磁盘阵列基本原理
了解电脑RAID技术的原理与应用

了解电脑RAID技术的原理与应用电脑RAID技术的原理与应用在当下的信息时代,电脑作为我们生活中不可或缺的工具,扮演着越发重要的角色。
然而,随着用户对存储需求的不断增加,如何有效地管理和保护数据成为了摆在我们面前的一道难题。
而电脑RAID技术的出现,为我们解决这一问题提供了行之有效的解决方案。
RAID,即独立冗余磁盘阵列(Redundant Array of Independent Disks)的缩写,是一种利用多个磁盘组合而成的存储系统技术。
它的核心理念是将多个独立的硬盘通过某种特定的方式组合起来,以提供更高的数据存储性能和可靠性。
一、RAID技术的基本原理RAID技术的基本原理是通过将数据分散存储在多个硬盘上,从而提高数据的访问速度和容错能力。
在RAID系统中,数据被划分成多个块,并通过不同的方式存储在不同的硬盘上,以实现数据的并行操作和冗余备份。
具体而言,常见的RAID技术包括RAID 0、RAID 1、RAID 5和RAID 10等。
RAID 0通过将数据分块地存储在多个硬盘上,并行读写提高数据传输速度。
RAID 1则是通过实时将数据备份到多个硬盘上,提供数据冗余、容错能力。
RAID 5则进一步发展了RAID 0和RAID 1的优点,通过数据分块和奇偶校验方式实现数据的存储和校验。
而RAID 10将RAID 1和RAID 0结合起来,既提供了数据冗余,又提供了高性能的读写速度。
二、RAID技术的应用领域RAID技术已经广泛应用于各个领域,包括企业、科研、云计算等。
具体应用包括但不限于以下几个方面:1. 企业数据存储在企业级应用中,数据的可靠性和性能是至关重要的。
利用RAID技术可以提高数据存储的冗余性和可用性,同时提供高速的数据传输速度,以满足企业对数据安全和性能的要求。
2. 科学研究在科学研究领域,对于大规模数据采集和存储的需求日益增加。
RAID技术可以提供大容量、高速度、高稳定性的存储解决方案,满足科研数据处理和分析的要求。
raid 0和raid 1的基本工作原理

R本人D(冗余磁盘阵列)是一种多个磁盘驱动器组合成一个单一的数据存储单元的技术。
R本人D技术通过在多个磁盘上进行数据分布和/或冗余来提高数据的性能、容错性和/或可靠性。
R本人D 0和R 本人D 1是最常见的R本人D级别之一,无论是在家庭用户还是企业环境中,都有着广泛的应用。
一、R本人D 0的基本工作原理R本人D 0通过将数据分割成一定大小的块,并且分别写入到不同的硬盘中,从而实现了数据的并行读写。
具体来说,R本人D 0至少需要两个硬盘来运作,当数据写入到R本人D 0中时,系统会将数据块按照顺序依次写入到每个硬盘中,这样可以实现数据的并行写入。
当系统需要读取数据时,每个硬盘都可以同时读取数据块,然后再将这些数据块组合成完整的数据,从而实现了数据的并行读取。
优点:1. 提高了数据访问速度由于数据可以同时从多个硬盘中读取,因此R本人D 0可以显著提高数据的读取和写入速度,尤其是在处理大型文件时效果更加显著。
缺点:1. 容错性差由于数据块被分散存储到多个硬盘中,如果其中一个硬盘损坏,那么整个R本人D 0系统的数据将会丢失,因此R本人D 0并不具备容错性,如果没有及时备份数据,一旦硬盘出现故障将会导致数据的不可恢复。
二、R本人D 1的基本工作原理R本人D 1采用镜像技术,即将数据同时写入到两个以上的硬盘中,这样保证了数据的冗余备份。
具体来说,当数据写入到R本人D 1中时,系统会将相同的数据块同时写入到多个硬盘中,这就保证了数据的备份。
当系统需要读取数据时,可以从任何一个硬盘中读取数据,因为数据都是一样的。
