矩阵及其运算课件
合集下载
矩阵的运算优秀课件

(A
E )n
An
Cn1 An1
C
2 n
An2
Cnn1 A
E
3. 求矩阵A的n次幂的方法. 措施一 数学归纳法
先计算A2, A3等, 发现Ak的规律,再用数学归纳法证明之.
例1
设
A
1 0
11 , 求 An
解
A2
1 0
12 1
10
11 10
11
1 0
2 1
同理,
A3
A2
A
1 0
13
猜测
An
,
求An
1
1
n
1
n n
n
解
将A分解成A
E
1 n
B,
其中B
111
1
1
1
111,容易得出B2 nB
于是 A2
(E
1 n
B)2
E2
2 n
EB
1 n2
B2
E
2 n
B
1 n2
nB
E 1 B A(幂等矩阵),故An A.
n
措施三 利用乘法结合律 若A T , 其中 , 都是n 1矩阵(列矩阵).利用乘法结合律,
三、矩阵旳幂乘
1、定义 设A是一种n阶矩阵,对于正整数k, Ak AA A
k个
称为A旳k次幂。 2、幂乘旳运算规律:任意正整数 k , l ,有
Ak Al Akl , Ak l Akl
但一般来说 ( AB)k Ak Bk ,
例题 设A, B为n阶方阵, E为n阶单位矩阵,以下式子哪些成立 ?
由矩阵相等旳定义,得
x1 x3
x2 x4
得
矩阵的运算优秀课件

且A2X=B,求X。
解:
X
=
1 2
(B
A)
=
1 2
2 0 0
2 1 5
5 1 2
2
4
5
1 1 = 0 1/ 2
5/2 1/ 2
1 2
。
0 5 / 2 1 5 / 2
练习
首页
上页
返回
下页
结束
铃
三、矩阵的乘法
定义2.5 设A是一个ms矩阵,B是一个sn矩阵:
a11 a12 a1s
0 3 6 9 0 12 8 16
92 156 214 60 7 9 17 6
= 64 02 1210 914 = 2 2 2 5 。
00 312 68 916 0 9 2 7
首页
上页
返回
下页
结束
铃
3572
1320
例4.已知 A= 2 0 4 3 , B = 2 1 5 7 ,
0 1 23
0 6 48
列式称为矩阵A的行列式,记为|A|,即
首页
上页
返回
下页
结束
铃
2. 数乘矩阵满足的运算律
设 A, B 为同型矩阵, λ , μ为常数,则
(1) (λμ) A=λ (μ A); (2) (λ + μ)A = λ A + μ A. (3) λ(A + B) = λ A + λ B.
结合律 分配律 分配律
矩阵加法与数乘矩阵统称为矩阵的线性运算。
首页
上页
返回
下页
结束
铃
四、方阵的幂
(1) 定义
如果 A 是 n 阶矩阵, 那么AA 有意义, 也有意义, 因此有下述定义:
《矩阵及其运算 》课件

幂法
通过迭代计算矩阵A的幂 ,最终得到特征值和特征 向量。
反迭代法
利用已知的特征向量x, 通过反迭代计算得到对应 的特征值λ。
06
应用实例
在物理中的应用
线性变换
矩阵可以表示线性变换,如平移、旋转、缩放等,在物理中广泛应 用于描述物体运动和力的作用。
振动分析
矩阵可以用于分析多自由度系统的振动,通过矩阵表示系统的运动 方程,简化计算过程。
详细描述
矩阵乘法要求第一个矩阵的列数等于第二个矩阵的行数,并 且结果矩阵的行数等于第一个矩阵的行数,列数等于第二个 矩阵的列数。在计算过程中,对应元素相乘并求和,得到新 矩阵的一个元素。
矩阵的转置
总结词
矩阵的转置是将原矩阵的行变为列,列变为行的一种运算。
详细描述
矩阵的转置可以通过交换原矩阵的行和列得到,也可以通过计算元素的代数余 子式得到。转置后的矩阵与原矩阵的行列式值相等,但元素的位置发生了变化 。
《矩阵及其运算》PPT课件
目 录
• 矩阵的定义与性质 • 矩阵的运算 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 特征值与特征向量 • 应用实例
01
矩阵的定义与性质
矩阵的基本概念
矩阵的定义
