2019人教A版数学必修一《2.1.1指数与指数幂的运算(2)》教案

合集下载

2018-2019学年高一数学人教A版必修一教案:2.1.1 指数与指数幂的运算

2018-2019学年高一数学人教A版必修一教案:2.1.1 指数与指数幂的运算

2.1.1.1 指数与指数幂的运算班级 姓名 小组________第____号 【学习目标】1.通过学习理解掌握n 次方根和n 次根式的概念;2.通过掌握n 次根式的性质,运用它进行简单的化简运算; 【重点难点】重点:根式的概念及n 次方根的性质。

难点:n 次方根的性质应用。

【学情分析】在中学阶段已经接触过正数指数幂的运算,但是这对我们指数函数是远远不够的,通过本节课使学生对指数幂的运算和理解更加深入。

【导学流程】 自主学习内容 一.回顾旧知:1. 一个正数有 个平方根,它们互为 。

0有 个平方根,是 。

负数 平方根。

2.一个数的平方运算,在a=x 2中x 叫做 ,2叫做 ,a 叫做 。

3.一个数的平方根运算,在x=a ±中a 叫做 ,x 叫做 。

二、基础知识感知1.n 次根式和n 次方根的概念一般地, ,那么x 叫做a 的n 次方根, (1,)n n N *>∈.(1) 若n 是奇数,则a 的n 次方根记作 ; 若0>a 则 ,若0a <则 ; (2)若n 是偶数,且0>a 则a 的正的n 次方根记作 ,a 的负的n 次方根,记作: ;(3) 若n 是偶数,且0a <则 没意义,即负数没有偶次方根; (4)0的任何次方根都是0,记作 .(5) 式子 叫根式,n 叫根指数,a 叫被开方数.2. 分数指数幂(1)正数的正分数指数幂的意义n a m 是a m 的n 次方根,即na m =_____(a >0,m ,n ∈N *,且n >1).(2)正数的负分数指数幂和零的分数指数幂. ①n-am = (a >0,m ,n ∈N *,且n >1);②0的正分数指数幂等于 ; ③0的负分数指数幂 . 3、根式的性质(1) (na )n =________(n ∈N *,且n >1)(2)当n 为奇数时,na n= ;当n 为偶数时,na n= . 三.探究问题 探究一:根式的化简 【例1】根式的化简与计算(1)4)(b a - (2)22-1)(探究二:根式与分数指数的互换 【例2】将下列根式化为分数指数幂形式(1)3a (2)2a四、基础知识拓展与迁移下列说法:①327-=3;②16的4次方根是±2;③3814±=;④y x y x +=+2)(其中正确的有 (填写正确说法的序号).小组讨论问题预设1.化简x x 3-的结果为( )。

2019A新高中数学必修第一册:2.1.1 指数与指数幂的运算

2019A新高中数学必修第一册:2.1.1  指数与指数幂的运算

1 3
);
x-
1 2
y
2 3
)(-4
x
1 4
y
2 3
);
(7)
(2
x
1 2
+
3
y-
1 6
)(2
x
1 2
-
3
y
- 16
);
(8)
4
x
1 4
(-3
x
1 4
y-
1 3
)
(-6
x
- 12
y-
2 3
).
解:
(1)
13 7
a 3a4a12
=
a
13+
3 4
+172
=
a
5 3
.
(2)
23
a3a4
5
a6
=
a
32+
43-
3. 分数指数幂
我们将下面根式变形:
10
a>0 时, 5 a10 = 5 ( a2 )5 = a2 = a 5 .
12
a>0 时, 4 a12 = 4 ( a3 )4 = a3 = a 4 .
m
规定: a n = n am (a 0, m, nN *. 且n1).
a-
m n
=
1
m
(a 0,
m,
解:
(1)
原式
=
x3
y2(-
27
1 x3
y31)
=
-
1 27 y
.
(2) 原式 = 4(- 32)a2-(-1)b-1-(-1)= -6a3.
(3)
原式

高中数学 2.1.1指数与指数幂的运算(2)教案 新人教版必修1

高中数学 2.1.1指数与指数幂的运算(2)教案 新人教版必修1

2.1.1(2)指数与指数幂的运算(教学设计)内容:分数指数幂一、教学目标(一)知识目标(1)理解根式的概念及其性质,能根据性质进行简单的根式计算。

(2)理解掌握分数指数幂的意义并能进行基本的运算。

(二)能力目标(1)学生能进一步认清各种运算间的联系,提高归纳,概括的能力.(2)让学生了解由特殊到一般的解决问题的方法,渗透分类讨论的思想.(3)训练学生思维的灵活性(三)德育目标(1)激发学生自主学习的兴趣(2)养成良好的学习习惯教学重点:次方根的概念及其取值规律。

