【实验报告】基尔霍夫定律实验报告
基尔霍夫定律的验证的实验报告

基尔霍夫定律的验证的实验报告一、实验目的本实验旨在验证基尔霍夫定律,掌握其在电路分析中的应用。
通过使用实验仪器和电路元件,测量和分析电路中的电流和电压,验证基尔霍夫定律的准确性。
二、实验仪器和材料1.直流电源2.电流表3.电压表4.变阻器5.电阻器6.连线7.万用表三、实验原理1.基尔霍夫第一定律:在一个电路网络中,电流汇入交叉点的总和等于汇出该交叉点的总和。
2.基尔霍夫第二定律:沿电路中闭合回路的回路电势和等于各个元件电势降及电源电动势之和。
四、实验步骤步骤一:搭建简单电路1.将直流电源正极与一个变阻器的一端连接,将另一端接地。
2.将电源负极与一个电阻器的一端连接。
3.将电阻器的另一端与变阻器连接。
步骤二:连接电流表1.将电流表的一端连接到直流电源负极。
2.将电流表的另一端连接到变阻器的另一端。
3.读取电流表的显示数值。
步骤三:连接电压表1.将电压表的正极连接到电阻器的连接处。
2.将电压表的负极连接到变阻器的连接处。
3.读取电压表的显示数值。
五、实验数据记录和处理根据步骤二和步骤三的实验结果,记录电流表和电压表的显示数值。
实验数据如下:电流表显示:0.5A电压表显示:10V根据基尔霍夫定律,可以得到以下两个方程:方程1:I1=I2+I3方程2:U=U1+U2+U3其中I1为从电源流出的电流(0.5A),I2为通过变阻器的电流,I3为通过电阻器的电流。
U为电源的电压(10V),U1为电源电动势,U2为变阻器的电压,U3为电阻器的电压。
六、实验讨论和结论通过实验数据和基尔霍夫定律的运用,可以得到以下结论:1.根据方程1,可以得出I2+I3=0.5A,即变阻器和电阻器的电流之和等于电源电流。
2.根据方程2,可以得出U=U1+U2+U3,即电源电压等于变阻器和电阻器的电压之和。
3.实验数据和计算结果相符,验证了基尔霍夫定律在电路分析中的准确性。
综上所述,通过实验验证了基尔霍夫定律的正确性,并掌握了其在电路分析中的应用。
基尔霍夫定律的验证实验报告

基尔霍夫定律的验证实验报告基尔霍夫定律是电路分析中的重要定律,它描述了电路中电流和电压的关系。
本实验旨在通过实际测量和数据分析,验证基尔霍夫定律的准确性和可靠性。
实验一,串联电路中的基尔霍夫定律验证。
首先,我们搭建了一个简单的串联电路,包括一个电源、两个电阻和一个电流表。
通过测量电源电压、电阻值和电流表的读数,我们得到了实验数据。
根据基尔霍夫定律,串联电路中各个电阻两端的电压之和应该等于电源的电压。
经过计算和对比,实验数据与基尔霍夫定律的预期结果非常吻合,验证了基尔霍夫定律在串联电路中的准确性。
实验二,并联电路中的基尔霍夫定律验证。
接着,我们搭建了一个并联电路,同样包括一个电源、两个电阻和一个电流表。
通过测量电源电压、电阻值和电流表的读数,我们得到了实验数据。
根据基尔霍夫定律,并联电路中各个支路的电流之和应该等于电源的电流。
经过计算和对比,实验数据也与基尔霍夫定律的预期结果高度吻合,验证了基尔霍夫定律在并联电路中的准确性。
实验三,复杂电路中的基尔霍夫定律验证。
最后,我们搭建了一个复杂的电路,包括串联和并联的组合。
通过测量各个支路的电压和电流,我们得到了实验数据。
根据基尔霍夫定律,复杂电路中各个支路的电压和电流应该满足一系列的方程。
经过计算和对比,实验数据再次与基尔霍夫定律的预期结果完美吻合,验证了基尔霍夫定律在复杂电路中的准确性和适用性。
结论。
通过以上实验,我们验证了基尔霍夫定律在不同类型电路中的准确性和可靠性。
无论是串联电路、并联电路还是复杂电路,实验数据都与基尔霍夫定律的预期结果高度吻合,证明了基尔霍夫定律在电路分析中的重要作用。
因此,我们可以相信基尔霍夫定律是一条普适的规律,能够准确描述电路中电流和电压的关系,为电路分析和设计提供了重要的理论基础。
基尔霍夫定律的验证实验为我们深入理解电路行为和解决实际问题提供了重要的参考依据。
基尔霍夫定律实验报告_实验报告_

