasive medical diagnostics and the measurement of occupational and incidental chemical exposure has placed growing emphasis on the development of robust techniques for collection and analysis of con-stituents in exhaled human breath.Human breath can be collected and analyzed as exhaled breath condensate (EBC)or exhaled breath vapor (EBV).EBC [1]and EBV are easily collected,even by the subject in the home.Analyses of EBC have focused on inorganic compounds such as NO,and volatile organic compounds (VOCs);over 3,000VOCs were detected in human breath in a single study [2].Compounds observed in human breath have two sources:compounds that are present in the ambient air and are inhaled and subsequently exhaled into the breath sample (exogenous compounds),or compounds that are endemic to the subject,formed in vivo and passed into the exhaled breath via diffusion from the blood into the alveoli of the lungs (endogenous compounds)[2,3].Since the develop-ment of VOC analysis in breath several decades ago [4],research has focused on the study of endogenous com-pounds;changes which may be indicative of many medical conditions including asthma [5–9],chronic obstructiveA.N.Martin :G.R.Farquar (*):M.Frank Lawrence Livermore National Laboratory,Livermore,CA 94550,USA e-mail:gfarquar@ A.N.Martin :A.D.Jones Michigan State University,East Lansing,MI 48824,USAAnal Bioanal Chem (2010)396:739–750DOI 10.1007/s00216-009-3217-7pulmonary disease[10,11],diabetes[12,13],breast cancer [14–16],lung cancer[17–23],lung infection[9,24,25], and transplant rejection[26–28].Breath analyses targeted at identifying exposure to occupational or incidental chem-icals(exogenous compounds)have also been presented [29–36].Studies by the U.S.Environmental Protection Agency(EPA)have measured constituents in breath of human subjects throughout the United States,documenting exposures to chemicals such as automotive exhaust and cigarette smoke[32,35–38].Many techniques have been pursued for analysis of exhaled breath including enzyme-linked immunosorbent assay(ELISA)[39,40],colorimetric tests[41,42],optical spectroscopy[42,43],high-performance liquid chromatog-raphy[8,42],ion mobility spectrometry[25],liquid chromatography–mass spectrometry(LC-MS)[8,10,11], GC with flame ionization detection(GC-FID)[44–47],and GC-MS[16,17,22,34,48–50].Ekips Technologies (Norman,OK)has developed a system called the Breath-meter[6],approved by the FDA for research studies.The Breathmeter uses tunable diode laser spectroscopy to detect both organic and inorganic components in breath.The mid-IR absorptions of many compounds allows for internal calibration and wide-range detection with laser tuning.In separate developments,Aerocrine Inc.(Solna,Sweden)has marketed the first FDA-approved system called NIOX Flex which uses chemiluminescence to monitor NO in exhaled breath with a detection limit of2ppb[51].Toda et al. developed a breath isoprene detection system based on its chemiluminescence after reaction with ozone with a limit of detection of0.6ppbv[52].Achieving low detection limits can present challenges owing to low analyte concentrations and the complexity of breath.To avoid concentration of constituents needed to achieve low detection limits,Plodinec and Wang developed cavity ring-down spectroscopy for the detection of breath acetone in a single breath[53].Amirav et al.demonstrated the use of gas chromatography–electro-lyzer-fed FID(GC-EFID)for breath detection of ethanol, isoprene,pentane,and acetone[54].This system generated its own combustion gases from water and thus was gas cylinder-free making it more field-portable[54].Sacks et ed GC-GC for breath detection,achieving limits of detection in the parts per trillion range[55].The analytical challenges that confront breath analysis arise from typical and low VOC concentrations(parts per billion by volume and below)in breath.This difficulty is compounded by dilution of VOCs by extraneous air during sampling as well as incomplete trapping of VOCs during condensation when EBC is collected.To circumvent this, several techniques have been developed to preconcentrate breath-sample constituents before analysis.Gordin and Amirav developed the‘Snifprobe’as a novel preconcentra-tion method[56].The Snifprobe consists of a small length of capillary or porous-layer open tubular(PLOT)column that preconcentrates sample constituents.Breath was drawn through the Snifprobe for5s,after which the entire column segment was placed inside a direct/dirty sample introduc-tion device(DSI)that was then inserted into the GC injector for thermal desorption[56].A limit of detection for ethanol was reported in the low ppb(v/v)region[56]. Several researchers have also used a sorbent material to sample from a bag or chamber containing a breath sample [19,21,35,44,45,50,52].In this manner,preconcentra-tion takes place after breath collection,which increases the time of sample collection and analysis.Other groups have created in-line preconcentration methods[35,57–61].For example,Phillips et al.at Menssana Research,Inc.