教学难点:分数指数幂的意义及其运算根据的研究。

教学过程:一、复习回顾,新课引入:指数与其说它是一个概念,不如说它是一种重要的运算,且这种运算在初中曾经学习过,今天只不过把它进一步向前发展。

引导学生回顾指数运算的由来,是从乘方而来,因此最初指数只能是正整数,同时引出正整数指数幂的定义。

.然后继续引导学生回忆零指数幂和负整数指数幂的定义,分别写出及,同时追问这里的由来。

二、师生互动,新课讲解: 1.分数指数幂 看下面的例子: 当0 a 时,(1)2552510)(a a a ==,又5102=,所以510510a a =;(2)3443412)(a a a==,又4123=,所以412412a a =.从上面的例子,我们看到,当根式的被开方数的指数能被根指数整除时,根式可以表示为分数指数幂的形式. 那么,当根式的被开方数的指数不能被根指数整除时,根式是否也可以表示为分数指数幂的形式呢?根据n 次方根的定义,规定正数的正分数指数幂的意义是:n m nm a a=(0>a ,1*,,>∈n N n m ).0的正分数指数幂等于0, 0的负分数指数幂无意义.由于分数有既约分数和非既约分数之分,因此当0<a 时,应当遵循原来的运算顺序,通常不写成分数指数幂形式.例如:3273-=-,而3)27(62=-.规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 整数指数幂的运算性质对于分数指数幂即有理数指数幂同样适用. 联系并指出整数指数幂的运算性质对有理指数幂仍然适用 (1)a r a s =a r+s(a>0,r,s ∈Q) (2)(a r )s =a rs(a>0,r,s ∈Q) (3)(ab)r =a r b r(a>0,b>0, r,∈Q)3.分数指数幂与根式的表示方法之间关系。

高中数学2.1.1指数与指数幂的运算教案新人教A版必修1

高中数学2.1.1指数与指数幂的运算教案新人教A版必修1

数,负数没有 n 次方根。此时正数 a 的 n 次方根可表示为: n a (a 0)
其中 n a 表示 a 的正的 n 次方根, n a 表示 a 的负的 n 次方根。
例 3.根据 n 次方根的概念,分别求出 0 的 3 次方根, 0 的 4 次方根。 解:因为不论 n 为奇数,还是偶数,都有 0n=0,所以 0 的 3 次方根, 0 的 4 次方根均为 0。
当 n 为奇数时,由 n 次方根定义得: a n a n
当 n 为偶数时,由 n 次方根定义得: a n an
则 |a | | n an | n an
综上所述: (n a) n
a, n为奇数 | a |, n为偶数
注意:性质②有一定变化,大家应重点掌握。 (III )例题讲解 例 1.求下列各式的值:
am an
am
n
;又因为
( a )n 可看作 a m a n ,所以
b
(a)n b
an bn
可以 归入性质
( ab) n
an bn (n ∈ Z) ) , 这是为下面学习分数指数幂的概念和性
高中数学 2.1.1 指数与指数幂的运算教案 新人教 A 版必修 1
高中数学 2.1.1 指数与指数幂的运算教案 新人教 A 版必修 1
质做准备。为了学习分数指数幂,先要学习
n 次根式( n N * )的概念。
(2)填空( 3),( 4)复习了平方根、立方根这两个概念。如:
22=4 ,( -2 )2=4
2
, -2 叫 4 的平方根
23=8
2 叫 8 的立方根;
(-2 ) 3=-8 -2 叫-8 的立方根
25=32
2 叫 32 的 5 次方根