优点:1. 提高了数据的安全性由于数据被同时写入到多个硬盘中,因此即使其中一个硬盘损坏,数据仍然可以从其他硬盘中读取,不会丢失任何数据,保证了数据的安全性。
缺点:1. 成本较高由于R本人D 1需要额外的硬盘来进行数据备份,因此相比起单独的磁盘来说,R本人D 1的成本较高。
总结:R本人D 0和R本人D 1都是常见的R本人D级别,它们分别通过数据的分割和并行写入以及数据的镜像备份来提高数据的访问速度和数据的安全性。
磁盘阵列原理

控制系统则会根据校验盘的数据校验位在新盘中重建坏盘上的数据。不过,如果校验盘(物理)损坏的话,则全部数据都
无法使用。利用单独的校验盘来保护数据虽然没有镜像的安全性高,但是硬盘利用率得到了很大的提高,为n-1。
RAID 5:向阵列中的磁盘写数据,奇偶校验数据存放在阵列中的各个盘上,允许单个磁盘出错。RAID 5也是以数据的校验
RAID 6: RAID 6 与RAID 5相比,增加了第二个独立的奇偶校验信息块. 两个独立的奇偶系统使用不同的算法, 数据的可 靠性非常高. 即使两块磁盘同时失效,也不会影响数据的使用. 但需要分配给奇偶校验信息更大的磁盘空间, 相对于RAID 5有更大的"写损失". RAID 6 的写性能非常差, 较差的性能和复杂的实施使得RAID 6很少使用.
RAID 0:将多个较小的磁盘合并成一个大的磁盘,不具有冗余,并行I/O,速度最快。RAID 0亦称为带区集。它是将多个
磁盘并列起来,成为一个大硬盘。在存放数据时,其将数据按磁盘的个数来进行分段,然后同时将这些数据写进这些盘中。
所以,在所有的级别中,RAID 0的速度是最快的。但是RAID 0没有冗余功能的,如果一个磁盘(物理)损坏,则所有的数
==============================================================================
磁盘阵列各种RAID原理磁盘使用率

磁盘阵列各种RAID原理磁盘使用率RAID(Redundant Array of Inexpensive Disks)是一种磁盘阵列,可以将多块普通的磁盘拼接在一起形成更高效、可靠的数据存储系统。
它可以通过将存储空间划分成若干块虚拟磁盘来提高磁盘访问性能。
存储空间划分的方式共分为9种,分别是RAID0,RAID1,RAID2,RAID3,RAID4,RAID5,RAID6,RAID7和RAID10,其中RAID 0、RAID 1、RAID 5和RAID 10是最常用的四种RAID级别。
RAID0是把多块磁盘组合成一个虚拟磁盘,通过分割、重组来提升数据的存取速度,这种RAID把多块磁盘拼接在一起形成一个虚拟磁盘,不提供数据冗余,磁盘使用率比较高,但是其可靠性较低。
RAID1是把多块相同容量的磁盘拼接在一起形成一个虚拟磁盘,不同的是,这种RAID方式采用镜像技术,每个磁盘上的数据都会与另一块磁盘上的数据完全相同,提供了更好的可靠性,磁盘使用率较低,只有一半的磁盘空间可以使用。
RAID5是一种磁盘阵列中比较常用的RAID级别,它将磁盘阵列中的磁盘分成两种,一般磁盘和校验磁盘,这样就可以在一个虚拟磁盘上存储大量数据,任一块磁盘出现问题时,系统可以通过校验磁盘上的冗余数据来恢复受损的数据,并且RAID5提供了比RAID1更高的数据存储空间,磁盘使用率也比RAID1更高。
磁盘阵列原理

磁盘阵列原理磁盘阵列(RAID)是一种通过将多个磁盘驱动器合并成一个逻辑单元来提供数据冗余和性能提升的技术。
磁盘阵列利用磁盘级别的冗余来提供数据的备份和恢复能力,并通过将数据分布在多个磁盘上来提高数据访问速度。
在本文中,我们将探讨磁盘阵列的原理以及它是如何工作的。
1. 磁盘阵列的概念和分类磁盘阵列是一种将多个独立的磁盘驱动器组合在一起,形成一个逻辑单元的技术。
