5.6 焊接裂纹-应力腐蚀裂纹
焊接裂纹的分类与特征

基本特征
敏感的温度区间
被焊材料
位置
裂纹走向
热
裂
纹
结晶裂纹
在结晶后期,由于低熔共晶形成的液态薄膜削弱了晶粒间的联结,在拉伸应力的作用下发生开裂
在固相线温度以上稍高的温度(固液状态)
杂上、少量在热影响区
沿奥氏体晶界
多边化裂纹
已凝固的结晶前沿,在高温和应力的作用下,晶格缺陷发生移动和聚集,形成二次边界,它在高温处于低塑性状态,在应力作用下产生的裂纹
固相线以下再结晶温度
纯金属及单相奥氏体合金
焊缝上,少量在热影响区
沿奥氏体晶界
液化裂纹
在焊接热循环峰值温度在作用下,在热影响区和多层焊的层间发生重熔,在应力作用下产生的裂纹
固相线以下稍低温度
含S、P、C较多的镍铬高强钢、奥氏体钢、镍基合金
热影响区及多层焊的层间
沿晶界开裂
再热裂纹
厚板焊接结构消除应力处理过程中,在热影响区的粗晶区存在不同程度的应力集中时,由于应力松弛所产生附加变形大于该部位的蠕变塑性,则发生再热裂纹
600-700℃回火处理
含有沉淀强化元素的高强钢、珠光体钢、奥氏体钢、镍基合金等
热影响区的粗晶区
沿晶界开裂
冷
裂
纹
延迟裂纹
在淬硬组织、氢和拘束应力的共同作用下而产生的具有延迟特征的裂纹
在MS点以下
中、高碳钢,抵、中合金钢,钛合金等
热影响区、少量在焊缝
沿晶或穿晶
淬硬脆化裂纹
主要是由淬硬组织在焊接应力的作用下产生的裂纹
MS点附近
含碳的NiCrMo钢、马氏体不锈钢
热影响区、少量在焊缝
沿晶或穿晶
低塑性脆化裂纹
在较低的温度下,由于被焊材料的收缩应变,超过了材料本身的塑性储备而产生的裂纹
焊接裂纹产生原因及防治措施

以下为焊接裂纹产生原因及防治措施,一起来看看吧。
1、焊接裂纹的现象在焊缝或近缝区,由于焊接的影响,材料的原子结合遭到破坏,形成新的界面而产生的缝隙称为焊接裂缝,它具有缺口尖锐和长宽比大的特征。
按产生时的温度和时间的不同,裂纹可分为:热裂纹、冷裂纹、应力腐蚀裂纹和层状撕裂。
在焊接生产中,裂纹产生的部位有很多。
有的裂纹出现在焊缝表面,肉眼就能观察到;有的隐藏在焊缝内部,通过探伤检查才能发现;有的产生在焊缝上;有的则产生在热影响区内。
值得注意的是,裂纹有时在焊接过程中产生,有时在焊件焊后放置或运行一段时间之后才出现,后一种称为延迟裂纹,这种裂纹的危害性更为严重。
2、焊接裂纹的危害焊接裂缝是一种危害大的缺陷,除了降低焊接接头的承载能力,还因裂缝末端的尖锐缺口将引起严重的应力集中,促使裂缝扩展,最终会导致焊接结构的破坏,使产品报废,甚至会引起严重的事故。
通常,在焊接接头中,裂缝是一种不允许存在的缺陷。
一旦发现即应彻底清除,进行返修焊接。
3、焊接裂纹的产生原因及防治措施由于不同裂缝的产生原因和形成机理不同,下面就热裂缝、冷裂缝和再热裂缝三类分别予以讨论。
3.1、热裂纹热裂缝一般是指高温下(从凝固温度范围附近至铁碳平衡图上的A3线以上温度)所产生的裂纹,又称高温裂缝或结晶裂缝。
热裂缝通常在焊缝内产生,有时也可能出现在热影响区。