人教版高中数学必修1-2.1《指数与指数幂的运算(第2课时)》教学设计

人教版高中数学必修1-2.1《指数与指数幂的运算(第2课时)》教学设计

2.1.1指数与指数幂的运算(第二课时)(胡文娟)一、教学目标 (一)核心素养通过指数运算符号的使用与运算法则的总结,培育学生数学抽象、数学运算、逻辑推理的核心素养,为指数函数学习打下坚实基础. (二)学习目标1.理解有理数指数幂的含义及其运算性质. 2.运用有理数指数幂运算性质进行计算. (三)学习重点1.有理数指数幂的运算性质. 2.运用有理数指数幂的性质进行计算. (四)学习难点有理数指数幂的运算性质及其应用 二、教学设计 (一)课前设计 1.预习任务(1)求下列各式的值:①0232)2017(2)8(--⋅--;②21)62581(-详解:①原式014164121)8(3232=-⋅=-⋅-=; ②原式925)53()53(2214==⎥⎦⎤⎢⎣⎡=--.(2)计算下列各式.①=⋅2222 ,=⋅212122 ; ②=22)2( ,=221)2( ; ③=⨯2)32( ,=⨯21)32( ;观察上面的计算结果,你能得出什么结论? 结论: . 详解: ①16222242222===⋅+,222221212121==⋅+;②1622)2(42222===⨯,22)2(221221==⨯;③3632)32(222=⨯=⨯,632)32(212121=⨯=⨯.结论:整数指数幂的运算性质对于有理数指数幂也适用.2.预习自测(1)对于0>a ,Q ,∈s r ,以下运算中正确的是( ) A .rs s r a a a =⋅B .s r s r a a +=)(C .r r r b a ba-=)(D .s r s r ab b a +=)(【知识点】有理数指数幂的运算性质. 【数学思想】【解题过程】s r s r a a a +=⋅,A 选项错;rs s r a a =)(,B 选项错;由有理数指数幂的运算性质得D 选项不成立.【思路点拨】正确识记并掌握有理数指数幂的运算性质. 【答案】C .(2)下列各式正确的是( ) A .y x y x 3223=B .)0()(2<=-x x xC .x x x =⋅52D .35332x x x =⋅【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质. 【数学思想】32x y = A (0)x x =-< B 59x == D 错.【思路点拨】根据根式与分数指数幂的互化进行判断. 【答案】C .(3)将33611xx x ⋅(0>x )化简,结果正确的是( )A .xB .611x C .6xD .1【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质. 【数学思想】【解题过程】103123611312361133611===⋅=⋅--x xxx xxx x【思路点拨】运用根式与分数指数幂的互化关系以及有理数指数幂的运算性质进行化简. 【答案】D . (4)计算2231224-+⋅的结果是( )A .16B .32C .64D .128【知识点】有理数指数幂的运算性质及其化简求值. 【数学思想】 【解题过程】322224522322222312===⋅-++-+.【思路点拨】运用有理数指数幂的运算性质,同底数的幂相乘底数不变指数相加. 【答案】B . (二)课堂设计 1.知识回顾正整数指数幂的运算性质:*0,,r s r sa a a a r s +=>∈N () *0,,r s rs a a a r s =>∈N ()() *0,0,r r r ab a b a b r =>>∈N ()()2.问题探究探究一 有理数指数幂的含义及其运算性质★ ●活动① 有理数指数幂的含义前面我们学习了正数的正指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a a n m nm 也规定了正数的负指数幂的意义:1*()0,,,1)m m nnaa a m n N n --==>∈>在规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 【设计意图】通过回顾已学知识归纳总结,加深学生对有理数指数幂的理解. ●活动② 有理数指数幂的运算性质回顾整数指数幂的运算性质,在规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质对于有理数指数幂是否仍然适用呢?(学生讨论给出结论)答案是肯定的,整数指数幂的运算性质对于有理数指数幂也同样适用,即对于任意有理数r ,s ,均有下面的运算性质:0,,Q r s r sa a a a r s +=>∈() 0,,Q r s rs a a a r s =>∈()() 0,0,Q r r r ab a b a b r =>>∈()()【设计意图】通过学生自己思考得出整数指数幂的运算性质对于有理数指数幂也同样适用的结论,为后面运用有理数指数幂的运算性质进行化简计算做铺垫. ●活动③ 有理数指数幂的化简求值阅读教材51页至52页,从书中的例子中,我们可以总结得出有理数指数幂的化简求值的一般步骤有:第一步找同底数幂,调换位置时注意做到不重不漏;第二步合并同类项,同底数的幂相乘,底数不变,指数相加,同底数的幂相除则底数不变指数相减;第三步同底数幂相加减,能合并的就合并,不能合并就按照升幂或降幂排列.【设计意图】强调学生在进行有理数指数幂的化简求值时要注意正确步骤,更容易得出正确结果.探究二 运用有理数指数幂运算性质进行计算★▲ ●活动① 巩固基础,检查反馈例1 如果a >0,b >0,m ,n 都是有理数,下列各式错误的是( ) A .mn n m a a =)( B .n m n m a a a --=C .n n n b a ba-⋅=)( D .n m n m a a a +=+【知识点】有理数指数幂的运算性质. 【数学思想】【解题过程】D 选项不成立.【思路点拨】正确识记并掌握有理数指数幂的运算性质. 【答案】D .同类训练 对任意实数a ,下列关系式不正确的是( ). A .a a =2132)( B .313221)(a a = C .513153)(a a =-- D .515331)(a a =【知识点】有理数指数幂的运算性质. 【数学思想】【解题过程】A 选项中312132)(a a =.【思路点拨】正确识记并掌握有理数指数幂的运算性质. 【答案】A .例2 若210x =25,则10x -等于( )A .-51B .51C .501 D .6251 【知识点】有理数指数幂的化简求值. 【数学思想】【解题过程】221025(10)25105x x x =∴=∴=Q ,,或510-=x (舍去),5110110==∴-x x . 【思路点拨】利用有理数指数幂的运算法则进行化简. 【答案】B .