根据不同的需求,磁盘阵列可以被划分为多个级别,常见的包括RAID 0、RAID 1、RAID 5、RAID 6等级别。
每个级别都有其特定的数据保护和性能特性。
2. RAID 0RAID 0将数据分块并分布到多个磁盘上,以提高数据的读写性能。
它通过在多个磁盘上同时读取和写入数据来实现并行访问。
然而,RAID 0没有冗余机制,一旦其中一个磁盘损坏,所有数据将会丢失。
3. RAID 1RAID 1通过将数据复制到多个磁盘上来提供冗余能力。
每个数据块都会被复制到两个或更多的磁盘上,以确保数据的完整性。
当其中一个磁盘发生故障时,系统可以从其他磁盘中恢复数据。
4. RAID 5RAID 5采用分布式奇偶校验的方式来提供冗余能力。
它将数据分块并分布到多个磁盘上,同时计算奇偶校验信息并存储在不同的磁盘上。
当其中一个磁盘损坏时,系统可以通过计算奇偶校验信息来恢复数据。
5. RAID 6RAID 6在RAID 5的基础上增加了第二个奇偶校验信息。
这意味着RAID 6可以容忍两个磁盘的故障,提供更高的数据可靠性。
6. 磁盘阵列的工作原理磁盘阵列通过控制器来管理和操作多个磁盘驱动器。
控制器负责将数据分块并分布到多个磁盘上,同时监测磁盘的状态。
当磁盘发生故障时,控制器可以根据不同的级别(如RAID 1、RAID 5等)来执行数据的恢复操作。
7. 磁盘阵列的优势和应用磁盘阵列提供了数据的冗余和性能提升能力,可以提高数据的可靠性和访问速度。
它广泛应用于服务器、存储系统、数据库等需要高可靠性和高性能的场景。
磁盘阵列的数据恢复探析

磁盘阵列的数据恢复探析摘要:随着电子政务、电子商务及全球信息化的发展,企业级服务器正在国家职能部门、企事业单位等得到普及。
而这些服务器大多采用了磁盘阵列技术,一旦磁盘阵列发生故障,如何能快速地恢复该服务器中的数据至关重要。
就针对磁盘阵列的工作原理、技术规范、恢复方法、恢复工具等方面作了简要的探讨。
关键词:磁盘阵列;工作原理;恢复方法1磁盘阵列(RAID)1.1磁盘阵列的原理磁盘阵列原理就是利用数组方式将多块硬盘组合成磁盘组,并当作一个磁盘驱动器来使用,配合数据分散排列的设计,以提升数据的安全性。
磁盘阵列主要针对硬盘在容量及速度上无法跟上CPU及内存的发展而提出的改善方法,目的是提高系统的存储能力及容错能力。
1.2磁盘阵列的技术规范根据数据组织的方式,目前业界公认的可将磁盘阵列分为8个级别(RAID0~RAID7),它们的侧重点各不相同。
每个RAID等级分别针对速度、保护或两者设计的结合而设计,各个级别的简单定义见表1。
此外,磁盘阵列还有RAID1+0、5+0、JBOD等模式。
其中JBOD (无冗余模式)严格上来讲不属于磁盘阵列范畴,只是现在很多计算机主板上带有这种功能。
由表1可知,RAID5集合了RAID2、RAID3、RAID4的优点,因此应用最广泛,同时也淘汰了前3种RAID技术,RAID6是RAID5的扩充,进一步增强了数据的可靠性,但效率低且成本高。
RAID7虽然增强了数据的可靠性但成本过高故而很少使用,除非是在安全性极高的场合。
1.3RAID5的数据存储原理RAID5是目前应用最为广泛的RAID技术,其数据存储原理是将多块独立硬盘进行条带化分割,相同带区进行奇偶校验(异或运算),校验数据平均分布在每块硬盘上,这样任何一块硬盘上的数据丢失均可以通过校验数据推算出来,并且以N块硬盘构建RAID5阵列用户可以有N-1块硬盘的容量,存储空间利用率非常高,读写数据的速度也快。
虽然,RAID5提供了一定的冗余性(支持一块硬盘掉线仍可继续工作),但一旦掉盘后,运行效率将会大幅下降。
碟片磁盘阵列的工作原理