矩阵是一个由数字组成的矩 形阵列,通常表示为二维数 组。
矩阵的元素
矩阵中的每个元素都有行标 和列标,表示其在矩阵中的 位置。
回带法
在消元过程中,每一步都需要回带, 以确保解的正确性。
解的判定
当系数矩阵的秩等于增广矩阵的秩时 ,线性方程组有唯一解;否则,无解 或有无数多解。
线性方程组的解的结构
解的表示
线性方程组的解可以表示为一个向量与自由变量 的线性组合。
线性代数矩阵及其运算 ppt课件

1 2 2 .5 8 3 1 3 0 .5 89
1 2 4 .5 9 3 6 3 .5
83
22
三、 矩阵的乘法
定义1.5 (P5)
设矩阵A=(aij)ml的列数与矩阵B=(bij)ln的行数相等, 则由元素
C
2
8
4
求AB、BA和BC
解 AB 816 1362
BA
0 0
0 0
BC
0 0
0 0
AB≠BA , BA=BC
(1) AB与BA都有意义,且同型,但AB与BA不相等 (2) 两个非零矩阵相乘可能是零矩阵 (3) BA=BC,但A≠C,可见,矩阵乘法不满足消去率
那么就称矩阵A与矩阵B相等,记作A=B
16
判断下列各组矩阵是否相等
(1)
8
(3)2
5 2 0
s9in61
2 2 2.5 0.5
9 0 8
(2)
0 0
0 0
0 0
00
0 0
1 0 0
(3)
0
0
1 0
0 1
(1 )
am1x1am2x 2 amn xn bm
m个方程 ,
n个未知数
a11 a12
a
21
a 22
a m 1 a m 2
a1n
a2n
a m n
a11 a12
a21
a22
线性代数第二章矩阵及其运算2-3PPT课件

例如,设实数k=2,矩阵A=[1 2; 3 4],则kA=[2 4; 6 8]。
CHAPTER 02
矩阵的乘法
矩阵乘法的定义
01
矩阵乘法是将两个矩阵对应位置的元素相乘,得到一个新的矩 阵。
02
矩阵乘法的结果是一个矩阵,其行数等于左矩阵的行数,列数
等于右矩阵的列数。
矩阵乘法的操作顺序是先进行行操作,再进行列操作。
CHAPTER 05
矩阵的秩
秩的定义
秩的定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
秩的Байду номын сангаас质
矩阵的秩是唯一的,且其值满足 特定的性质,如对于任何矩阵A, r(A)≤min(m,n),其中m和n分别 为矩阵A的行数和列数。
秩的计算方法
可以通过多种方法计算矩阵的秩, 如高斯消元法、行变换法、初等 行变换法等。
线性代数第二章矩阵及 其运算2-3ppt课件
CONTENTS 目录
• 矩阵的加法与数乘 • 矩阵的乘法 • 逆矩阵与伴随矩阵 • 矩阵的行列式 • 矩阵的秩 • 矩阵的应用
CHAPTER 01
矩阵的加法与数乘
矩阵的加法
矩阵加法定义
两个矩阵A和B的和记作A+B,定义 为满足以下条件的矩阵C,即C的元 素Cij=Aij+Bij(i,j=1,2,…,n)。
03
矩阵乘法的性质
1 2
结合律
$(AB)C=A(BC)$,即矩阵乘法满足结合律。
分配律
$A(B+C)=AB+AC$,即矩阵乘法满足分配律。
3
单位元
存在一个单位矩阵,使得任意矩阵与单位矩阵相 乘都等于原矩阵。
CHAPTER 02
矩阵的乘法
矩阵乘法的定义
01
矩阵乘法是将两个矩阵对应位置的元素相乘,得到一个新的矩 阵。
02
矩阵乘法的结果是一个矩阵,其行数等于左矩阵的行数,列数
等于右矩阵的列数。
矩阵乘法的操作顺序是先进行行操作,再进行列操作。
CHAPTER 05
矩阵的秩
秩的定义
秩的定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
秩的Байду номын сангаас质
矩阵的秩是唯一的,且其值满足 特定的性质,如对于任何矩阵A, r(A)≤min(m,n),其中m和n分别 为矩阵A的行数和列数。
秩的计算方法
可以通过多种方法计算矩阵的秩, 如高斯消元法、行变换法、初等 行变换法等。