同类训练 已知31=+aa ,则2121-+a a 等于()A .2B .5C .5-D .5±【知识点】有理数指数幂的化简求值.【数学思想】【解题过程】52122121=++=+-aa a a )(. 【思路点拨】利用有理数指数幂的运算法则进行化简. 【答案】B .●活动② 强化提升、灵活应用例3 用分数指数幂的形式表示下列各式(a >0): (1)a a ⋅3(2)322a a ⋅ (3)3a a【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质. 【数学思想】转化与化归思想. 【解题过程】(1)272133a a a a a =⋅=⋅(2)38322322a a a a a =⋅=⋅(3)3221313a a a a a =⋅=⋅)( 【思路点拨】熟练掌握根式与分数指数幂的互化关系. 【答案】(1)27a ,(2)38a ,(3)32a . 同类训练 用分数指数幂表示下列各式.(1))0(4>a a a ; (2))0()(542≥++⋅+n m n m n m )(;(3)3x x )0(≥x . 【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质及其化简求值. 【数学思想】转化与化归思想.【解题过程】(1)272144a a a aa =⋅=- (2)32542542)()()()()(n m n m n m n m n m +=+⋅+=+⋅+(3)2131213)(x x x x x =⋅=【思路点拨】熟练掌握根式与分数指数幂的互化关系.【答案】(1)27a ,(2)3)(n m +,(3)21x . 例4 求值25.04245.0081)2()4(5.7])43[(+-+⨯--【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质. 【数学思想】转化与化归思想.【解题过程】原式5316151)3(2)4(21514144241=++-=+-+⨯-=)(【思路点拨】运用根式与分数指数幂的互化和有理数指数幂的运算性质进行化简求值. 【答案】5.同类训练 计算:5.02120)01.0()416(2)532(-⋅+--【知识点】有理数指数幂的运算性质及其化简. 【数学思想】【解题过程】111020.52222311251(2)2(6)(0.01)1()()5424100---+⋅-=+⋅-1211111145101010=+⋅-=+-=.【思路点拨】根据有理数指数幂的运算性质直接进行计算. 【答案】1.【设计意图】加强学生对有理数指数幂的运算性质的应用的掌握. ●活动③ 强化提升、灵活应用 例5 化简:)00()65)(41(561312112132>>-----y x y x y x yx ,.【知识点】有理数指数幂的运算性质及其化简. 【数学思想】转化与化归思想. 【解题过程】原式61313221326121311213224242455y yx y x yx y x ===---+--【思路点拨】熟练运用有理数指数幂的化简性质进行计算. 【答案】6124y . 同类训练 化简:)00()(3131421413223>>⋅-b a ba b a ab b a ,【知识点】有理数指数幂的运算性质及其化简. 【数学思想】转化与化归思想.【解题过程】原式b aab ba ba ab b a b a ===⋅⋅=---++-+-13123113116123313122132213123)()(【思路点拨】熟练运用有理数指数幂的化简性质进行计算.【答案】ba.例6 先化简,再求值1111111111()(244) 2.11x x x x x x x ---------+---=+-,其中【知识点】有理数指数幂的化简求值. 【数学思想】转化与化归思想. 【解题过程】原式)1)(1()442(4)442()1)(1()1()1(11111111111112121-+---=---++--=---------------x x x x x x x x x x x xxx x x x x x x x x +-=+-=-+-=-+++-=---------1111)1)(1()1()1)(1(121111211121,当2=x 时,原式31-=. 【思路点拨】通过有理数指数幂的运算性质以及平方差公式和完全平方公式将原式化简,再求值即可.【答案】31-.同类训练 已知8=x ,求111113131313132--++++++-x xx x x x x x 的值.【知识点】有理数指数幂的运算性质及其化简. 【数学思想】【解题过程】∵8=x ,∴231=x ,原式101228121812418=--++++++-=.【思路点拨】根据有理数指数幂的运算性质直接带值进行计算. 【答案】10.【设计意图】加强学生对有理数指数幂的运算性质的应用的掌握. 3.课堂总结 知识梳理(1)一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且*N ∈n .式子n a 叫做根式,其中a 叫做被开方数,n 叫做根指数.(2)分数指数幂是一个数的指数为分数,正数的分数指数幂是根式的另一种表示形式. 重难点归纳(1)运用有理数幂运算性质进行化简,求值,要掌握解题技巧,注意同底数的幂的运算法则.(2)在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,化小数为分数进行运算,便于进行乘除、乘方、开方运算,以达到化繁为简的目的.(3)对含有指数式或根式的乘除运算,还要善于利用幂的运算法则. (三)课后作业 基础型 自主突破1.=⋅2255)()(( ). A .5 B .5 C .25 D .25 【知识点】有理数指数幂的运算性质. 【数学思想】【解题过程】222222255555=⋅=⋅)()(.【思路点拨】直接根据有理数指数幂的运算性质计算. 【答案】C .2.⋅3a 6a -等于( )A .-a -B .-aC .a -D .a【知识点】根式的化简运算,根式与分数指数幂的互化. 【数学思想】分类讨论思想【解题过程】⋅3a 6a -=-⋅31)(a -61)(a -=-21)(a -=-a -.【思路点拨】掌握根式的化简运算以及根式与分数指数幂之间的互化关系. 【答案】A .3.以下各式的化简错误的是( ) A .11513152=-aa aB .()643296b a b a ---=C .y y x y x y x =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--322132413141D .ac cb a cb a 532515433121433121-=---【知识点】有理数指数幂的运算性质及其化简求值. 【数学思想】【解题过程】由有理数指数幂的运算性质可知,A ,B ,C 均正确. 【思路点拨】正确运用有理数指数幂的运算性质. 【答案】D .4.