碟片磁盘阵列的工作原理碟片磁盘阵列是一种存储设备,它由多个硬盘组成,通过将数据分散存储在不同的盘片上来提高数据读写的速度和可靠性。
下面将详细介绍碟片磁盘阵列的工作原理。
一、定义和构成1.1 碟片磁盘阵列碟片磁盘阵列是由多个硬盘组成的存储系统,通过将数据分散存储在不同的盘片上来提高存储性能和容错能力。
1.2 硬盘硬盘是存储设备的组成部分,它由多个盘片和读写头构成,盘片上存储着数据,读写头负责读写数据。
二、工作原理2.1 数据分块碟片磁盘阵列将数据分成一个个块,并将每个块分散存储在不同的硬盘上。
这样做的目的是提高数据读写的并行度,从而提升存储性能。
2.2 冗余校验为了保证数据的可靠性,碟片磁盘阵列通常会采用冗余校验的方式。
它将原始的数据块与一些冗余数据块进行异或运算,生成校验数据块。
当其中的某个硬盘发生故障时,可以通过校验数据块来恢复数据。
2.3 RAID级别碟片磁盘阵列采用不同的RAID级别来实现不同的性能和可靠性要求。
最常见的RAID级别包括RAID 0、RAID 1、RAID 5和RAID 10等。
2.3.1 RAID 0RAID 0将数据块按顺序分散存储在不同的硬盘上,并行读写数据。
它的性能很高,但没有冗余校验功能,不具备容错能力。
2.3.2 RAID 1RAID 1通过将数据块完全复制到另一个硬盘上来实现冗余。
当其中一个硬盘发生故障时,可以通过另一个硬盘上的数据块来恢复数据。
2.3.3 RAID 5RAID 5在每个数据块中添加一个校验块,实现冗余校验。
当其中一个硬盘发生故障时,可以通过其他硬盘上的数据块和校验块来恢复数据。
2.3.4 RAID 10RAID 10是RAID 1和RAID 0的结合,它将所有的数据块复制到不同的硬盘上,并按照RAID 0的方式分散存储。
因此,RAID 10具备了高性能和冗余校验功能。
三、数据读取和写入过程3.1 数据读取当应用程序需要读取数据时,碟片磁盘阵列会同时从多个硬盘上读取数据块,然后将这些数据块组合成完整的数据并传输给应用程序。
磁盘阵列的工作原理及应用

磁盘阵列的工作原理及应用什么是磁盘阵列?磁盘阵列是一种将多个磁盘组合起来的存储系统,可以提供更高的存储容量、更高的性能和更高的可靠性。
它是一种通过分布式数据存储的方式来提高磁盘系统性能和可靠性的技术。
磁盘阵列的工作原理磁盘阵列通过将多个独立的磁盘驱动器组合在一起,形成一个逻辑的存储单元,称为阵列。
这个阵列可以被操作系统视为一个单独的磁盘驱动器,从而简化了数据管理和存取操作。
磁盘阵列通常由控制器、磁盘驱动器和磁盘阵列的管理软件组成。
控制器是磁盘阵列的核心部分,负责管理和控制磁盘阵列的工作。
磁盘驱动器是存储数据的硬件设备,而磁盘阵列的管理软件则负责分配和管理磁盘阵列中的数据。
磁盘阵列采用一种称为“数据条带化”的技术来提高性能。
数据条带化是将数据划分为固定大小的条带,并将这些条带分散存储在磁盘阵列的不同磁盘驱动器中。
这样可以同时从多个磁盘驱动器中读取数据,从而提高读取性能。
此外,磁盘阵列还可以通过冗余数据存储来提高可靠性。
冗余数据存储是将数据的多个副本存储在不同的磁盘驱动器中,以便在某个磁盘驱动器发生故障时可以从其他磁盘驱动器中恢复数据。
磁盘阵列的应用磁盘阵列在存储系统中有着广泛的应用。
以下是一些磁盘阵列应用的常见场景:1.数据中心:磁盘阵列可以用于构建大规模的数据中心存储系统,提供高容量和高性能的存储服务,以满足大规模数据处理和存储的需求。
2.企业存储:磁盘阵列可以用于构建企业级存储系统,为企业提供高可靠性和高性能的存储服务,以支持企业的业务运营和数据管理。
3.多媒体存储:磁盘阵列可以用于存储和管理大型多媒体文件,如音频、视频和图像等。
通过多个磁盘驱动器的并行工作,可以提供更高的数据传输速度和更快的文件访问速度。