原因:由于焊接熔池在结晶过程中存在着偏析现象,低熔点共晶和杂质在结晶过程中以液态间层存在形成偏析,凝固以后强度也较低,当焊接应力足够大时,就会将液态间层或刚凝固不久的固态金属拉开形成裂缝。
此外,如果母材的晶界上也存在有低熔点共晶和杂质,则在加热温度超过其熔点的热影响区,这些低熔点化合物将熔化而形成液态间层,当焊接拉应力足够大时,也会被拉开而形成热影响区液化裂缝。
总之,热裂缝的产生是冶金因素和力学因素综合作用的结果。
防治措施:防止产生热裂缝的措施,可以从冶金因素和力学因素两个方面入手。
控制母材及焊材有害元素、杂质含量限制母材及焊接材料(包括焊条、焊丝、焊剂和保护气体)中易偏析元素及有害杂质的含量。
焊接裂纹产生的原因

焊接裂纹产生的原因1. 引言焊接是将两个或多个金属材料通过熔化并冷却形成一体的加工方法。
然而,在焊接过程中,裂纹的产生可能会导致焊接接头的强度和密封性下降,从而影响产品的质量和安全性。
因此,了解焊接裂纹产生的原因对于提高焊接工艺和产品质量至关重要。
2. 焊接裂纹的分类焊接裂纹通常可以分为热裂纹、冷裂纹和应力腐蚀裂纹三类。
2.1 热裂纹热裂纹是在焊接过程中由于局部区域受到高温热循环引起的。
主要包括固相变热裂纹、液相变热裂纹和固液相变热裂纹。
2.2 冷裂纹冷裂纹是在焊缝凝固过程中由于温度梯度引起的。
主要包括基体冷裂纹、极低温冷裂纹和残余应力引起的冷裂纹。
2.3 应力腐蚀裂纹应力腐蚀裂纹是在焊接接头表面受到应力和介质共同作用下产生的。
主要包括氢致应力腐蚀裂纹和应力腐蚀疲劳裂纹。
3. 焊接裂纹产生的原因3.1 热裂纹产生的原因热裂纹主要是由于焊接过程中局部区域的温度变化引起的。
以下是几个常见的原因:•不合适的焊接参数:如焊接电流、电压和速度等参数选择不当,会导致焊缝局部区域温度过高或过低,从而引起热裂纹。
•不合理的预热和后热处理:预热温度选择不当或后热处理不到位,会使焊缝局部区域冷却速度不均匀,从而容易产生热裂纹。
•材料组织性能差异:如果焊接材料之间存在明显的化学成分差异或晶粒尺寸差异,会导致局部区域在焊接过程中受到不均匀的热影响,进而引起热裂纹的产生。
3.2 冷裂纹产生的原因冷裂纹主要是由于焊接过程中局部区域的温度梯度引起的。
以下是几个常见的原因:•焊接速度过快:焊接速度过快会导致焊缝凝固不完全,局部区域温度梯度大,从而容易产生冷裂纹。
•焊接材料选择不当:某些材料在焊接过程中容易形成低温脆性组织,一旦遇到高应力或剧烈变形,就会发生冷裂纹。
•焊接残余应力:焊接过程中产生的残余应力可能会导致局部区域发生塑性变形,进而引起冷裂纹。
3.3 应力腐蚀裂纹产生的原因应力腐蚀裂纹主要是由于焊接接头表面受到应力和介质共同作用下产生的。
焊接裂纹的处理PPT课件

第五章 焊接裂纹
28
以低碳钢焊接为例可把熔池的结晶分 为以下三个阶段
①液固阶段:(1区)
②固液阶段:这一区 也称为“脆性温度区” 即图上a、b之间的温 度范围 ③固相阶段:也叫 完全凝固阶段
Tb—称为脆性温度区,在比区间易产生结晶裂纹,杂质较少的金属, Tb 小产生裂纹的可能性也小,杂质多的金属Tb大,产生裂纹的倾向也大
③星形(弧形裂纹) 2、 按裂纹发生部位分
①焊缝金属中裂纹
纵向裂纹