已知2-x +2x =22且x >1,则2x -2-x 的值为( ) A .2或-2B .-2C .6D .2【知识点】有理数指数幂的化简求值. 【数学思想】【解题过程】2x -2-x =(x +1-x )(x -1-x )=21)(-+x x 21)(--x x =⋅222-++x x =222-+-x x ⋅222+222-=2. 【思路点拨】运用有理数指数幂的运算性质. 【答案】D .5.若210=m,310=n,则2310nm -=___________.【知识点】幂的运算性质,有理数指数幂的化简. 【数学思想】【解题过程】2310n m -=n m n m -=10·101033-=36231·2101·)10(33==n m .【思路点拨】运用幂的运算性质. 【答案】362. 6.计算下列各式 (1)4325)12525(÷- (2))0(322>⋅a aa a【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质与化简求值. 【数学思想】【解题过程】(1)555555525)12525(66121233243-=-=⨯-=÷--)(.(2)6532212322a aa a aa a =⋅=⋅【思路点拨】运用根式的化简法则和有理数指数幂的运算性质. 【答案】(1)556-,(2)65a . 能力型 师生共研7.已知23--+=b a x , 求46322--+-a x a x 的值. 【知识点】根式与分数指数幂的互化及其化简求值. 【数学思想】转化与化归思想【解题过程】4234632)(2----=+-a x a x a x ,因为23--+=b a x ,所以bb a x 1)(1423==---.【思路点拨】运用分数指数幂进行根式计算.【答案】b 1.8. 化简:=⋅÷--3353225a a a a____________.【知识点】有理数指数幂的运算性质及其化简.【数学思想】 【解题过程】673221313531653353225a aa a aaa a aaa=÷=⋅÷⋅=⋅÷-----.【思路点拨】根据根式的运算性质直接进行计算. 【答案】67a 探究型 多维突破 9.化简:)21)(21)(21)(21(214181161----++++【知识点】有理数指数幂的化简求值. 【数学思想】转化与化归思想. 【解题过程】原式1612141818116121418116116121)21)(21)(21)(21(21)21)(21)(21)(21)(21(------------+++-=-++++-=11611612121161214141)21(2121)21)(21(21)21)(21)(21(----------=-+-=-++-=【思路点拨】分子分母同时乘以16121--.【答案】1161)21(21---.10.已知)00)((21>>+=b a a b b a x ,,求11222---x x x b .【知识点】有理数指数幂的运算性质及其化简运算. 【数学思想】分类讨论思想. 【解题过程】因为)00)((21>>+=b a abb a x ,,所以222)(411)(411a b b a a b b a x -=-+=-,①当0>≥b a 时,)(2112abb a x -=- b a x x =-+12,b a x x x b x x x b -=-+-=---∴)1(121122222;②当b a <<0时,)(2112b a a b x -=-,a b x x =-+12,)1(121122222-+-=---x x x b x x x b aab b -=2 【思路点拨】运用根式与分数指数幂的互化和有理数指数幂的运算性质进行化简求值.【答案】当0>≥b a 时,b a x x x b -=---∴11222;当b a <<0时,11222---x x x b a ab b -=2. 自助餐1.化简()43325⎥⎦⎤⎢⎣⎡-的结果为( )A .5B .5C .5-D .-5【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质. 【数学思想】【解题过程】()55552143324332===⎥⎦⎤⎢⎣⎡-)(.【思路点拨】根据根式与分数指数幂的互化以及有理数指数幂的运算性质直接进行计算. 【答案】B .2.若522=+-x x ,则=+-x x 44( ) A .29B .27C .25D .23【知识点】有理数指数幂的化简求值. 【数学思想】【解题过程】2344,25244222=+∴=++=+---x x x x x x )(.【思路点拨】根据有理数指数幂的运算性质直接进行计算. 【答案】D .3.已知0>a ,则=a aa2121__________.【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质. 【数学思想】 【解题过程】a a a a a a a aa=⋅=⋅⋅=212121212121212121)()(.【思路点拨】当n 为偶数时,n n a =a ..4.已知9,12==+xy y x ,且y x <,求21212121yx y x +-的值是_______________.【知识点】有理数指数幂的化简求值. 【数学思想】【解题过程】9212)(02212121212121--=--=-<-∴<y x y x y x y x ,, 6-=,同理239212)(02212121212121=+=+=+>+y x y x y x ,,故3321212121-=+-yx y x . 【思路点拨】运用有理数指数幂的运算性质. 【答案】33-. 5.已知0>x .(1)化简⨯53xx ⨯35xx 35xx ; (2)若4=x ,求342x x ⋅的值.【知识点】根式与分数指数幂的互化,有理数指数幂的运算性质及其化简求值. 【数学思想】 【解题过程】(1)⨯53xx ⨯35xx =⨯⨯=⨯⨯10151101301151101301===⋅⋅=-+---x xxx x.(2)4331493493412342)(xx xxxx x===⋅=⋅,当4=x 时,22644444343===【思路点拨】运用根式与分数指数幂的互化进行化简运算. 【答案】(1)1;(2).6.计算下列各式(式中字母都是正数) (1))3()6)(2(656131212132b a b a b a -÷- (2)mn n m ⋅-88341)(【知识点】根式与分数指数幂的互化,有理数指数幂的化简求值. 【数学思想】转化与化归思想.【解题过程】(1)a b a b a b a b a b a 4)3(12)3()6)(2(65616567656131212132=-÷-=-÷-)( (2)252521213288341)(---=⋅=⋅n m n m n m mn n m 【思路点拨】正确运用有理数指数幂的运算法则. 【答案】(1)4a ;(2)2525-n m .。