线性代数第二章矩阵及 其运算2-3ppt课件
CONTENTS 目录
• 矩阵的加法与数乘 • 矩阵的乘法 • 逆矩阵与伴随矩阵 • 矩阵的行列式 • 矩阵的秩 • 矩阵的应用
CHAPTER 01
矩阵的加法与数乘
矩阵的加法
矩阵加法定义
两个矩阵A和B的和记作A+B,定义 为满足以下条件的矩阵C,即C的元 素Cij=Aij+Bij(i,j=1,2,…,n)。
03
矩阵乘法的性质
1 2
结合律
$(AB)C=A(BC)$,即矩阵乘法满足结合律。
分配律
$A(B+C)=AB+AC$,即矩阵乘法满足分配律。
3
单位元
存在一个单位矩阵,使得任意矩阵与单位矩阵相 乘都等于原矩阵。
《线性代数》课件-第二章 矩阵及其运算

a11
A
A
a21
am1
a12 a22
am1
a1n
a2n
amn
数乘矩阵的运算规律
a, b, c R 结 合 (ab)c a(bc) 律 分 (a b) c ac bc 配 律 c (a b) ca cb
设 A、B是同型矩阵, , m 是数 (m)A (m A)
a11
a12
a13
a14
4
c11 a1kbk1
b11
b21
b31
b41
k 1
4
c12 a11b12 a12b22 a13b32 a14b42 a1k bk 2 k 1
一般地,
4
cij ai1b1 j ai 2b2 j ai 3b3 j ai4b4 j aikbkj k 1
行列式
矩阵
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
(1) a a t( p1 p2 pn ) 1 p1 2 p2
p1 p2 pn
行数等于列数
共有n2个元素
a11 a12
a21
a22
am1 am1
anpn
a1n
a2n
amn
行数不等于列数 共有m×n个元素 本质上就是一个数表
第二章 矩阵及其运算
§1 矩阵
一、矩阵概念的引入 二、矩阵的定义 三、特殊的矩阵 四、矩阵与线性变换
B
一、矩阵概念的引入
例 某航空公司在 A、B、C、D 四座 A
城市之间开辟了若干航线,四座城市 之间的航班图如图所示,箭头从始发 地指向目的地.
城市间的航班图情况常用表格来表示:
2024全新矩阵及其运算ppt课件

06
矩阵在实际问题中应 用举例
图像处理中矩阵运算应用
图像表示
将图像转换为矩阵形式,每个像 素点对应矩阵中的一个元素,方
便进行数学处理。
图像变换
通过矩阵运算实现图像的旋转、缩 放、平移等变换,满足图像处理的 各种需求。
图像压缩
利用矩阵分解等技术,对图像数据 进行压缩,减少存储空间和提高传 输效率。
一个矩阵可以与一个数相 乘,相乘的结果是一个维 度相同的矩阵,其元素为 原矩阵对应位置的元素与 数的乘积。
两个矩阵可以相乘当且仅 当第一个矩阵的列数等于 第二个矩阵的行数。相乘 的结果是一个维度为 $(m,p)$的矩阵,其中$m$ 为第一个矩阵的行数,$p$ 为第二个矩阵的列数。新 矩阵的元素由第一个矩阵 的一行与第二个矩阵的一 列对应元素相乘后求和得 到。
矩阵定义及表示方法
end{pmatrix}$
这$m times n$个数称为矩阵A的元素,简称为元,数$a_{ij}$位于矩阵A的第$i$行第$j$列 ,称为矩阵A的$(i,j)$元,以数$a_{ij}$为$(i,j)$元的矩阵可记为$(a_{ij})$或$(a_{ij})_{m times n}$,$m times n$矩阵A也记作$A_{mn}$。
单元刚度矩阵
根据单元的物理特性和形状函数,构造单元刚度矩阵,反映单元 的力学特性。
整体刚度矩阵
将所有单元的刚度矩阵按照一定规则组装成整体刚度矩阵,用于 求解整个系统的力学响应。
THANK YOU
配方法
通过配方将二次型化为标 准型。
合同变换法
利用合同变换将二次型化 为标准型。
正交变换法
利用正交变换将二次型化 为标准型。
正交变换在二次型化简中应用
《矩阵运算基础》课件

矩阵加法和减法的运算规则是线性代数的基础,是解决线性方程组、矩阵分解、矩阵 求逆等问题的重要工具。