②热影响区中裂纹
③焊缝热影响区贯穿裂纹
第五章 焊接裂纹
8
3 、按产生本质分类
1)、热裂纹 (高温裂纹)
产生:热裂纹(高温裂纹)高温下产生
存在部位:焊缝为主,热影响区
特征:宏观看, 沿焊缝的轴向成纵向分
布(连续或继续)也可看到缝横向裂纹 ,裂口均有较明显的氧化色彩,表面无 光泽,微观看,沿晶粒边界(包括亚晶 界)分布,属于沿晶断裂性质
第五章 焊接裂纹
16
延迟裂纹
第五章 焊接裂纹
17
4)、层状撕裂:
由于轧制母材内部存 在有分层的夹杂物(特 别是硫化物夹杂物) 和焊接时产生的垂直 轧制方向的应力,使 热影响区附近地方产 生呈“台阶”状的层 状断裂并有穿晶发展 。
第五章 焊接裂纹
18
5)、应力腐蚀裂纹:
金属材料在某些特定 介质和拉应力共同作 用下所产生的延迟破 裂现象,称应力腐蚀 裂纹。
第五章 焊接裂纹
3
重点内容
1、裂纹的分类用一般特征 2、结晶裂纹的形成机理、影响因素,及其防
冶措施 3、焊接冷裂纹的形成机理, 4、应力腐蚀裂纹形ຫໍສະໝຸດ 机理 5、层状撕裂产生原因及防止、
焊接裂纹的分类

焊接裂纹的分类焊接裂纹是指在焊接过程中或焊接后,由于内部应力、冷却速度等因素的影响,导致焊接接头内部或表面产生的裂纹。
根据裂纹的产生原因和裂纹形态不同,可以将焊接裂纹分为不同的类型。
下面就几种常见的焊接裂纹进行分类和介绍。
1. 热裂纹热裂纹是由于焊缝热影响区的结构组织和化学成分发生变化而引起的。
热裂纹通常在焊接过程中或焊接后的短时间内出现。
根据裂纹出现的位置和形态,热裂纹可以分为几种不同的类型:(1) 固相转变裂纹:当金属处于固相转变的温度范围内,由于组织的变化和内部应力的影响,容易产生热裂纹。
这种裂纹通常直接出现在焊缝和热影响区的边缘。
(2) 晶粒边界裂纹:在焊接过程中,由于焊接区和热影响区的组织结构发生变化,晶粒边界处的脆性增大,容易形成裂纹。
这种裂纹通常呈线状,沿着晶粒边界方向延伸。
(3) 退火裂纹:由于焊接过程中产生的应力或变形,在焊接后的退火过程中,容易引起焊接接头的内部产生裂纹。
这种裂纹通常在焊缝和热影响区内部产生,对焊接接头的强度和韧性产生负面影响。
2. 冷裂纹冷裂纹是由于焊接后在室温条件下产生的裂纹。
冷裂纹通常是由于焊接接头内部的残余应力和变形引起的。
根据裂纹形态和位置的不同,冷裂纹可以分为以下几种类型:(1) 焊接残余应力裂纹:由于焊接接头的热变形以及冷却过程中产生的残余应力,容易导致焊接接头内部产生裂纹。
这种裂纹通常沿着焊缝或热影响区的方向延伸,严重影响焊接接头的力学性能。
(2) 氢致裂纹:在焊接过程中,如果焊接材料和焊接环境中存在水、油、脂肪等含氢物质,容易引起焊接接头内部产生氢致裂纹。
这种裂纹通常呈细小的网状分布,对焊接接头的韧性和可靠性产生严重影响。
3.应力腐蚀裂纹应力腐蚀裂纹是由于金属在受到应力和腐蚀介质的共同作用下产生的裂纹。
这种裂纹通常在金属制品长期使用过程中出现,对金属制品的可靠性和使用寿命产生严重影响。
根据裂纹产生的条件和形态不同,应力腐蚀裂纹可以分为以下几种类型:(1) 晶间腐蚀裂纹:当金属在受到腐蚀介质和应力的作用下,容易发生晶间腐蚀和产生裂纹。