数学必修Ⅰ人教新课标2-1指数与指数幂的运算第2课时教案

数学必修Ⅰ人教新课标2-1指数与指数幂的运算第2课时教案
(A) (B) (C) ( (D)
5、(tb0112911)化简 (a>0,b>0)的结果是(C)。
(A) (B) - (C) (D) -
6、(tb0113012) (a>0,b>0)化简得(C)。
(A) (B) (C) (D)
B组:
1、(课本P59习题2.1 B组原式=
=
=
=
=
(2)原式=
小结:运算的结果不强求统一用哪一种形式表示,但不能同时含有根号和分数指数,也不能既有分母,又含有负指数.
课堂练习:(课本P54练习NO:1;2;3)
三、课堂小结,巩固反思:
1.这堂课的主要内容是什么?
2.做指数运算时有什么需要注意的地方?
这节课我们学习了指数幂的定义,性质以及一些运算。在学习中,我们应当逐步深入,领悟从整数到根式再到分数的导出过程,理解由特殊到一般的研究方法,在有关活动中发展学生的探索意识和合作交流的习惯。
的正分数指数幂等于 , 的负分数指数幂无意义.
由于分数有既约分数和非既约分数之分,因此当 时,应当遵循原来的运算顺序,通常不写成分数指数幂形式.
例如: ,而 .
规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.
整数指数幂的运算性质对于分数指数幂即有理数指数幂同样适用.
联系并指出整数指数幂的运算性质对有理指数幂仍然适用
(1) (2)
(先由学生观察以上两个式子的特征,然后分析、提问、解答)
分析:四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号的.整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序.
我们看到(1)小题是单项式的乘除运算;(2)小题是乘方形式的运算,它们应让如何计算呢?