4.数据备份与恢复:磁盘阵列可以用于构建备份和恢复系统,可以将数据备份到多个磁盘驱动器中,以提高数据的安全性和可靠性。
在数据丢失或系统故障时,可以从备份磁盘中快速恢复数据。
5.虚拟化存储:磁盘阵列可以与虚拟化技术结合使用,提供给虚拟机高性能和高可靠性的存储服务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章为什么要使用磁盘阵列1.1 什么是磁盘阵列磁盘阵列是一种把若干硬磁盘驱动器按照一定要求组成一个整体,整个磁盘阵列由阵列控制器管理的系统。
冗余磁盘阵列RAID(Redundant Array of Independent Disks)技术1987年由加州大学伯克利分校提出,最初的研制目的是为了组合小的廉价磁盘来代替大的昂贵磁盘,以降低大批量数据存储的费用(当时RAID称为Redundant Array of Inexpensive Disks 廉价的磁盘阵列),同时也希望采用冗余信息的方式,使得磁盘失效时不会使对数据的访问受损失,从而开发出一定水平的数据保护技术。
1.2 磁盘阵列的工作原理与特征RAID的基本结构特征就是组合(Striping),捆绑2个或多个物理磁盘成组,形成一个单独的逻辑盘。
组合套(Striping Set)是指将物理磁盘组捆绑在一块儿。
在利用多个磁盘驱动器时,组合能够提供比单个物理磁盘驱动器更好的性能提升。
数据是以块(Chunks)的形式写入组合套中的,块的尺寸是一个固定的值,在捆绑过程实施前就已选定。
块尺寸和平均I/O需求的尺寸之间的关系决定了组合套的特性。
总的来说,选择块尺寸的目的是为了最大程度地提高性能,以适应不同特点的计算环境应用。
实际的计算环境依据其不同的特点,可被划分为转换速率密集(Transfer Rate Intensive)环境或需求速率密集(Request Rate Intensive),一个计算环境若通常服务于小的用户数量和大的I/O需求,可以被认为是转换速率密集环境,工程学和科学应用属于转换速率密集,例如CAM/CAD、图象处理和数据集合等。
一个计算环境,如果它是自然存在的多用户或在线交易系统(OLTP),可以被认为是一个标准的需求速率密集, 交互式的数据库应用能产生大量的小的I/O需求,由这些应用产生的I/O负荷可被称为需求速率密集。
具备独立驱动器操作功能的组合套可提供对于需求速率密集环境来说高的性能。
对于转换速率密集,I/O需求的尺寸比块尺寸大得多,这样可导致每一个I/O需求分布于所有驱动器,数据由组合套转换的速率可以增加,因为所有的驱动器可并行地传输数据,这样,组合套就象一个单磁盘一样有非常高的容许速度。
需求速率密集中I/O需求尺寸比块尺寸小很多,这将导致每一个I/O 需求落于一个单个的驱动器中,在这种情况下,由于有数个驱动器,阵列可同时处理数个需求,或者说比单磁盘快数倍。
一个单磁盘某一时刻只能满足一个处理业务,一个转换速率密集应用的阵列某一时刻虽也满足一个处理业务,但能比单磁盘转换数据速度快X倍(X是磁盘数),一个需求速率密集应用的阵列可满足的需求为单一磁盘的X倍,而其转换数据的速率与单磁盘相同。
RAID的另一特征是具备数据校验(Parity)功能,校验可被描述为用于RAID级别2,3,4,5的额外的信息,当磁盘失效的情况发生时,校验功能结合完好磁盘中的数据,可以重建失效磁盘上的数据。
对于RAID系统来说,在任何有害条件下绝对保持数据的完整性(Data Integrity)是最基本的要求。
数据完整性指的是阵列面对磁盘失效时保持数据不丢失的能力,由于数据的破坏通常会带来灾难性的后果,所以选择RAID阵列的基础条件是它能提供什么级别的数据完整性。