矩阵的数乘
数乘的定义与性质
定义:矩阵的数乘是指将矩阵的每 个元素乘以一个常数,得到一个新 的矩阵
性质2:矩阵的数乘满足交换律
添加标题
添加标题
添加标题
添加标题
性质1:矩阵的数乘满足结合律和 分配律
性质3:矩阵的数乘满足可逆性, 即如果矩阵A的数乘为k,那么矩阵 A的逆矩阵的数乘也为k
感谢您的观看
汇报人:
加法运算: 矩阵加法的 运算规则是 行与行、列 与列对应元 素相加
加法结果:矩 阵加法的结果 是一个新的矩 阵,其元素是 原矩阵对应元 素的和
应用:矩阵加 法在求解线性 方程组、矩阵 分解、矩阵变 换等领域有广 泛应用
矩阵减法的定义与性质
性质:矩阵减法满足交换律、 结合律和分配律
定义:矩阵减法是将两个矩阵 对应元素相减,得到一个新的 矩阵
伴随矩阵的定义与性质
定义:伴随矩阵是矩阵A的转置乘以A的行列 式
性质:伴随矩阵的行列式等于A的行列式的绝 对值
性质:伴随矩阵的秩等于A的秩
性质:伴随矩阵的迹等于A的迹的相反数
性质:伴随矩阵的逆矩阵等于A的行列式分之 一乘以A的转置
性质:伴随矩阵的伴随矩阵等于A
逆矩阵与伴随矩阵的运算规则
逆矩阵:对于n 阶方阵A,如果 存在n阶方阵B, 使得AB=BA=I, 则称B为A的逆矩 阵,记为A^(-1)
矩阵的转置
矩阵转置的定义与性质
矩阵转置的定 义:将矩阵的 行和列互换, 得到新的矩阵
性质1:转置 矩阵的行列式 等于原矩阵的
行列式
性质2:转置 矩阵的秩等于
原矩阵的秩
矩阵的数乘
数乘的定义与性质
定义:矩阵的数乘是指将矩阵的每 个元素乘以一个常数,得到一个新 的矩阵
性质2:矩阵的数乘满足交换律
添加标题
添加标题
添加标题
添加标题
性质1:矩阵的数乘满足结合律和 分配律
性质3:矩阵的数乘满足可逆性, 即如果矩阵A的数乘为k,那么矩阵 A的逆矩阵的数乘也为k
感谢您的观看
汇报人:
加法运算: 矩阵加法的 运算规则是 行与行、列 与列对应元 素相加
加法结果:矩 阵加法的结果 是一个新的矩 阵,其元素是 原矩阵对应元 素的和
应用:矩阵加 法在求解线性 方程组、矩阵 分解、矩阵变 换等领域有广 泛应用
矩阵减法的定义与性质
性质:矩阵减法满足交换律、 结合律和分配律
定义:矩阵减法是将两个矩阵 对应元素相减,得到一个新的 矩阵
伴随矩阵的定义与性质
定义:伴随矩阵是矩阵A的转置乘以A的行列 式
性质:伴随矩阵的行列式等于A的行列式的绝 对值
性质:伴随矩阵的秩等于A的秩
性质:伴随矩阵的迹等于A的迹的相反数
性质:伴随矩阵的逆矩阵等于A的行列式分之 一乘以A的转置
性质:伴随矩阵的伴随矩阵等于A
逆矩阵与伴随矩阵的运算规则
逆矩阵:对于n 阶方阵A,如果 存在n阶方阵B, 使得AB=BA=I, 则称B为A的逆矩 阵,记为A^(-1)
矩阵的转置
矩阵转置的定义与性质
矩阵转置的定 义:将矩阵的 行和列互换, 得到新的矩阵
性质1:转置 矩阵的行列式 等于原矩阵的
行列式
性质2:转置 矩阵的秩等于
原矩阵的秩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
☞矩阵的乘法中,必须注意矩阵相乘的顺序,
AB是A左乘B的乘积,BA是A右乘B的乘积;
☞AB与BA不一定同时会有意义;即是有意义,
也不一定相等;
☞AB = O 不一定有A= O或B= O ;
A(XY ) = O 且 A≠ O 也不可能一定有X=Y
如:A 11
11
B
1 1
11
AB O
BA
2 2
2 2
如果n 阶方阵如果满足主对角线上的元素全 为1,其余元素全为零,这样的 n 阶矩阵称为 n 阶单位矩阵。记作En 或 E。
如果n 阶方阵主对角线上的元素全为k,其 余元素全为零,这样的 n 阶矩阵称为 n 阶数量 矩阵。
二、矩阵的运算
1.矩阵的加法: 设有两个同型的 m×n 阶矩阵
A= (aij) 、B= (bij),则矩阵 A 与 B 的和记为 A+B,并规定
A
a21
...