人教A版高中数学必修一2.1.1指数与指数幂的运算2讲案

人教A版高中数学必修一2.1.1指数与指数幂的运算2讲案

课题: 指数与指数幂的运算 课时:第2课时【学习目标】1. 阅读课本P50,知道分数指数幂的概念;2. 阅读课本P50,掌握根式与分数指数幂的互化;3. 阅读课本P51,学会有理数指数幂的运算性质.第一环节:导入学习(激情导入)(约3分钟)复习1:一般地,若n x a =,则x 叫做a 的 n 次方根 ,其中1n >,n *∈N .简记为:na x =. 像n a 的式子就叫做 根式 ,具有如下运算性质:()nn a =a ;nna =当n 为奇数时,nn a =a ;当n 为偶数时,nn a =|a|=⎩⎨⎧<-≥)0()0(a a a a ;np mp a =mna .复习2:整数指数幂的运算性质.(1)mna a ⋅=m na+;(2)()nm a =mn a ;(3)()nab = n na b第二环节:自主学习(知识点以题的形式呈现)(约15分钟)(一)基础学习(本课需要掌握的基础知识)1.正数的正分数指数幂的意义 n m nm a a= (a >0,m ,n ∈N *,且n >1)要注意两点:一是分数指数幂是根式的另一种表示形式;二是根式与分数指数幂可以进行互化.另外,我们还要对正数的负分数指数幂和0的分数指数幂作如下规定. 2.规定:(1)nm nmaa1=- (a >0,m ,n ∈N *,且n >1)(2)0的正分数指数幂等于0. (3)0的负分数指数幂无意义.规定了分数指数幂的意义以后,指数的概念就从整数推广到有理数指数.当a >0时,整数指数幂的运算性质,对于有理指数幂也同样适用.即对于任意有理数r,s,均有下面的运算性质.3.有理指数幂的运算性质:)()(),()(),(Q n b a ab Q n m aa Q n m a a a n n n mnnm n m n m ∈⋅=∈=∈=⋅+说明:若a >0,P 是一个无理数,则p a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用,有关概念和证明在本书从略.(二)深入学习(需掌握的知识转化成能力——知识运用)例1、求值:4332132)8116(,)41(,100,8---. 解:422)2(8232332332====⨯827)32()32()8116(6422)2()41(1011010)10(1003)43(4436)3()2(3231)21(221221===========--⨯--⨯------⨯--例2、用分数指数幂的形式表示下列各式:a a a a a a ,,3232⋅⋅ (式中a >0)解:252122122a aa a a a ==⋅=⋅+4321232121311323323323)()(aa a a a a aaa a a a ==⋅===⋅=⋅+例3计算下列各式(式中字母都是正数)(教材52页例4).))(2();3()6)(2)(1(88341656131212132n m b a b a b a -÷-解aab ba b a b a b a 44)]3()6(2[)3()6)(2)(1(0653121612132656131212132==-÷-⨯=-÷-++++323338384188341)()())(2(nm n m n m n m =•==--第三环节:互助学习(约7分钟)1.若(3x -2)-12 +(x -2)0有意义,则x 的取值范围是 ( D )A .[23,+∞)B .(23,+∞)C .[23,2)∪(2,+∞)D .(23,2)∪(2,+∞)2.(-x )2·-1x等于 ( B )A .xB .-x ·-xC .x ·xD .x ·-x第四环节:展示学习(约7分钟)第五环节:精讲学习(学生对应的是反思学习)(约8分钟)学习小结①分数指数幂的意义;②分数指数幂与根式的互化;③有理指数幂的运算性质.。

高中数学新人教版A版精品教案《2.1.1 指数与指数幂的运算》

高中数学新人教版A版精品教案《2.1.1 指数与指数幂的运算》

2.1.1 指数与指数幂的运算一、教材分析及学情分析:本节是高中数学新人教版必修1的第二章指数函数的内容。

在第一章学完函数概念和基本性质后第二章学习具体的指数函数模型从中学会研究函数的基本方法。

首先需要将指数范围从整数推广到实数。

为指数函数定义域好知识铺垫。

二、三维目标1.知识与技能(1)理解n次方根与根式的概念;(2)理解有理数指数幂的含义,正确运用根式运算性质化简、求值;(3)会根式与分数指数幂的互化。

2.过程与方法通过与初中所学的知识(平方根、立方根)进行类比,得出次方根的概念,进而学习根式的性质引导学生反复理解正分数指数幂的意义。

它不表示相同因式的乘积,而是根式的一种新的写法。

通过两者互化,巩固。

加深对概念的理解。

3.情感、态度与价值观(1)归纳的思想,(2)分类的思想(3)推广的思想(4)逼近的思想三、教学重点(1)根式概念的理解;(2)分数指数幂的意义四、教学难点(1)根式概念的理解(2)分数指数幂与根式的互化。

五、教学策略(发现教学法)1.经历由利用根式的运算性质对根式的化简,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律2在学生掌握了有理指数幂的运算性质后,进一步推广到实数范围内由此让学生体会发现规律,并由特殊推广到一般的研究方法六、教学过程:1由引例发现分数指数幂的存在,从而激发学生探究新知的欲望。