此外,数据可用性(Data Availability)也是RAID系统的指标之一,数据可用性指的是阵列内部容错能力的水平,数据可用性程度越高,可被理解为当发生越多的部件失效时而数据访问仍不丢失。
一个RAID 阵列能提供的高可用性级别范围可从简单的磁盘冗余到所有部件的冗余性。
当选择一个阵列时,重要的是了解所选的设备是否能够满足期望的可使用时间目标。
RAID阵列能够适应不同环境,在不同类型的主机之间以及操作系统之间移动一个RAID阵列的能力越高,一般说来,可带来更好的投资保护。
1.3 磁盘阵列优点磁盘阵列有许多优点:首先,提高了存储容量;其次,多台磁盘驱动器可并行工作,提高了数据传输率;第三,由于有校验技术,提高了可靠性:如果阵列中有一台硬磁盘损坏,利用其它盘可以重新恢复出损坏盘上原来的数据,而不影响系统的正常工作,并可以在带电状态下更换已损坏的硬盘(即热插拔功能),阵列控制器会自动把重组数据写入新盘,或写入热备份盘而将新盘用做新的热备份盘;另外磁盘阵列通常配有冗余设备,如电源和风扇,以保证磁盘阵列的散热和系统的可靠性。
因其独特的特征和可靠的性能被广泛地应用于多个行业,如:ISP、医学影像、银行等在线处理业务部门、影像服务器、6石油工业、关键部门的数据中心、多媒体和数据库应用等。
对于磁盘失效的保护通过RAID技术已经成功地实现,但RAID阵列降低数据存储费用的目的没有达到,实际上,RAID阵列的价格通常比标准的磁盘驱动器更高一些。
尽管如此,RAID技术确实提供了比通常的磁盘存储更高的性能指标、数据完整性和数据可用性,尤其是在当今面临的I/O总是滞后于CPU 性能的瓶颈问题越来越突出的情况下,RAID解决方案能够有效地弥补这个缺口。
第2章什么是SCSI2.1概述SCSI直译为小型计算机系统专用接口(Small Computer System Interface)是一种连结主机和外围设备的接口,支持包括磁盘驱动器、磁带机、光驱、扫描仪在内的多种设备。
它由SCSI控制器进行数据操作,SCSI控制器相当于一块小型CPU,有自己的命令集和缓存。
要了解SCSI,必须先了解它的类型,以下是STA(SCSI Trade Association,SCSI同业公会)的标准分类。
2.2 SCSI接口类型SCSI连接器分为内置和外置两种,内置数据线的外型和IDE数据线一样,只是针数和规格稍有差别,主要用于连接光驱和硬盘。
40针IDE线有40根导线,40针ATA66有80根导线,SCSI内置则分为50针、68针和80针。
至于SCSI外置数据线,就有以多种规格,它们的密度均不相同,千万别弄错了。
详见附录A2.3 SCSI ID相信许多SCSI用户都有这种经历,插上设备之后,操作系统怎样也不认,后来检查总线,才发现是终结和ID没有设置好。
ID(identify)作为SCSI设备在SCSI总线的唯一识别符,绝对不允许重复,可选范围从0到15,SCSI主控制器通常占用id 7,即是说我们可以用在设备上的ID号共有15个。
在SCSI总线中,控制器也算一个设备,即实际最大可连接设备数目 = 理论最大支持设备数目-1。
2.4 总线终结器总线终结器能告诉SCSI主控制器整条总线在何处终结,并发出一个反射信号给控制器,必须在两个物理终端作一个终结信号才能使用SCSI总线。
常见的错误是把终结设置在ID号最高或最低的地方,而不是设置在物理终端的SCSI设备上。
其实,SCSI设备总是以链形来连接的,按顺序就能分辨出哪一个是终结设备。
终结的方式有三种:自终结设备、物理总线终结器和自终结电缆。