a22
...
... ...
a2n
...
am1 am2 ... amn
由此可见,矩阵的数乘仍然是一个与原矩阵
同型的矩阵,并且,是用数λ与矩阵的每一个 元素相乘。
矩阵数乘的运算律:
☞ (1) ()A (A)
(2) ( )A A A (3) (A B) A B
矩阵的加法与数乘合起来通称为矩阵的线性
第一节 矩阵的概念
一、概念:
1.定义 由m×n个数aij(i=1,2,…,m;j=1,2,…,n)排 成的m行n列的数表a11 a12 ... a1n
a21 a22 ... a2n ... ... ... ... am1 am2 ... amn
称m行n列矩阵,简称m×n矩阵。记作
a11 a12 ... a1n
A
a21 ...
a22 ...
... ...
a2n ...
am1 am2 ... amn
这 m×n 个数称为矩阵 A 的元素,简称为元, 数 aij 位于矩阵 A 的第 i 行第 j 列,称为矩阵 A的 ( i,j )元。以数 aij 为(i,j)元的矩阵可简记作 (aij) 或 (aij)m×n,m×n
,,mp)
k 1
就是说,矩阵C 的第 i 行第 j 列的元素等于
矩阵 A 的第 i 行的所有元素与矩阵 B 的第 j 列的
对应元素的乘积之和。
☞ ... ... ... ... b1 j ...
ai1 ...
... ...
ain ...
... ...
... bnj
如果两个同型矩阵的对应元素相等,那么就称 这两个矩阵相等。记作:A=B 4.零矩阵: 元素都是零的矩阵称为零矩阵,记作 O。不同型的零矩阵是不相等的。
5. 对角矩阵、单位矩阵与数量矩阵 如果 n 阶方阵除主对角线上的元素不全为零
外,其余元素全为零,这样的 n 阶方阵称为对 角矩阵。记作 A=diag(λ1,λ2,…,λn)
运算。
3.矩阵的乘法:设矩阵 A为m×n 阶矩阵、矩阵 B为 n×p 阶矩阵,A= (aij) m×n 、B= (bij) n×p , 则矩阵 A与 B 的乘积为一 m×p 阶矩阵
C = (cij) m×p,记 C = AB, 且
cij ai1b1 j ai2b2 j ainbnj
n
aikbkj
... ...
cij
(1)( AB)C A(BC )
(2)( AB) ( A)B A(B)
(3) A(B C) AB AC (B C ) A BA CA
☞(4) Em Amn Amn
Amn En Amn
矩阵 A 与矩阵 B 做乘法必须是左矩阵的列
数与右矩阵的行数相等;
元素是实数的矩阵,称为实矩阵;元素是复
数的矩阵称为复矩阵。
行数与列数都等于 n 的矩阵称之为 n 阶方阵, 记作 An。
2.行矩阵、列矩阵与方阵 只有一行的矩阵称行矩阵,又称行向量。 只有一列的矩阵称为列矩阵,又称为列向量。 行数与列数都等于n的矩阵叫方阵,记为An。
3.同型矩阵与矩阵相等: 如果两个矩阵的行数相 等、列数也相等,就称它们是同型矩阵。
a11b11 a12b12 ... a1nb1n
A
B
a21b21 ...
a22b22 ...