焊接裂纹

焊接裂纹随着钢铁、石油化工、舰船和电力等工业的发展,在焊接结构方面都趋向于向大型化、大容量和高参数方向发展,有的还在低温、腐蚀等环境下工作。
因此,各种低合金高强钢、高合金钢、合金材料的应用越来越广泛。
但是,随着这些钢种和合金材料的应用,在焊接生产中带来了许多新的问题,其中经常遇到的一种最严重的缺陷就是焊接裂纹。
焊接裂纹是接头中局部区域的金属原子结合遭到破坏而形成的缝隙,缺口尖锐、长宽比大,在结构工作过程中会扩大,甚至会使结构突然断裂,特别是脆性材料,所以裂纹是焊接接头中最危险的缺陷。
5.1 焊接接头中裂纹的分布焊接生产中,由于钢材和结构类型不同,裂纹的分布是多种多样的,见图5-1。
各种不同类型的裂纹:①焊缝中纵向裂纹;②焊缝上横向裂纹;③热影响区纵向裂纹;④热影响区横向裂纹;⑤火口(弧坑)裂纹;⑥焊道下裂纹;⑦焊缝内部晶间裂纹;⑧焊趾裂纹;⑨热影响区焊缝贯穿裂纹⑩焊缝根部裂纹5.2 裂纹的分类5.2.1 按裂纹分布的走向分①横向裂纹;②纵向裂纹;③星形(弧形裂纹)。
5.2.2 按裂纹发生部位分①焊缝金属中裂纹;②热影响区中裂纹;③焊缝热影响区贯穿裂纹。
5.2.3 按产生本质分类①热裂纹;②冷裂纹;③再热裂纹;④层状撕裂;⑤应力腐蚀裂纹。
(1)热裂纹(高温裂纹)产生:焊接接头的冷却过程中,且温度处在固相线附近的高温阶段产生。
存在部位:焊缝为主,热影响区特征:宏观看,焊缝热裂纹沿焊缝的轴向成纵向分布(连续或继续)也可看到缝横向裂纹,裂口均有较明显的氧化色彩,表面无光泽;微观看,沿晶粒边界(包括亚晶界)分布,属于沿晶断裂性质。
分类:①结晶裂纹②高温液化裂纹③多边化裂纹(2)再热裂纹(消除应力处理裂纹)原件结构焊后消除应力热处理中,在热影响区的粗晶部位产生裂纹,材质低合金高强钢,珠光体耐热钢、奥氏体、不锈钢、Ni基合金。
由于重新加热(热处理)过程中产生称再热裂纹—消除应力处理裂纹。
(3)冷裂纹产生温度:较低温度,在M S点以下的低温产生的存在部位:多发生在热影响区,但也有发生在焊缝。
焊接裂纹种类分类及其特点概述

焊接裂纹种类分类及其特点概述一、危害性焊接结构产生裂纹轻者需要返修,浪费人力、物力、时间,重者造成焊接结构抱废,无法修补。
更严重者造成事故、人身伤亡。
如1969年有一艘5万吨的矿石运输船在太平洋上航行时,断裂成两段而沉没,在压力容器破坏事故中,有很多都是由于焊接裂纹造成。
因此,解决研究焊接裂纹已成为当前主要课题。
二、种类各种不同类型的裂纹①焊缝中纵向裂纹②焊缝上横向裂纹③热影响区纵向裂纹④热影响区横向裂纹⑤火口(弧坑)裂纹⑥焊道下裂纹⑦焊缝内部晶间裂纹⑧热影响区焊缝贯穿裂纹⑨焊趾裂纹⑩焊缝根部裂纹分类:1、按裂纹分布的走向分1)、横向裂纹2)、纵向裂纹3)、星形(弧形裂纹)2、按裂纹发生部位分①焊缝金属中裂纹②热影响区中裂纹③焊缝热影响区贯穿裂纹3、按产生本质分类1)、热裂纹(高温裂纹)产生:焊接接头的冷却过程中,且温度处在固相线附近的高温阶段。