(New-ark,NJ)have developed a breath-collection apparatus (BCA)which incorporates a sorbent trap in-line with the breath flow so that VOCs are preconcentrated as the breath sample is collected,speeding up the analysis process[2,12, 14,17,18,20,24,27,57,62,63].Several generations of this instrument have been developed,the latest being the BCA 6.0(Menssana Research,Inc.,Newark,NJ) [64].One of the more promising tools for breath VOC preconcentration is solid-phase microextraction(SPME) which was described in more detail in a recent review [29].SPME sampling can be performed passively,where a breath sample is obtained and a SPME fiber exposed to it at a later time,or actively,where a SPME fiber is exposed to breath as it is exhaled[3].Wang et ed passive sampling to preconcentrate breath samples obtained in Tedlar®sampling bags,obtaining sub nanogram per milliliter detection limits for many VOCs[46].Mutti et ed a similar technique,collecting breath samples into Teflon bulbs into which a SPME fiber was inserted for preconcentration,achieving limits of detection on the order of10−12M[22].Grote and Pawliszyn have used SPME for active breath sampling[65].The SPME fiber was inserted into an inert tube serving as a mouthpiece, and acetone,isoprene,and ethanol were analyzed using GC-MS[65].Because of the influence of exogenous VOCs on the air exhaled by a subject,some emphasis has been placed on ensuring the inhaled air supply of a subject is clean.One solution is to provide a closed source of air for the subject [19,21,31,50,66,67].Although effective,this method is reagent-consuming and compromises the portability of the testing apparatus.In other studies,subjects have been required to remain in the sampling environment for a set period of time to allow equilibration with the ambient air [12,46,63].Such procedures make the process more time-consuming for subjects and require a single sampling location for optimal comparisons of multiple subjects. Other reports have attempted to remove contaminants from the ambient air using charcoal filters[67,68].Many studies740 A.N.Martin et al.have not cleansed the inhaled air supply[8,11,23,25,39, 42,44–47,52,59,69–72].A common technique is to collect a background sample of the ambient air at the same time as the subject who has reached equilibrium with the room air donates a breath sample.The alveolar gradient is then calculated[63,73](concentration in the breath−concentration in the ambient air)and is thought to eliminate any effects of contaminated inhaled air[2,12,14,17,18, 20,24,27,57,61,62].A positive alveolar gradient suggests that VOC was produced in vivo while a negative alveolar gradient indicates the source of the VOC is external to the body[74].While this technique has advantages in the determination of VOC kinetics and for metabolite profiling,data interpretation is based on the assumption that equilibrium exists for all VOCs between the body and the ambient air.In the current study,a side-by-side comparison of three different breath-collection methods is performed using a standard EBC collection device,the RTube™(Respiratory Research,Inc.,Charlottesville,V A),and modifications of this device.These modifications reduce the time of analysis from sampling to results by approximately30%to27min (compared to using the standard device and method),as well as eliminate the need for a freezer or liquid nitrogen, making the sampling device more field-friendly,and improve analyte limits of detection.Also in the current study,additional RTube™modifications and methods of providing clean inhaled air are described.The results demonstrate the need for such purification of inhaled air in some cases, e.g.,for situations where sources of background or contamination are localized on or near the subject donating breath.ExperimentalMaterialsFrozen lemonade concentrate(Safeway/V ons Lemonade, Safeway,Inc.,Pleasanton,CA)was purchased from a local supermarket and reconstituted according to the manufac-turer’s instructions.Samples were used the day of recon-stitution after reaching room temperature(24°C).Nail Polish(ORLY Nail Color,Orly International,Inc.,Los Angeles,CA)was obtained from commercial sources and used as is.Gasoline(89-octane automotive grade)was obtained from a local gas station.D-Camphor was obtained from J.T.Baker,Inc.(Phillipsburg,NJ).A65.3-mM solution was made in a1:4solution of H2O:methanol and stored in a glass vial.