... ...
a2nb2n ...
am1bm1 am2bm2 ... amnbmn
注:矩阵的加法只能在两个 同型矩阵之间进行;
两个矩阵相加时,对应 元素进行相加。
矩阵加法的运算律:
☞(1) A+ B = B+ A
(2) ( A+B )+ C = A+ ( B+ C ) 设矩阵 A= (aij) ,记A= ( aij),称 A为矩阵 A的负矩阵。
由矩阵加法的定义,显然有 A+ ( A) = O,
由此,矩阵的减法可定义为
A B =A+ ( B)
2.矩阵的数乘: 数λ与矩阵A的乘积记为λA或
Aλ,并规定:
a11 a12 ... a1n
5.矩阵的转置:把矩阵 A 的行换成同序数的列 得到的一个新矩阵,叫做 A的转置矩阵,记作 AT。
如果 A是一个 m×n 阶矩阵,那么 AT 就是 一个 n×m 阶矩阵。且 A 的行一定就是 AT中同 序数的列
☞ (1) ( AT )T A
(2) ( A B)T AT BT
(3) ( A)T AT (4) ( AB)T BT AT
证明:设矩阵 A为m×s 阶矩阵,矩阵 B为s×n 阶矩阵,那么: ( AB)T与 BTAT 是同型矩阵; 又设 C = A B,因为 CT的第 i 行第 j 列的元素正 好是 C 的 cji ,即 cji=aj1b1i+aj2b2i+…+ajsbsi =b1iaj1+b2iaj2+…+bsiajs
显然有:AB 0 AB BA
总结:矩阵乘法不满足交换律与消去律.
4.矩阵的乘幂:设 A 是 n 阶方阵,定义:
An AA A (n为正数)
n
只有方阵,它的乘幂才有意义。由于矩阵的 乘法满足结合律,而不满足交换律,因而有 下面的式子:
(1) An Am = An+m (2) ( An )m= An m (3) ( AB ) k ≠ Ak Bk
第二章 矩阵及其运算
矩阵是线性代数的一个主要研究对象, 也是数学上的一个重要工具。矩阵的应用已经 渗透到了包括自然科学、人文科学、社会科学 在内的各个领域。在矩阵理论中,矩阵的运算 起着重要的作用,本章主要讨论有关矩阵运算 的一些基本规则与技巧。
§2.1 矩阵的概念及运算 §2.2 逆矩阵 §2.3 矩阵的分块
AB是A左乘B的乘积,BA是A右乘B的乘积;
☞AB与BA不一定同时会有意义;即是有意义,
也不一定相等;
☞AB = O 不一定有A= O或B= O ;
A(XY ) = O 且 A≠ O 也不可能一定有X=Y
如:A 11
11
B
1 1
11
AB O
BA
2 2
2 2
如果n 阶方阵如果满足主对角线上的元素全 为1,其余元素全为零,这样的 n 阶矩阵称为 n 阶单位矩阵。记作En 或 E。
如果n 阶方阵主对角线上的元素全为k,其 余元素全为零,这样的 n 阶矩阵称为 n 阶数量 矩阵。
二、矩阵的运算
1.矩阵的加法: 设有两个同型的 m×n 阶矩阵
A= (aij) 、B= (bij),则矩阵 A 与 B 的和记为 A+B,并规定
A
a21
...
a22
...
... ...
a2n
...
am1 am2 ... amn
由此可见,矩阵的数乘仍然是一个与原矩阵
同型的矩阵,并且,是用数λ与矩阵的每一个 元素相乘。
矩阵数乘的运算律:
☞ (1) ()A (A)
(2) ( )A A A (3) (A B) A B
矩阵的加法与数乘合起来通称为矩阵的线性
第一节 矩阵的概念
一、概念:
1.定义 由m×n个数aij(i=1,2,…,m;j=1,2,…,n)排 成的m行n列的数表a11 a12 ... a1n
a21 a22 ... a2n ... ... ... ... am1 am2 ... amn
称m行n列矩阵,简称m×n矩阵。记作
a11 a12 ... a1n
A
a21 ...
a22 ...
... ...
a2n ...
am1 am2 ... amn
这 m×n 个数称为矩阵 A 的元素,简称为元, 数 aij 位于矩阵 A 的第 i 行第 j 列,称为矩阵 A的 ( i,j )元。以数 aij 为(i,j)元的矩阵可简记作 (aij) 或 (aij)m×n,m×n
,,mp)
k 1
就是说,矩阵C 的第 i 行第 j 列的元素等于
矩阵 A 的第 i 行的所有元素与矩阵 B 的第 j 列的
对应元素的乘积之和。
☞ ... ... ... ... b1 j ...
ai1 ...