2由二次方根和三次方根的概念推广到n次方根的概念。

3观察归纳得到根式与分数指数幂的互化理解分数指数幂的意义。

4了解用有理数指数幂逼近无理数指数幂得到无理数指数幂的近似值。

5将指数整数推广到实数。

七、小结八、作业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019人教A版数学必修一《2.1.1指数与指数幂的运算(2)》教案复习引入观察以下式子,并总结出规律:a>0①1051025255()a a a a===②884242()a a a a===③1212343444()a a a a===④5105102525()a a a a===小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:2323(0)a a a==>12(0)b b b==>5544(0)c c c==>即:*(0,,1)mn m na a a n N n=>∈>老师引导学生“当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式)”联想“根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.”.从而推广到正数的分数指数幂的意义.数学中引进一个新的概念或法则时,总希望它与已有的概念或法则是相容的.形为此,我们规定正数学生计算、构造、让成概念的分数指数幂的意义为:*(0,,)mn mna a a m n N=>∈正数的定负分数指数幂的意义与负整数幂的意义相同.即:*1(0,,)mnmna a m n Na-=>∈规定:0的正分数指数幂等于0,0的负分数指数幂无意义.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是111(0)nm m m ma a a a a=⋅⋅⋅⋅>猜想,允许交流讨论,汇报结论.教师巡视指导.学生经历从“特殊一一般”,“归纳一猜想”,是培养学生“合情推理”能力的有效方式,同时学生也经历了指数幂的再发现过程,有利于培养学生的创造能力.深化概念由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)(0,,)r s r sa a a a r s Q+⋅=>∈让学生讨论、研究,教师引导.通过本环节的教学,进一步体(2)()(0,,)r Srs a a a r s Q =>∈(3)()(0,0,)r r r a b a b Q b r Q ⋅=>>∈若a >0,P 是一个无理数,则P 该如何理解?为了解决这个问题,引导学生先阅读课本P 57——P 58. 即:2的不足近似值,从由小于2的方向逼近2,2的过剩近似值从大于2的方向逼近2.所以,当2不足近似值从小于2的方向逼近时,25的近似值从小于25的方向逼近25. 当2的过剩似值从大于2的方向逼近2时,25的近似值从大于25的方向逼近25,(如课本图所示)会上一环节的设计意图.所以,25是一个确定的实数.一般来说,无理数指数幂(0,)p a a p >是一个无理数是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小. 思考:32的含义是什么?由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即: (0,,)rsr sa a a a r R s R +⋅=>∈∈()(0,,)r s rs a a a r R s R =>∈∈()(0,)r r r a b a b a r R ⋅=>∈应用 举例例题例1(P 56,例2)求值238;1225-;51()2-;3416()81-.例2(P 56,例3)用分数指数幂的形式表或下列各式(a >0)3.a a;322aa ⋅;3aa.分析:先把根式化为分数指数幂,再由运算性质来运算. 解:117333222.a a a a aa+=⋅==;232223a a a a ⋅=⋅28233aa+==;31442133332()a a a a a a a=⋅===.课堂练习:P 59练习第 1,2,3,4题补充练习:学生思考,口答,教师板演、点评.例1解: ①223338(2)=2323224⨯===;②1122225(5)--= 12()121555⨯--===;③ 5151()(2)2---=1(5)232-⨯-==;④334()44162()()813-⨯-=3227()38-==. 例2分析:先把根式化为分数指数幂,再由运算性质来运算.解:1332.a a a a =⋅通过这二个例题的解答,巩固所学的分数指数幂与根式的互化,以及分数指数幂的求1. 计算:142121(2)()248n n n ++-⋅的结果;2. 若3103,384,aa ==1310733[()]n aa a -⋅求的值.17322aa+==;232223a a a a⋅=⋅28233aa+==;31433a a a a a=⋅= 421332()a a==.练习答案: 1.解:原式=4421262222n n n +---⋅⋅=92=512; 2.解:原式=1373[(128)]n -⨯=332n -⨯.值,提高运算能力.归纳 总结 1.分数指数是根式的另一种写法. 2.无理数指数幂表示一个确定的实数.3.掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.先让学生独自回忆,然后师生共同总结.巩固本节学习成果,使学生逐步养成爱总结、会总结的习惯和能力.课后 作业作业:2.1 第二课时 习案 学生独立完成 巩固新知 提升能力备选例题例1计算(1).)01.0(41225325.02120-⎪⎭⎫ ⎝⎛⋅+⎪⎭⎫⎝⎛-- (1)5.1213241)91()6449()27()0001.0(---+-+;【解析】(1)原式1122141149100⎛⎫⎛⎫=+⨯- ⎪ ⎪⎝⎭⎝⎭11111.61015=+-=(2)原式=232212323414])21[(])87[()3()1.0(---+-+=3121)31()87(31.0---+-+=73142778910=+-+. 【小结】一般地,进行指数幂运算时,化负 指数为正指数,化小数为分数进行运算,便于进行乘除、乘方、开方运算,可以达到化繁为简的目的.例2 化简下列各式: (1)313315383327----÷÷a a a a a a ;(2)33323323134)21(248a ab a abb ba a ⨯-÷++-.【解析】 (1)原式=321233153832327----÷÷a aa aa a=323732-÷÷a a a =312213732)()(-÷÷a aa=326732326732---÷=÷÷aa aa a=613221a a =+-;(2)原式=313131313231313231224)8(a a b a a b a b b a a ⨯⋅-÷++-3131313132313132323131323131312424)42)(2(a b a a b a b b b a a b a a ⋅-⋅++++-=aa a a =⋅⋅=313131.【小结】(1)指数幂的一般运算步骤是:有括号先算括号里的;无括号先做指数运算. 负指数幂化为正指数幂的倒数. 底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.(2)根据一般先转化成分数指数幂,然后再利用有理指数幂的运算性质进行运算. 在将根式化为分数指数幂的过程中,一般采用由内到外逐层变换为指数的方法,然后运用运算性质准确求解. 如8)2(])2[()2(2162166==-=-.(3)利用分数指数幂进行根式计算时,结果可化为根式形式或保留分数指数幂的形式,但不能既有根式又有分数指数幂.。

相关文档
最新文档