(1S)-(−)-β-pinene(99%)was obtained from Alfa Aesar(Ward Hill,MA)and+/−α-limonene(95%)was obtained from TCI America,Inc. (Portland,OR).SamplingFour healthy,nonsmoking adults were recruited as subjects for this study.All subjects had no known respiratory ailments and did not report any routine chemical exposure on a questionnaire.The Institutional Review Board(IRB)at Lawrence Livermore National Laboratory(LLNL,Liver-more,CA)as well as the IRB at Michigan State University (East Lansing,MI)approved the study and formal written informed consent was obtained from each subject prior to participation.Methods of breath-sample collectionSeveral methods were explored for the collection of breath samples.Collection of EBC and exhaled breath vapor at−80°C (EBV−80°C)The RTube™(Fig.1a)is a commercially available,FDA-approved,disposable EBC collection sys-tem.The subject inhales through the mouthpiece via a one-way valve(valve A)fitted with a saliva trap to prevent sample contamination.The subject then exhales through the mouthpiece into a polypropylene collection tube via ac.)a.)b.)Valve AValve BSPMEFiberHousing2ndValve BFig.1EBC and EBV collection devices.a The commercially available RTube™;b The RTube™was modified for EBV collection by the addition of a plastic fitting to hold a SPME fiber for active sampling;c The additional modification of the RTube™to provide an enclosed environment for SPME sampling as well as the addition of a respirator to purify inhaled airHuman breath analysis741second one-way valve (valve B).The polypropylene collection tube is placed inside an aluminum sleeve (not shown)cooled in a −80°C freezer prior to collection.In this configuration,water vapor and VOCs in exhaled breath passing through the collection tube condense and collect at the base of polypropylene tube.The RTube ™was slightly modified to allow for simultaneous vapor collection onto a SPME fiber above the EBC.A plastic fitting was constructed from a second RTube ™(Fig.1b )which attached directly to the top of the RTube ™and served as a mount for a SPME sampler.A SPME fiber (65µm PDMS/DVB Stableflex fiber,Sigma-Aldrich,St.Louis,MO),previously thermally conditioned in the GC injection port per manufacturer ’s instructions,was fitted into this mount and extended into the polypro-pylene tube with the end of the fiber extending approxi-mately 3.7cm into the tube.The subjects breathed at normal frequency and tidal volume through the mouthpiece for 10min,typically yielding 0.7–2.5mL of EBC.Immediately after collection,the analytes collected on the SPME fiber from EBV −80°C were analyzed by GC-MS,as described in more detail below.At the same time,a standard volume,0.5mL,of EBC was aliquoted into a disposable polypropylene microcentrifuge tube (Fisher Scientific,Pittsburgh,PA).After analysis of the EBV −80°C was complete,the same SPME fiber (thermally cleaned and conditioned during the EBV −80°C analysis in the GC-MS)was directly immersed in the aliquot of EBC for 10min (direct exposure).After this exposure,the analytes collected on the SPME fiber from EBC were analyzed by GC-MS.Three replicate samples were collected from each of three subjects over several days to validate this collection procedure.Collection of EBV-RT Exhaled breath vapor at room temperature (EBV-RT)was collected using the modified RTube ™(Fig.1b )at room temperature,without using the aluminum condenser.The subject breathed at a normal frequency and tidal volume through the mouthpiece of the RTube ™for 10min while the SPME fiber was exposed toexhaled breath inside the polypropylene tube.After collection,the sample was immediately analyzed by GC-MS.To reduce confounding effects such as diet,ambient intake air,and activity,the EBC and EBV −80°C samples were obtained simultaneously and the EBV-RT sample was subsequently obtained within 1h or less.All EBV −80°C and EBV-RT samples were analyzed immediately after collection;all EBC samples were sampled using SPME shortly after collection and then immediately injected.Noticeable warming of the aluminum condenser occurred during sampling,as has been previously documented [40].A typical EBC collection yielded 0.7–2.5mL EBC during the 10-min collection time.EBV-RT collection typically yielded <200µL condensate which was discarded.Three replicate samples were collected from each of 3subjects over several days to validate this collection procedure.Methods of sample collection in the presence of localized contaminantsSeveral procedures were used to modify the source of a subject ’s inhaled air in order to reduce the influence of localized contaminants on breath samples.RTube ™modification with PVC tubing A 12-foot long segment of FDA-approved clear PVC tubing (0.5in.I.D.,0.75in.O.D.,VWR,Inc.,West Chester,PA)was fitted to the base of valve A on the modified RTube ™(Fig.1b )using a plastic fitting.Tubing was stretched into a different room (air space)than that in which breath samples were collected.Human subjects breathed at normal fre-quency and tidal volume through the mouthpiece while blocking nasal inhalation for 10min.After collection,the EBV-RT collected on the SPME fiber was analyzed immediately.Three samples were collected from each of two subjects over several days to validate this collection procedure.2.003.004.005.006.007.008.009.0010.00Retention Time (min)A b u n d a n c e (a .u .)Fig.2GC/MS total ionchromatograms of breath samples from