—热裂纹—高温裂纹高温下产生,在结晶温度附近存在部位:焊缝为主,热影响区特征:宏观看,焊缝热裂纹沿焊缝的轴向成纵向分布(连续或继续)也可看到缝横向裂纹,裂口均有较明显的氧化色彩,表面无光泽,微观看,沿晶粒边界(包括亚晶界)分布,属于沿晶断裂性质。
存在宏观裂纹,必有微观裂纹存在微观裂纹,外表不一定显现宏观裂纹近缝区的裂纹往往是微观裂纹,不一定发展成宏观裂纹1)、热裂纹1)、结晶裂纹:在凝固的过程—结晶过程中产生2)、高温液化裂纹:在高温下产生,钢材或多层焊的层间金属含有低熔点化合物(S、P、Si)经重新溶化,在收缩应力作用下,沿奥氏体晶间发生开裂。
3)、多边化裂纹:产生温度低于固相线温度,存在晶格缺陷(位错和空位),物理化学的不均匀性,在应力作用下,缺陷聚集形成多边化边界,使强度塑性下降,沿多边化边界开裂,多发生纯金属或单相奥氏体合金焊缝。
2)、再热裂纹(消除应力处理裂纹)原件结构焊后消除应力热处理中,在热影响区的粗晶部位产生裂纹,材质低合金高强钢,珠光体耐热钢、奥氏体、不锈钢、Ni基合金。
焊接裂纹的分析与处理

焊接裂纹的分析与处理我们在厂修车体、车架、转向架构架时经常会遇到焊缝或母材的裂纹。
我们已经讲过裂纹的判断,判断出裂纹以后就需要对裂纹进行处理。
如果我们在处理之前对裂纹没有一个准确的分析,就不可能制定出最佳的处理方案。
因此必须要对裂纹进行认真的分折。
根据焊接生产中采用的钢材和结构类型不同,可能遇到各种裂纹,裂纹多产生在焊缝上,如焊缝上的纵向裂,焊缝上的横向裂。
也可以产生在焊缝两侧的热影响区,焊缝热影响区的纵向裂,焊接影响的横向裂纹,焊接热影响区的焊缝贯穿裂纹,有时产生在金属表面,有时产生在金属内部,如焊缝根部裂、焊趾裂,有的裂纹用肉眼可以看到,有的则必须借助显微镜才能发现,有的裂纹焊后立即出现,有的则是放置或运行一段时间之后才出现。
1.焊缝裂纹的分类根据裂纹的本质和特征,可分为五种类型:即热裂纹、冷裂纹、再热裂纹、层状撕裂及应力腐蚀裂纹。
1.1热裂纹热裂纹是在高温情况下产生的,而且是沿奥氏体晶界开裂,就目前的理解,把裂纹又分为结晶裂纹、液化裂纹、多边化裂纹三类。
(1)结晶裂纹—结晶裂纹的形成期,是在焊缝结晶过程中且温度处在固相线附近的高温阶段,即处于焊缝金属的凝固末期固液共存阶段,由于凝固金属收缩时残存液相不足,致使沿晶开裂,故称结晶裂纹,由于这种裂纹是在焊缝金属凝固过程中产生的,所以也称为凝固裂纹。
结晶裂纹的特征:存在的部位主要在焊缝上,也有少量的在热影响区,最常见的是沿焊缝中心长度方向上开裂,即纵向裂,断口有较明显的氧化色,表面无光泽,也是结晶裂纹在高温下形成的一个特征。
(2)液化裂纹—焊接过程中,在焊接热循环峰值温度作用下,在多层焊缝的层间金属以及母材近缝区金属中,由于晶间层金属被重新熔化,在一定的收缩应力的作用下,沿奥氏体晶界产生的开裂,称为“液化裂纹”也称“热撕裂”。
液化裂的特征:①易产生在母材近缝区中紧靠熔合线的地方(部分溶化区),或多层焊缝的层间金属中。
②裂纹的走向,在母材近缝区中,裂纹沿过热奥氏体晶间发展;在多层焊缝金属中,裂纹沿原始柱状晶界发展,裂纹的扩展方向,视应力的最大方向而定,可以是横向或纵向;并在多层焊焊缝金属中,液化裂纹可以贯穿层间;在近缝区中的液化裂纹可以穿越熔合线进入焊缝金属中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、产生应力腐蚀裂纹的机理