大多数新型SCSI设备都有自终结跳线,只要把非终结设备的自终结跳线设置成OFF即可避免冲突问题;物理总线终结器是一种硬件接头,又分为主动型和被动型两种,主动型使用电压调整器来进行操作,被动型利用总线上的能源信号来操作,被动型比主动型更为精确;自终结电缆可以代替物理总线终结器,也是一种硬件,它的价格非常昂贵,常用于两个主机连接同一个物理设备,如:两个服务器存取同一个物理SCSI硬盘。
通过检查SCSI ID和总线终结器,我们可以找出大多数冲突现象的解决方法,这是SCSI设备用户必须重视的一点。
2.5 SCSI规格公用的几个标准术语解释:2.5.1 SCSI-1:它是最早SCSI,特点是:支持同步和异步SCSI外围设备,支持7台8位的外围设备,使用8位的通道宽度,传输速率为4MB/s,这现在通常是扫描仪在用的2.5.2 SCSI-2:类似SCSI-1,但是可以支持同时连接7个装置,传输速率为 10-20MB/s,目前有CD-R、CD-ROM在使用。
2.5.3 Fast SCSI:8位的通道宽度,使用双倍的频率,传输速率为 10MB/s。
2.5.4 Wide SCSI:16位的通道宽度,传输速率为20MB/s。
2.5.5 ULTRA SCSI:8位的通道宽度,传输速率为20MB/s,其允许接口电缆的最大长度为1.5米。
2.5.6 Ultra Wide SCSI:16位的通道宽度,传输速率为40MB/s,其允许接口电缆的最大长度为1.5米。
2.5.7 ULTRA 2 SCSI:8位的通道宽度,其采用了LVD(Low Voltage Differential,低电平微分)传输模式,传输速率为40MB/s,允许接口电缆的最长为12米,大大增加了设备的灵活性,支持同时挂接15个装置。
2.5.8 WIDE ULTRA 2 SCSI:它跟Ultra 2 SCSI差不多,也是采用LVD传输模式,允许最长接口电缆为12米,可同时挂接15个装置,不同于Ultra 2 SCSI,它有16位的通道宽度,因此传输速度为80MB/s。
2.5.9 Ultra 160 SCSI:支持最高数据传输率为160MB/s。
2.5.10 Ultra320 SCSI:支持最高数据传输达到了320MB/s,是目前最新的SCSI接口类型。
2.5.11 Single Ended(单终结):许多旧式设备都是单终结设备,它们限制于SCSI-1协议的6米长度。
注意:此距离包括设备内部电缆的距离。
2.5.12 Differential(分差动):SCSI总线和设备可借助它来沿长传输的距离,附加线的最大长度为25米。
缺点是与单终结设备不兼容。
STA术语最大总线速度MB/秒总线宽度单位:bit 最大总线长度单位(米)最大支持设备设备数目单终结 LVD HVDSCSI–1 5 8 6 - 25 8Fast SCSI 10 8 3 - 25 8Fast Wide SCSI 20 16 3 - 25 16Ultra SCSI 20 8 1.5 - 25 8Ultra SCSI 20 8 3 - - 4Wide Ultra SCSI 40 16 - - 25 16Wide Ultra SCSI 40 16 1.5 - - 8Wide Ultra SCSI 40 16 3 - - 4Ultra2 SCSI 40 8 - 12 25 8Wide Ultra2 SCSI 80 16 - 12 25 16Ultra3 SCSI 160 16 - 12 - 162.6小结 SCSI的优点与缺点SCSI接口优点:<> 适应面广,在一块SCSI控制卡上就可以同时挂接15个设备<> 高性能(具有很多任务、宽带宽及少CPU占用率等特点)<> 具有外置和内置两种SCSI接口缺点:<> 价格昂贵<> 安装复杂第3章什么是Fibre Channel(光纤通道)3.1 概述光纤通道是一种跟SCSI或IDE有很大不同的接口,它很像以太网的转换开头。