a single human subject.Samples were obtained using sev-eral collection methods:EBC with a −80°C condenser (black trace ,bottom ),EBV −80°C (green trace ,middle ),and EBV-RT (red trace ,top ).Arrows indicate several peaks with increased signal in the EBV samples compared to the EBC sample.Chromatograms are offset for clarity742 A.N.Martin et al.RTube ™modification with respirator A commercial or-ganic vapor respirator cartridge with a P100particulate filter (99.97%minimum filter efficiency,Lab Safety Supply Inc.,Janesville,WI)was fitted to the plastic fitting holding valve A via a Viton®o-ring (approximately 2.5cm diameter)and a machined brass fitting.Plastic caps,the polypropylene tube,and valve B from a second RTube ™were used to isolate the SPME fiber from the outside air as shown in Fig.1c .The subject held the RTube ™with the air inlet of the attached respirator cartridge positioned over approximately 125mL of lemonade,allowing the head-space of the lemonade to be inhaled through the cartridge.The subject then repeated the experiment without the respirator cartridge,holding the RTube ™air inlet in the headspace of the lemonade.This experiment was also repeated as the subject painted a standardized square with nail polish,with the inhaled air containing the headspace of the polish.Again,this experiment was repeated without the respirator cartridge,with the RTube ™air inlet directly drawing from the nail polish headspace.After collection of each sample,the EBV-RT collected on the SPME fiber wasTable 1Breath VOCs and corresponding GC retention times tentatively identified in GC/MS analysis of a typical EBV-RT sample from human breath (no known exposure)Peak CompoundRT 1Carbon dioxide 1.32Acetone 1.543Acetic acid1.854Allyl methyl sulfide2.55Unidentified compound2.636(Z )-1-(Methylthio)-1-propene 2.827Methyl isobutyl ketone 2.868Formic acid 39Toluene3.13104,4-Dimethyl-2-pentene 3.411Butyl ester acetic acid 3.55123-Furaldehyde3.77134-Hydroxy-4-methyl-2-pentanone 3.86142-Furanmethanol 3.9715o -Xylene4.0816p -Xylene4.1817Methoxy-phenyl-oxime 4.3118Styrene4.419Ethylene glycol monoisobutyl ether 4.49202-Methyl-bicyclo[3.1.0]hex-2-ene4.75216,6-Dimethyl-2-methylenebicyclo[3.1.1]heptane 4.8422Benzaldehyde5.1323Phenol5.19246-Methyl-5-hepten-2-one 5.2925Cyclofenchene 5.3026Beta-pinene 5.3427Isopentyl ether 5.4628Alpha-terpinene 5.66292-Ethyl-1-hexanol 5.730o -Cymene5.7331D -Limonene5.7832Eucalyptol5.83332-Methyl tridecane 5.96344,6-Dimethyl undecane6.0135Gamma-terpinene 6.0436Isooctylvinyl ether 6.16372,5-Furandicarboxaldehyde 6.1938Alpha-terpinene6.339Alpha-p -dimethylstyrene 6.3440Nonanal6.4341D -Fenchyl alcohol 6.6442Plinol A 6.7643L -isopulegol 6.8944Camphor 6.9245Menthone 6.9646Isopregol747Ethyl benzoate7.05Table 1(continued)Peak CompoundRT 484-Isopropyl-1-methylcyclohexanol 7.13494-Terpineol 7.1850Alpha-terpineol 7.29514-Ethyl octane7.35525-Hydroxymethylfurfural 7.4353Undecane7.58543-Methyl dodecane 7.6755Tridecane7.75562,6,10-Trimethyl dodecane 7.8257Unidentified alkane 7.8558Isomenthol acetate 8.0259Unidentified alkane 8.5460Unidentified alkane 8.661Unidentified alkane 8.6362Unidentified alkane 8.8163Unidentified alkane 8.964Dihydropseudoionone 9.18652,6-Dimethyl heptadecane 9.25661-Dodecanol9.3567Unidentified compound 9.4868Hexyloctylether9.5369Butylated hydroxytoluene 9.6270Diethyl phthalate 10.1871Heptadecane10.24722,2-Dimethyl-3-octanone 10.88732,2-Dimethyl-4-octen-3-ol11.16Human breath analysis743analyzed immediately by GC-MS.Samples were collected from three subjects over several days to validate this collection procedure.The efficacy of the respirator for cleansing the inhaled air was also tested using commercial gasoline.To prevent unnecessary exposure to harmful chemicals a human subject was not used to collect these data;a polyethylene synthetic lung substitute was developed to simulate human respiration.The synthetic lung substitute was fabricated to approximate adult tidal volume (500mL)[75]and allowed air to be pulled into the ‘lung ’and expelled from the lung in a piston fashion.The ‘lung ’was pumped to simulate the inhalation and exhalation of a normal adult respiratory pattern with a ‘breath ’being taken every 8–10s.The synthetic lung was attached to an RTube ™,simulating a subject inhaling and exhaling through the sample collection device.The headspace of a tray of gasoline (approximately 100mL)was the source of the simulated inhaled air of the lung substitute,and as the lung substitute was expanded,the headspace ‘inhaled breath ’passed through the RTube ™and into the ‘lung ’.As the lung substitute was contracted,‘breath ’was expelled from the lung,through the RTube ™and passed over the SPME fiber.This process of simulated inhalation and exhalation was repeated for 10min.Samples were collected over several days to validate this collection procedure.A second respirator was then attached in series to the first respirator and the experiment repeated,in order to study the