... ...
ain ...
... ...
... bnj
如果两个同型矩阵的对应元素相等,那么就称 这两个矩阵相等。记作:A=B 4.零矩阵: 元素都是零的矩阵称为零矩阵,记作 O。不同型的零矩阵是不相等的。
5. 对角矩阵、单位矩阵与数量矩阵 如果 n 阶方阵除主对角线上的元素不全为零
外,其余元素全为零,这样的 n 阶方阵称为对 角矩阵。记作 A=diag(λ1,λ2,…,λn)
运算。
3.矩阵的乘法:设矩阵 A为m×n 阶矩阵、矩阵 B为 n×p 阶矩阵,A= (aij) m×n 、B= (bij) n×p , 则矩阵 A与 B 的乘积为一 m×p 阶矩阵
C = (cij) m×p,记 C = AB, 且
cij ai1b1 j ai2b2 j ainbnj
n
aikbkj
... ...
cij
(1)( AB)C A(BC )
(2)( AB) ( A)B A(B)
(3) A(B C) AB AC (B C ) A BA CA
☞(4) Em Amn Amn
Amn En Amn
矩阵 A 与矩阵 B 做乘法必须是左矩阵的列
数与右矩阵的行数相等;
元素是实数的矩阵,称为实矩阵;元素是复
数的矩阵称为复矩阵。
行数与列数都等于 n 的矩阵称之为 n 阶方阵, 记作 An。
2.行矩阵、列矩阵与方阵 只有一行的矩阵称行矩阵,又称行向量。 只有一列的矩阵称为列矩阵,又称为列向量。 行数与列数都等于n的矩阵叫方阵,记为An。
3.同型矩阵与矩阵相等: 如果两个矩阵的行数相 等、列数也相等,就称它们是同型矩阵。
a11b11 a12b12 ... a1nb1n
A
B
a21b21 ...
a22b22 ...
... ...
a2nb2n ...
am1bm1 am2bm2 ... amnbmn
注:矩阵的加法只能在两个 同型矩阵之间进行;
两个矩阵相加时,对应 元素进行相加。
矩阵加法的运算律:
☞(1) A+ B = B+ A
(2) ( A+B )+ C = A+ ( B+ C ) 设矩阵 A= (aij) ,记A= ( aij),称 A为矩阵 A的负矩阵。
由矩阵加法的定义,显然有 A+ ( A) = O,
由此,矩阵的减法可定义为
A B =A+ ( B)
2.矩阵的数乘: 数λ与矩阵A的乘积记为λA或
Aλ,并规定:
a11 a12 ... a1n
5.矩阵的转置:把矩阵 A 的行换成同序数的列 得到的一个新矩阵,叫做 A的转置矩阵,记作 AT。
如果 A是一个 m×n 阶矩阵,那么 AT 就是 一个 n×m 阶矩阵。且 A 的行一定就是 AT中同 序数的列
☞ (1) ( AT )T A
(2) ( A B)T AT BT
(3) ( A)T AT (4) ( AB)T BT AT
证明:设矩阵 A为m×s 阶矩阵,矩阵 B为s×n 阶矩阵,那么: ( AB)T与 BTAT 是同型矩阵; 又设 C = A B,因为 CT的第 i 行第 j 列的元素正 好是 C 的 cji ,即 cji=aj1b1i+aj2b2i+…+ajsbsi =b1iaj1+b2iaj2+…+bsiajs
显然有:AB 0 AB BA
总结:矩阵乘法不满足交换律与消去律.
4.矩阵的乘幂:设 A 是 n 阶方阵,定义:
An AA A (n为正数)
n
只有方阵,它的乘幂才有意义。由于矩阵的 乘法满足结合律,而不满足交换律,因而有 下面的式子:
(1) An Am = An+m (2) ( An )m= An m (3) ( AB ) k ≠ Ak Bk
第二章 矩阵及其运算
矩阵是线性代数的一个主要研究对象, 也是数学上的一个重要工具。矩阵的应用已经 渗透到了包括自然科学、人文科学、社会科学 在内的各个领域。在矩阵理论中,矩阵的运算 起着重要的作用,本章主要讨论有关矩阵运算 的一些基本规则与技巧。
§2.1 矩阵的概念及运算 §2.2 逆矩阵 §2.3 矩阵的分块