(一)应力腐蚀产生的条件 (1)材料与腐蚀介质的匹配 纯金属不会产生SCC,金属中必须含有不同电极电 纯金属不会产生SCC,金属中必须含有不同电极电 位的组织。 材料必须在匹配的腐蚀条件下:如低碳钢在NaOH, 材料必须在匹配的腐蚀条件下:如低碳钢在NaOH, 硝酸盐溶液,海水中容易腐蚀;奥氏体不锈钢在氯 化物水溶液、海水、海洋气氛等容易腐蚀。 腐蚀介质较弱,腐蚀膜不太稳定时,容易出现SCC。 腐蚀介质较弱,腐蚀膜不太稳定时,容易出现SCC。 (2)拉应力是产生SCC的先决条件,特别是应力约等 )拉应力是产生SCC的先决条件,特别是应力约等 于屈服应力时,更容易引发SCC。 于屈服应力时,更容易引发SCC。
四、应力腐蚀裂纹的影响因素及其防治
(一)组装 组装对产品质量的影响很大,强制组装会产生很大 的残余应力,另外,在组装过程中更应避免各种伤 痕,如拉筋、Ⅱ 痕,如拉筋、Ⅱ型铁、支柱、夹具等所留下的痕迹, 以及打弧时的烧痕,都应用砂轮磨去,否则就可能 是SCC的起源。 SCC的起源。 (二)焊接材料选择 尽管母材的抗SCC的能力很强,但选用的焊接材料 尽管母材的抗SCC的能力很强,但选用的焊接材料 不当,同样会使构件产生SCC。 不当,同样会使构件产生SCC。
(三)焊接工艺 制定合理的焊接工艺规程,如焊接线能量、焊接顺 序和坡口的形式及变形的控制等。前者是防止焊接 热影响区硬化和晶粒粗大,而后者是防止主生过大 的残余应力和应力集中等。 制定焊接工艺时,应满足两方面的不同要求,既防 止淬硬(过小的焊接线能量),也要防止晶粒严重 长大(线能量过大)。如采用多层焊接,对防止 SCC是有利的。 SCC是有利的。 对于奥氏体不锈钢,因无淬硬问题,主要是防止晶 粒长大(适于采用小的焊接线能量)。
SCC的开裂 (三)SCC的开裂 SCC的开裂分三个过程: SCC的开裂分三个过程: (1)孕育阶段 由于应力集中,产生“滑移阶梯” 由于应力集中,产生“滑移阶梯”,引起保护膜破 坏,形成最初的腐蚀裂口。 (2)发展阶段 腐蚀裂口在拉应力及匹配腐蚀介质的作用下,裂口 沿应力方向扩展。 (3)溃裂阶段 裂纹达到一定尺寸后,在应力的作用下பைடு நூலகம்急速扩展。
(四)焊后消除应力处理 一般有整体热处理、局部热处理、水压试验、机械 拉伸、温差拉伸、锤击,以及爆炸法等 其中整体消除应力处理 消除应力的程度,主要决 定于材质的成分、组织、加热温度和保温时间等 (五)表面改质 采用喷涂耐蚀金属层、塑性涂层、表面堆焊不锈钢 等,可以大大提高抗SCC的能力。 等,可以大大提高抗SCC的能力。
具体控制措施的汇总见下图:
SCC的扩展途径大体上分为以下三类: SCC的扩展途径大体上分为以下三类: A类:由起裂点开始,一直向纵深处扩展,只有少 量分枝。主要以穿晶形式开裂,多发生在强度较高 的不锈钢和σs≈800-1000MPa的高强钢。 的不锈钢和σs≈800-1000MPa的高强钢。 B类:由起裂点开始,不是向深处发展,而是沿横 向扩展,形成树根状的密集分枝。这种SCC也是以 向扩展,形成树根状的密集分枝。这种SCC也是以 穿晶形式开裂,主要发生在强度较低的不锈钢和对 氢敏感的超高强钢。 中间类:这类SCC的扩展介于A类和B 中间类:这类SCC的扩展介于A类和B类之间,即由 起裂点开始,既向深处发展,也向横向扩展,其行 径具有沿晶特征。这种SCC主要发生在不锈钢构件。 径具有沿晶特征。这种SCC主要发生在不锈钢构件。
二、应力腐蚀裂纹的特征
(一)应力腐蚀裂纹的分布 裂纹的分布如同疏松的网状或龟裂分布,在焊缝的 表面上,多以横向裂纹出现,如果引入金属内部观 察,SCC的形态如同树根一样。 察,SCC的形态如同树根一样。 (二)SCC的开裂途径与母材及腐蚀介质有关,有 (二)SCC的开裂途径与母材及腐蚀介质有关,有 沿晶开裂、穿晶开裂。 (三)SCC的产生必须有拉伸应力存在,而焊接结 (三)SCC的产生必须有拉伸应力存在,而焊接结 构如不经消除应力处理,必然存在残余应力,这是 产生SCC的重要条件。通常对于重要的焊接结构, 产生SCC的重要条件。通常对于重要的焊接结构, 如在腐蚀条件下工作,必须进行消除应力处理,以 防止SCC。 防止SCC。
第六节
应力腐蚀裂纹
一、应力腐蚀裂纹(SCC)的危害性 应力腐蚀裂纹(SCC) (SCC)的危害性
一些焊接结构(主要是一些压力容器和管道等)在 腐蚀介质条件下长期稳定工作。这些焊接结构一般 都存在不同程度的残余应力,在腐蚀介质条件下工 作极易产生应力腐蚀裂纹。 石油化工中由于腐蚀引起的脆化,一半是由于SCC 石油化工中由于腐蚀引起的脆化,一半是由于SCC 引起的。 奥氏体不锈钢的容器和管道,在氯化物或苛性物质 的电解液中也会产生SCC。 的电解液中也会产生SCC。
(二)应力腐蚀的电化学应力腐蚀开裂机理 把应力腐蚀开裂分为以下两个方面: (1)阳极溶解腐蚀开裂(APC); )阳极溶解腐蚀开裂(APC); (2)阴极氢脆开裂(HEC)。 )阴极氢脆开裂(HEC)。
HEC
APC
阳极发生M+的溶解:M→M++e——APC的 阳极发生M+的溶解:M→M++e——APC的SCC 阴极H+得到电子: 阴极H+得到电子: H++e→H——HEC的SCC +e→H——HEC的 当阳极电流密度越大时,说明M+的溶解过程越强, 当阳极电流密度越大时,说明M+的溶解过程越强, 腐蚀开裂所需的时间tf越短,也就是越容易产生 腐蚀开裂所需的时间tf越短,也就是越容易产生 APC型SCC。 APC型SCC。 阴极电流密度越大时,说明溶氢过程越强烈,越易 发生氢致脆化,也就是越易产生HEC型SCC。 发生氢致脆化,也就是越易产生HEC型SCC。 通常情况下APC和HEC是同时进行的。一般奥氏体不 通常情况下APC和HEC是同时进行的。一般奥氏体不 锈钢的SCC,往往是属APC型;而低碳钢、低合金高 锈钢的SCC,往往是属APC型;而低碳钢、低合金高 强钢和超高强钢多属HEC型,也称氢致开裂(氢 强钢和超高强钢多属HEC型,也称氢致开裂(氢 脆)。