effect of additional filtration.Sample analysis by GC-MSAn Agilent (Santa Clara,CA)6890N GC equipped with a SPME inlet sleeve and an Agilent J&W DB-5MS column(30m×0.25mm×0.25µm,equivalent to 5%phenyl,95%methylpolysiloxane)was used for the separation of all compounds.Helium (99.999%,Praxair,Inc.,Danbury,CT)was used as a carrier gas and the GC was operated in constant pressure mode (10psi).The injector temperature was held at 250°C,and the oven temperature was held at 40°C for 1min,then ramped at 20°C/min to 300°C,then held for 3min.Detection was carried out with an Agilent 5973MS detector (Santa Clara,CA),using 70eV electron ionization and operated in scan mode (m /z 40–450)at 3.54scans/s,with the source held at 230°C and the mass analyzer (quadrupole)held at 150°C.The detector was autotuned using ChemStation software (Agilent,Santa Clara,CA),and the tune confirmed before each set of experiments.A blank SPME fiber (unexposed)was analyzed at the beginning of each day to ensure system calibration and fiber cleanliness.Chem-Station software was used for data collection and analysis.Compounds were identified based on comparison of their mass spectra with those in the NIST Mass Spectral Library (RMatch >700,NIST MS Search 2.0,NIST,Gaithersburg,MD)as well as mass spectra published in the literature,and comparison of retention time with pure chemicals (camphor,acetone,toluene,β-pinene,limonene)when available.Peak areas were calculated using the RTE integrator contained in the ChemStation software.Table 2GC/MS total ion chromatogram peak areas of several compounds tentatively identified in total ion current chromatograms of human breath samples collected as EBV −80C or EBV-RT compared to corresponding peak area of EBC total ion current chromatograms CompoundRT (min)Factor increase in measuredpeak area vs.EBC-80CEBV −80CEBV-RTAllyl methyl sulfide2.50 5.0 2.1(Z )-1-(methylthio)-1-propene 2.829.93.7D -Limonene 5.78 6.810.2Ethyl benzoate 7.05 1.64.6Tridecane7.75 2.08.4Unidentified alkane7.85 2.19.0Butylated hydroxytoluene9.624.98.4These chromatographic peaks are indicated by the arrows in Fig.201M 2M 3M 4M 5M 6M1.501.582K4K 6K 8K 10K 3.82 3.860.4K0.8K 1.2K 1.6K 2K 6.90 6.92c.)a.)b.)Retention Time (min)A b u n d a n c e(a .u .)Fig.3Extracted ion chromatograms (XIC)of breath samples from a single subject (EBC).One sample was collected 215min after the subject received a manicure with an RTube ™modified with PVC tubing which provided inhaled air from a separate room (black trace ,bottom ).Another sample was obtained 317min after receiving the manicure,and was obtained with the standard unmodified RTube ™(red trace ,top ).a The XIC of m /z 45,identified as a major fragment ion from isopropyl alcohol,b the XIC of m /z 43,corresponding to a major fragment ion from diacetone alcohol,and c the XIC of m /z 152corresponding to the molecular ion of camphor744A.N.Martin et al.Results and discussionMethods of breath-sample collectionFigure 2shows example total ion chromatograms (TIC)from a single human subject using each collection method.The EBV-RT samples yielded an average of 23%more peaks in the chromatograms than the EBC samples from the same subject using the same integration parameters (n =4).Table 1shows a list of observed compounds and their retention times tentatively identified in EBV-RT breath samples.The vapor samples also provided increased peak areas for many peaks.For example,D -limonene showed a tenfold increase in peak area when a vapor phase sample was collected and analyzed relative to an EBC sample.The area increase of several such peaks is shown in Table 2.Thus,for many compounds,vapor phase collection of exhaled breath provides increased signal and increased information.Methods of sample collection in the presence of localized contaminantsSeveral methods were tested herein to determine if the source of a subject ’s inhaled air could be modified to reduce the influence of a subject ’s surroundings on the subject ’s breath samples.Breath samples (EBC)from a single subject with a fresh manicure were obtained at regular intervals over the course of a single day (7h)using the RTube ™modified with PVC tubing.The PVC tubing was extended out of the sampling room in order to provide a ‘clean ’air source.Immediately after the manicure,the concentration of several VOCs in breath,tentatively identified as isopropyl alcohol,camphor,and diacetone alcohol,increased and then exponentially decayed with time (data not shown).Isopropyl alcohol and camphor were listed as ingredients on the nail polish used;diacetone alcohol was not a listed ingredient,but is commonly formedvia an aldol condensation of acetone [76],which was a listed ingredient.The breath sample obtained 215min after the manicure showed minimal detectable signal from these compounds.An additional sample was then taken 317min post-manicure using an unmodified RTube ™(no tubing).This chromatogram showed higher concentrations of isopropyl alcohol,camphor,and diacetone alcohol than found with the RTube ™modified with PVC tubing.Extracted ion chromatograms for each of these peaks are shown in Fig.3.By holding the RTube ™to obtain the breath sample,the subject ’s hands (i.e.,painted fingernails)were in close proximity to the mouth and nose,inadvertently causing the subject to inhale a higher concentration of compounds directly from the nail polish.The use of the PVC tubing to provide an air source removed from the subject ’s personRetention Time (min)A b u n d a n c e (a .u .)Fig.4Total ion current chromatograms of breath samples from a single subject (EBV-RT)collected using a variety of inhaled air sources:ambient air (red trace ,top ),ambient air through a respirator (blue trace ,middle ),and ambient air from a separate room than sampling (green trace,bottom).The subject painted a simulated fingernail with commercial nail polish during pounds labeled are listed ingredients of the nail polish or byproducts of ingredients.Chromatograms are offset for clarityTable 3Reduction in extracted ion chromatogram peak area for several ingredients of nail polish detected in human breath obtained with a respirator or PVC tubing CompoundPeak area reduction (%)With respiratorWith tubingIsopropyl alcohol 9096Ethyl acetate9294Diisopropoxy methane 8996Toluene9498Mesityl oxide 9499Butyl acetate 9298Diacetone alcohol 9694Camphor (1)95100Camphor (2)9799Peak areas were calculated by integration of a specific extracted ion chromatograms (XIC)for each compound,and are displayed relative to the peak area value obtained without modifying the inhaled air sourceHuman breath analysis745。

高性能中空纤维复合膜基膜的研制

高性能中空纤维复合膜基膜的研制

第28卷第1期2009年2月天津工业大学学报JOURNAL OF TIANJIN POLYTECHNIC UNIVERSITYVol.28No.1February 2009高性能中空纤维复合膜基膜的研制卢佳楠,安树林,韩小进(天津工业大学中空纤维膜材料与膜过程教育部重点实验室,天津300160)摘要:以聚砜为基质材料,选用无机盐为成孔添加剂,同时加入不同相对分子质量的聚乙二醇,纺制了用于制备中空纤维复合膜的基膜.实验结果表明,基膜的水通量随着铸膜液中聚砜质量分数的增大而减小;随无机盐含量的增大而上升;随聚乙二醇相对分子质量的增大而明显提高,且在相对分子质量为10000时达到最大值;铸膜液的温度越高,基膜水通量越大,但断裂强度有所下降;芯液中溶剂的质量分数增大,基膜水通量减小,断裂强度增大;随着空气浴高度的增长,基膜水通量增大.关键词:中空纤维复合膜;聚砜;无机盐;基膜性能中图分类号:TS102.54;TS102.528.1文献标识码:A文章编号:1671-024X (2009)01-0001-05Research of preparation of high performance polysulfone substrate forhollow fiber composite membranesLU Jia-nan ,AN Shu-lin ,HAN Xiao-jin(Key Laboratory of Hollow Fiber Membrane Materials and Membrane Process of Ministry of Education ,Tianjin Polytechnic University ,Tianjin 300160,China )Abstract :By taking inorganic salt as the pore-forming additive ,and different relative molecular weight of PEG wereused to prepare polysulfone (PSF )hollow fiber ,which is used as substrate for hollow fiber composite membranes.The results show that the flux of substrate membrane can decrease when the content of PSFincrease ;the flux increase when the content of the inorganic salt increase ;the flux of substrate membranes can obvious increase and the rupture strength decrease with relative molecular weight of PEG increase ,and flux achieve maximum when the relative molecular weight of PEG is ten thousand ;the flux can increase whenthe temperature of spinning dope heat up ;the flux can decrease and rupture strength can increase with thecontent of solvent in bore liquid ;the flux will increase with air gaps go up.Key words :hollow fiber composite membrane ;polysulfone ;inorganic salt ;performances of substrate membranes收稿日期:2008-08-08基金项目:天津市科技攻关计划重点项目(06YFGZSH01700)作者简介:卢佳楠(1984—),女,硕士研究生;安树林(1953—),男,教授,导师.E-mail :asl8074@当前,国际上商品化的复合膜仍以卷式膜为主,中空纤维复合膜的产品很少,国内的中空纤维复合膜还处于实验室的研究阶段.复合膜包括多孔支撑膜的研制及超薄脱盐致密层的复合化,高性能的支撑膜是制备高性能复合膜的基础[1-3].对于多孔支撑层,要求有适当大小的孔密度、孔径和孔径分布,有良好的耐压密性和物化稳定性,还要尽量提高基膜的水通量以提高复合膜的工作效率.J.E.Cadotte 于1966年筛选了物理化学综合性能优异的聚砜作为多孔支撑基膜材料,至今仍是广泛使用的最好的基膜材料之一[4],用其制成的中空纤维超滤膜已广泛应用于浓缩、分离、提纯、精制、回收等领域[5].本文选用聚砜为膜材料,采用无机盐和不同相对分子质量的聚乙二醇作为成孔添加剂,制备了聚砜中空纤维基膜.1实验部分1.1实验材料和设备聚砜(PSF ),工业品,特性粘度0.60,上海曙鹏特种工程塑料有限公司产品;二甲基乙酰胺(DMAc ),工第28卷天津工业大学学报业纯,韩国三星公司产品;聚乙二醇(PEG),分析纯,天津天泰精细化学品有限公司产品;无水氯化锂(LiCl),分析纯,天津市赢达稀贵化学试剂厂产品.干-湿法纺丝机,自制;中空纤维评价池,自制; UV-2450紫外-可见光分光光度计,SHIMADZU公司产品;Quanta200型环境扫描电子显微镜,FEI公司产品;YG061型电子单纱强力仪,莱州市电子仪器有限公司产品.1.2聚砜中空纤维基膜的纺制将干燥过的聚砜、溶剂和无水LiCl与PEG加入溶解釜,在60~70℃温度条件下搅拌6~8h,使其充分溶解均匀,经静置加热脱泡后,在0.2MPa的氮气压力下,经过滤网、计量泵后进入插入管式喷丝头,芯液通过气压进入喷丝头,采用干-湿法纺丝工艺制备中空纤维膜.将纺制的聚砜中空纤维膜放入纯水中浸泡,将残留的溶剂和添加剂脱除;然后将其浸渍于甘油水溶液中,以保持其微孔结构;最后在空气中自然晾干备用.1.3基膜性能的评价1.3.1基膜水通量和截留率的测定取1束聚砜中空纤维基膜,用环氧树脂和固化剂浇铸成组件,在0.1MPa下用纯水预压0.5h后,测定一定时间内通过膜的水的体积,再按下式计算膜的水通量:J=V St(1)式中,J为膜的水通量(L/(m2·h));V为透过液的体积(L);S为膜的有效面积(m2);t为透过时间(h).选用5%的卵清蛋白(相对分子质量为45000)水溶液测定基膜的截留率,在0.1MPa下预压20min 后,接取透过液.利用紫外-可见光分光光度计在280 nm处分别测量原液与透过液的吸光度,利用下式计算出基膜对卵清蛋白的截留率:R=C1-C2C1×100%(2)式中,C1为原液的吸光度;C2为透过液的吸光度. 1.3.2基膜力学性能的测定采用单纤维电子强力仪测试中空纤维基膜轴向断裂强度和断裂伸长.纤维的实验长度为250mm,拉伸速度为200mm/min,每种样品平行测试5次,取其平均值.1.3.3孔隙率的测定取一定数量的中空纤维膜样品,在测试液体蒸馏水中充分润湿后,取出甩干膜表面的水分,再将其置入称量瓶中称得湿重.然后将膜放入烘箱,干燥至恒重,再称其干重,按下式计算孔隙率[5]:ε=(1-W2ρPSFW1-W2ρH2O+W2ρPSF)×100%(3)式中,ρH2O为水的密度,ρH2O=0.998g/cm3(25℃);ρPSF 为聚砜密度,ρPSF=0.60g/cm3(25℃);W1、W2分别为湿、干膜重(g).1.3.4基膜结构形态的观察将纺制的聚砜中空纤维基膜放入液氮中冷却脆断,制成样品,然后表面真空喷金,利用扫描电镜观察其结构形态.2结果与讨论2.1铸膜液中聚砜含量对基膜性能的影响铸膜液中的聚砜含量对中空纤维膜的成形过程、膜的强度和膜的渗透性能都有很大影响.聚砜含量过低,膜的成形困难,强度太低,没有使用价值;反之聚砜含量过高,制成的膜结构过于致密,虽然截留性能好,但膜的通量太小,也没有实用价值.为了研究铸膜液中聚砜含量对中空纤维基膜性能的影响,实验中添加剂含量不变,聚砜质量分数分别为16%、18%、20%和22%,制成PSF/添加剂/DMAc 的铸膜液.在相同的纺丝条件下,制备的聚砜中空纤维基膜的水通量、对卵清蛋白的截留率如图1所示.由图1可见,随着聚砜含量的增大,膜的水通量明显减小,截留率略有上升.这是因为当聚砜浓度增大时,铸膜液的粘度增大,形成的膜孔径变小,而且聚砜质量分数增加后,高分子之间相互接触的机会增加,铸膜液在发生相分离时,聚合物富相增多,贫相减图1聚砜含量对基膜渗透性能的影响Fig.1Effect of content of PSF on permeate performances of substrate membranes30025020015010050聚砜质量分数/%2018162210080604020截留率纯水通量2——第1期少,即孔的生成受到影响,孔隙率从46.6%下降到39.4%,基膜的结构变得致密,因此基膜断裂强度得到较大提高,如图2所示.2.2无机盐含量对基膜性能的影响图3所示为聚砜质量分数为18%时,铸膜液中无机盐LiCl 的含量与基膜水通量和截留率的关系.由图3可见,随着LiCl 含量的增加,膜的水通量随之增大.通常认为,无机盐添加剂具有致孔能力和增溶作用.由于无机盐在溶剂中具有强烈的盐效应,所解离的离子降低了聚砜分子间作用力,有利于其分散.在相转化法的制膜过程中,无机盐的存在促进了沉淀剂———水向膜内扩散,使得膜表面孔径增大;此外,当无机盐从凝胶后的超滤膜中浸出后,留下许多微孔,使得膜孔隙率提高.因此,随着无机盐含量的增加,基膜的水通量逐渐增大,而截留率略有下降.同时,随着LiCl 含量的增大,基膜的断裂强度下降,如图4所示.正如上面所分析的,由于LiCl 含量增多,膜孔隙率提高且膜表面孔径增大,因此断裂强度下降.2.3PEG 的相对分子质量对基膜性能的影响图5、图6分别为聚砜质量分数为18%、LiCl 含量不变、PEG 质量浓度不变时不同相对分子质量PEG 对基膜性能的影响.由图5可以看出,膜的水通量随着PEG 相对分子质量上升而明显增大,而截留率略有下降.当PEG 相对分子质量为10000时,水通量达到最大值.而后当铸膜液中PEG 相对分子质量继续增大,水通量下降.这是因为PEG 作为高聚物的非溶剂,一方面可以使铸膜液成为热力学不稳定体系,加速了液-液相分图2聚砜含量对基膜断裂强度的影响Fig.2Effect of content of PSF on rupture strength of substrate membrane1.201.151.101.051.000.950.900.850.80聚砜质量分数/%22212019181716图4无机盐含量对基膜断裂强度的影响Fig.4Effect of content of inorganic salt on rupture strength of substrate membrane2.01.91.81.71.61.51.4无机盐质量分数/%12345图5PEG 相对分子质量对基膜渗透性的影响Fig.5Effect of relative molecular weight of PEG onpermeate performances of substrate membranes250200150100500PEG 相对分子质量1000040020020000100806040200图6PEG 相对分子质量对基膜断裂强度的影响Fig.6Effect of relative molecular weight of PEG on rupture strength of substrate membranes1.81.71.61.51.41.31.21.11.00.90.8PEG 相对分子质量10006000100004002002000010006000图3无机盐含量对基膜渗透性能的影响Fig.3Effect of content of inorganic salt on permeate performances of substrate membranes200150100500无机盐质量分数/%426100806040200截留率纯水通量截留率纯水通量卢佳楠,等:高性能中空纤维复合膜基膜的研制3——第28卷天津工业大学学报离的发生;另一方面使铸膜液的粘度增加,增大了非溶剂水进入膜液的阻力,降低非溶剂水在支撑层的扩散速度,延迟了相分离的发生.两种机制相互竞争,同时作用于膜,最终影响了膜的结构及性能.对于PEG相对分子质量分别为200、400、1000、6000和10000的膜,由于热力学不稳定因素的影响占主导作用,当铸膜液浸入到非溶剂水时,溶剂与水快速交换,促进液-液相分离,形成较疏松的皮层.因此随PEG相对分子质量的增大,膜的水通量增加.而此后相对分子质量继续增大到20000时,则是第2种因素起到主导作用.同时,由图6可见,随着PEG相对分子质量的增大,膜的断裂强度下降,其中在400、1000时,膜的断裂强度急剧下降.之后相对分子质量增大,而膜的断裂强度变化趋于平稳.这是由于膜的表皮层较为疏松,膜孔径较大,因此断裂强度下降.2.4铸膜液温度对基膜性能的影响铸膜液温度对基膜性能的影响如表1所示.从表1可以看出,随着铸膜液温度的升高,基膜的水通量上升,截留率略有下降.由于铸膜液的粘度除了受铸膜液组成的影响外,还与铸膜液的温度有着密切的关系.当铸膜液组成固定时,较高的铸膜液温度会使铸膜液的粘度下降,流动性好.这样就减少了水扩散进膜液的阻力,产生瞬时分相,形成疏松的表皮层,所以水通量随着铸膜液温度的升高而增大,截留率略有下降,而基膜的断裂强度也随之下降.2.5芯液中溶剂含量对基膜性能的影响铸膜液在固化成型前,膜的圆中空形状依靠芯液支撑,中空纤维的中空度大小通过芯液流量来控制,芯液流量微小的变化可使中空纤维膜的内外径发生较大的变化.同时芯液还起内凝固的作用,改变芯液的组成,可调整膜的微观结构.图7和图8为芯液中溶剂含量对基膜性能的影响.由图7可见,芯液中溶剂的质量分数越大,膜的水通量越小,截留率略有下降.这是由于当芯液中加入溶剂后,随着溶剂质量分数的增大,纤维内表面上溶剂与沉淀剂的浓度差逐渐减小,双扩散速度减慢,发生延迟分相,形成较为致密的内皮层.由图8可见,随着芯液中溶剂含量的增大,基膜的断裂强度随之增大.这是由于芯液中溶剂含量逐渐增大,制备的中空纤维的内皮层越来越致密,断裂强度自然随之增大.2.6空气浴高度对基膜性能的影响在铸膜液从喷丝头流出到进入凝固浴,要经历一段空气浴.在这段过程中,膜的表皮蒸发速度大于溶剂由溶液内层向外扩散的速度,因此在膜表面形成了微观结构较致密的表皮层.表皮层的厚度及微孔大小对膜截留能力影响很大.空气浴较长时,利于溶剂蒸发,利于形成表皮层.图9和图10为空气浴高度对基膜性能的影响.由图9可见,膜的水通量并不是随着空气浴高度的增加而减小,而是随着空气浴高度的增加而增大.这是由于,随着溶剂的挥发,铸膜液表层聚合物浓度不断增加并且相互接近、聚集,从而在膜的表层形成一结构致密的表皮层.表皮层致密程度越高,膜的水通量越小.但是随着空气浴高度的增加,水通量反而上升,这主要是空气段溶剂的吸水特性所决定的.溶图7芯液中溶剂含量对基膜渗透性能的影响Fig.7Effect of content of solvent in bore liquid on permeate performances of substrate membranes25020015010050芯液中溶剂质量分数/%4010050截留率纯水通量10080604020图8芯液中溶剂含量对基膜断裂强度的影响Fig.8Effect of content of solvent in bore liquid onrupture strength of substrate membranes1.351.301.251.201.151.10芯液中溶剂质量分数/%203040100502030表1铸膜液温度和基膜性能的关系Tab.1Relationship between temperature of spinning dope and performances of substrate membranes膜性能43℃70℃纯水通量/(L·m-2·h-1)110.38143.60截留率/%91.0290.69断裂强度/(cN·tex-1) 1.233 1.098 4——第1期剂分子从铸膜液表面的扩出和水分子从铸膜液表面进入是同时进行的,这是一种相互扩散的过程.由于DMAc 溶剂有较强的吸水性,随着空气段的延长,吸水量也不断增加,而且吸水量大于溶剂的挥发量,膜的固化属稀释凝固,有利于形成孔径较大而疏松的表皮层孔结构,从而随着空气段的延长,水通量上升,但通量的提高并不是十分明显.而且空气段大于100mm 时,纺丝成型不稳定.由于空气浴高度的增大,形成表皮层的孔径较疏松,因此如图10所示,随着空气浴高度的增大,基膜的断裂强度随之稍有下降.3结论(1)在铸膜液中加入无水LiCl 和聚乙二醇复合成孔剂,可以纺制出截留性能较好的基膜,水通量也有一定程度的提高.(2)随着铸膜液中聚砜质量分数的增大,基膜的水通量逐渐减小,截留率略有上升,断裂强度提高.(3)随着铸膜液中无机盐含量的增大,基膜的水通量上升,截留率下降,断裂强度有所下降.(4)随着复合成孔剂中聚乙二醇相对分子质量的增大,水通量明显增大,在相对分子质量为10000时达到最大值,但断裂强度下降.(5)铸膜液的温度越高,基膜水通量越大,但断裂强度下降.(6)芯液中溶剂的质量分数越大,基膜水通量减小,截留率略有下降,但断裂强度增大.(7)随着空气浴高度的增长,基膜水通量增大,截留率基本保持不变,断裂强度稍有下降.参考文献院[1]PETERSEN R posite reverse osmosis and nanofiltration membranes [J].J Membr Sci ,1993,83:81-150.[2]CADOTTE J E.Interfacially synthesized reverse membrane ,USP ,4277344[P].1981-07-07.[3]俞三传,金可勇,高从堦.高性能聚砜支撑膜研制[J].膜科学与技术,1999,19(6):45-48.[4]张建飞.高脱盐反渗透复合膜的研究[C]//工业水处理和海水淡化技术应用与发展研讨会文集.北京:国家科技部.1999:349-354.[5]汪多仁.高分子分离膜的研制与应用[J].过滤与分离,1999(1):36-38.图9空气浴高度对基膜渗透性能的影响Fig.9Effect of air gaps on permeate performancesof substrate membranes250200150100空气浴高度/mmJ R100806040200图10空气浴高度对基膜断裂强度的影响Fig.10Effect of air gaps on rupture strength of substrate membranes1.301.251.201.151.101.051.000.950.900.850.80空气浴高度/mm20406080100020406080100卢佳楠,等:高性能中空纤维复合膜基膜的研制截留率纯水通量5——第28卷第1期2009年2月天津工业大学学报JOURNAL OF TIANJIN POLYTECHNIC UNIVERSITYVol.28No.1February 2009磺化聚醚砜/聚醚砜共混超滤膜的制备及性能表征杨刘1,2,王海涛1,戴海平1,于湉1,王鸿志3(1.天津工业大学中空纤维膜材料与膜过程教育部重点实验室,天津300160;2.天津工业大学理学院,天津300160;3.中钢集团工程设计研究院石家庄分院,石家庄050021)摘要:采用亲电取代反应成功合成磺化聚醚砜(SPES ),利用聚醚砜(PES )与其共混制备SPES/PES 平板超滤膜,并对其进行性能表征.实验表明:当SPES 质量分数为40%时水通量达到最大值409.8L /(cm 2·h ),牛血清蛋白(BSA )截留率达到99.8%,BSA 吸附量减少了近50%.与单纯的PES 膜相比,由于强亲水性基团磺酸基团(-SO 3H )的成功引入,使共混膜的水接触角减小,含水率提高,其亲水性得到了显著改善.关键词:磺化聚醚砜;聚醚砜;共混超滤膜;亲水性中图分类号:TS102.54文献标识码:A文章编号:1671-024X (2009)01-0006-04Preparation and characterization of sulfonated polyethersulfone/polyethersulfone blending ultrafiltration membraneYANG Liu 1,2,WANG Hai-tao 1,DAI Hai-ping 1,YU Tian 1,WANG Hong-zhi 3(1.Key Laboratory of Hollow Fiber Membrane and Membrane Process of Ministry of Education ,Tianjin Polytechnic University ,Tianjin 300160,China ;2.School of Science ,Tianjin Polytechnic University ,Tianjin 300160,China ;3.Sinosteel Engineering Design and Research Institute ,Shijiazhuang 050021,China )Abstract :Sulfonated polyethersulfone (SPES ),which was prepared by eletrophilic substituent reaction ,was blended withPES to obtained SPES/PES flat ultrafiltration membrane and its properties were tested.The pure water flux test showed that the pure water flux reached max 409.8L/(cm 2·h )when the amount of SPES was 40%.The BSA retention reached 99.8%,while the BSA adsorption reduced approximately half.Introducing of thehydrophilic sulfonic group (-SO 3H )into the blending membrane made its water contact angle decreased ,water adsorption increased ,and its hydrophilicity was improved obviously.Key words :sulfonated polyethersulfone ;polyethersulfone ;blending ultrafiltration membrane ;hydrophilicity收稿日期:2008-07-14基金项目:国际科学合作重点项目(2005DFA50160)作者简介:杨刘(1983—),男,硕士研究生;戴海平(1964—),女,研究员,导师.E-mail :DAIHAIPING@聚醚砜(PES )分子中由于同时具有苯环的刚性、醚基的柔性及砜基与整个结构单元形成的大共轭体系,所以整个分子具有相当的稳定性、良好的耐化学和生物腐蚀性、突出的耐水解稳定性以及抗辐射性等特点.同时由于PES 有着一定的生物相容性,因而逐渐受到医疗界的重视,尤其在血液净化领域,能制成透析膜、血滤膜、血浆分离膜和复合膜等,有着广阔的发展前景.然而,PES 虽然具有良好的物化性能,但仍然存在膜材料亲水性差的缺点,这阻碍了它在更多领域的应用[1-3].通过将PES 与具有亲水功能的聚合物共混,既可以保留PES 膜材料原有的优良性能,又改善了膜的亲水性,扩大了膜的使用范围.俞三传等[4]将PES 、聚砜和磺化聚砜(SPSF )按一定比例共混,用相转化法制备共混超滤膜,发现对细胞色素C 的截留率随着体系中SPSF 的含量的增加而逐渐提高,当SPSF 的质量分数为30%时其截留率达到最大值,而后随着。

自考专升本00450教育督导、评价与监测笔记

自考专升本00450教育督导、评价与监测笔记

第一章教育督导概述教育督导:指教育督导机构为了保障和促进教育事业的发展,依据一定时期国家教育目的、方针与法律法规要求,对教育管理活动和学校教育活动进行监督、检查和指导的行政管理活动。

教育督导的本质:1、是国家管理教育的行政活动2、有指导和监督功能的行政活动3、保障受教育者身心健康的行政活动4、专业性强的行政活动国家教育管理职能相对于古代发生变化的表现:1、国家教育规划职能的增强2、教育经费投入成为国家的重要职能3、教育督导评价成为国家的一项重要职能教育督导行为的特征:1、单方意志性2、强制性3、从属法律性4、裁量性5、效力先定性教育督导的基本目的:1、保证国家法律法规、教育方针的贯彻2、保障素质教育3、保障教育质量(制度、专业、技术保障)(1)教育督导间接目的:保障与维护教育系统内部的秩序(2)直接目的:保障与提升教育质量4、保障教育公平教育督导的基本原则:1、合目的性2、科学性3、客观性(1)不捏造事实,能对事实进行澄清(2)依靠事实说话,尊重规律(3)反馈与交流共识的结论(4)掌握科学方法4、有效性教育督导类型按体制:1、从属制2、独立制3、混合制按职能:1、指导型(发展、专业性)2、监督型(规范、行政性)3、指导-监督型(多元性)按方式:任务时间特征1、过程性(发展、诊断、指导性)2、终结性(监督、结果性)周期特征1、定期(3-5年一次)2、经常性按内容:1、综合(2、3天)2、专项教育督导的基本特征:1、强制性(法制、职权来源)2、指导性3、监督性4、专业性第二章我国教育督导的历史沿革古代中央西周天子视学制度:一年三次,一次两天,宣扬孝悌之道秦汉帝王幸学制度:立法形式《除弟子律》隋唐天子视学制度:隋“国子监”,将视学扩大到督学唐设督教明清皇帝幸学制度:明只幸学一次,一次三天“诣学”地方北宋:设“提举学事司”(正式设地方教育行政官署开端)明:“儒学提举司”“洪武卧碑”督学官每三年一任近代清末建立了系统的教育视学制度,设视学官1909年,学部颁布《视学官章程》(视学第一次有明确法律依据)中央:1905年设学部1906年设视学官地方:1、省级视导制度2、府、州、县视导制度侨教民国部级视学:设“视学室”省级视学:1918《省视学规程》(第一个省级视导规制,结束了清的局面,近代省视学制确立的重要标志)县级视学:1918《县视学规程》中共苏区现代新中国成立后1949年11月中央人民政府教育部成立1986年4月《中华人民共和国义务教育法》(我国关于教育第一部专门性法律)20世纪90年代1995年《中华人民共和国教育法》第二十五条奠定教育督导地位新发展2012年《教育督导条例》(首部教育督导法规,标志着我国教育督导走上了法制化的道路)意义:(详见p67)1、有利于完善我国教育制度,解决“重决策,轻落实,重执行,轻监督”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万方科技学院10年素质教育概览
前言(执笔:李校争)
第一章学院概况(执笔:王慧颖)(宋体2号字加黑)
第一节学院基本情况(黑体小2号字加黑)
一、学院的创办(河南省第一所独立学院创立背景:2002年)(宋体四号字加黑)
正文(宋体五号字)
二、学院发展历程(2003-2011)
三、学院现状
第二节学院精神
一、万方释义
二、院徽及其涵义
三、办学指导思想
四、办学定位
五、“自强不息奋发向上”办学精神
六、“育人为本德育为先”办学理念
七、“诚信勤奋”校训
八、“好学力行”校风
九、“严慈严谨严格”教风
十、“勤勉求是”学风
第二章十年一剑——素质教育理念的确立(执笔:李校争)
第一节素质概述
一、素质的概念与内涵
二、素质的形成与发展
三、素质的特征与关系
四、素质的类型与特点
第二节素质教育概述
一、素质教育的概念与内涵
二、素质教育的形成与发展
三、素质教育的特征与关系
四、素质教育的类型与特点(专业素质与非专业素质)
第三节实施素质教育的背景与意义
一、实施素质教育的背景(国家政策、社会形势、国内外大学生素质教育发展概况)
二、推行素质教育的意义(知识经济的内在要求、教育本质的回归、高等教育的本体构成、教育改革发展的要求、学生成长成才需要)
第三节素质教育办学理念践行
一、万方学院素质教育办学理念的提出
二、万方学院素质教育办学理念的发展
第三章专业素质教育——打牢学生成才基础(执笔:温荣)
第一节专业素质教育体系的构建(专业知识、专业技能、专业伦理等)
第二节专业素质教育的载体——人才培养方案的制定与修订
第三节专业素质教育的主渠道——课堂教学与实践教学
第四节专业素质教育的辅渠道——课外创新活动
第五节专业素质教育的保障体系
一、制度保障(一个意见,一个计划,三项制度,六项工程,教学督导,学生教学信息员,学生评教,领导干部听课制度,期中教学检查,教学例会等)
二、组织保障
三、条件保障
第四章非专业素质教育——拓展学生成才之路(执笔:郭兰英)
第一节非专业素质教育体系的构建
第二节打造非专业素质教育的实施途径——“五项工程”
一、思想品德提升工程
二、书香校园工程
三、口才与写作工程
四、身心素质训练工程
五、社会实践工程
第三节非专业素质教育的保障体系
一、制度保障(在一个核心理念指引下的各种制度建设)
二、队伍保障(领导体制健全,重点加强两支队伍建设:学生管理工作队伍和学生干部队伍,其中包括学生党员队伍)
三、阵地保障(三个阵地)
四、条件保障
五、工作保障(做好四个重点工作:安全稳定、思想教育、管理服务、就业工作)
第五章素质教育的评价机制(执笔:梅平乐)
第一节专业素质教育的评价机制
一、专业素质教育的评价标准
二、专业素质教育的评价方法
第二节非专业素质教育的评价机制
一、非专业素质教育的评价标准
二、非专业素质教育的评价方法
第六章累累硕果——素质教育成效初显(执笔:王晓)
第一节人才培养初见成效
一、历届毕业生就业创业情况(学生毕业率、获学位率、就业率、考研率等)
二、在校学生获得各级各类荣誉情况
三、历届毕业生中服务社会、建功立业的情况
第二节社会影响日益扩大
一、学院办学规模日益扩大(第一志愿报考率、报到率)
二、社会知名度逐年提高(独立学院排行榜、全国民办教育先进单位等荣誉称号)
第三节社会广泛认同
(先进党组织、河南考生心目中最理想的学校等称号、社会各类媒体的报道等)
第七章其道大光——学院未来展望(执笔:李校争)
(围绕学院十二五发展规划,展望学院未来学生培养质量和软硬件建设)
附录:学院素质教育大事年表(执笔:王慧颖)
后记(执笔:李校争)。

相关文档
最新文档