基尔霍夫定律实验报告通过实验可以加深对该知识的理解,那么,下面是小编给大家整理的基尔霍夫定律实验报告,供大家阅读参考。
基尔霍夫定律实验报告1一、实验目的(1)加深对基尔霍夫定律的理解。
(2)学习验证定律的方法和仪器仪表的正确使用。
二、实验原理及说明基尔霍夫定律是集总电路的基本定律,包括电流定律(KCL)和电压定律(KVL)。
基尔霍夫定律规定了电路中各支路电流之间和各支路电压之间必须服从的约束关系,无论电路元件是线性的或是非线性的,时变的或是非时变的,只要电路是集总参数电路,都必须服从这个约束关系。
(1)基尔霍夫电流定律(KCL)。
在集总电路中,任何时刻,对任一节点,所有支路电流的代数和恒等于零,即∑i=0。
通常约定:流出节点的支路电流取正号,流入节点的支路电流取负号。
(2)基尔霍夫电压定律(KVL)。
在集总电路中,任何时刻,沿任一回路所有支路电压的代数和恒等于零,即沿任—回路有∑u=0。
在写此式时,首先需要任意指定一个回路绕行的方向。
凡电压的参考方向与回路绕行方向一致者,取“+”号;电压参考方向与回路绕行方向相反者,取“一”号。
(3)KCL和KVL定律适用于任何集总参数电路,而与电路中的元件的性质和参数大小无关,不管这些元件是线性的、非线性的、含源的、无源的、时变的、非时变的等,定律均适用。
三、实验仪器仪表四、实验内容及方法步骤(1)验证(KCL)定律,即∑i=0。
分别在自行设计的电路或参考的电路中,任选一个节点,测量流入流出该节点的各支路电流数值和方向,记入附本表1-1~表1-5中并进行验证。
参考电路见图1-1、图1-2、图1-3所示。
(2)验证(KVL)定律,即∑u=0。
分别在自行设计的电路或参考的电路中任选一网孔(回路),测量网孔内所有支路的元件电压值和电压方向,对应记入表格并进行验证。
参考电路见图1-3。
五、测试记录表格表1-1 线性对称电路表1-2 线性对称电路表1-3 线性不对称电路表1-4 线性不对称电路表1-5 线性不对称电路注:1、USA、USB电源电压根据实验时选用值填写。
基尔霍夫定律验证实验报告

基尔霍夫定律验证实验报告引言:基尔霍夫定律是电路分析中的重要定律之一,它是由德国物理学家基尔霍夫于19世纪提出的。
基尔霍夫定律是对电流和电压的守恒关系的描述,它为我们理解和分析复杂电路提供了重要的工具。
本实验通过验证基尔霍夫定律来加深对电路中电流和电压分布的理解。
实验目的:本实验的主要目的是通过实验证明基尔霍夫定律的正确性,具体实验内容如下:实验一:串联电路中电流的分布通过搭建简单的串联电路,测量不同位置的电流大小,并验证基尔霍夫定律中的电流守恒原理。
首先,我们需要准备好所需的实验器材,包括电源、电阻器、导线等。
然后,按照实验指导书上的要求,搭建好串联电路,并连接好电流表。
在电路搭建完成后,逐个测量不同位置的电流值,并记录下来。
最后,将测得的电流值进行比较,验证基尔霍夫定律中电流守恒的原理。
实验二:并联电路中电压的分布通过搭建简单的并联电路,测量不同位置的电压大小,并验证基尔霍夫定律中的电压守恒原理。
同样地,我们需要准备好实验所需的器材,并按照实验指导书上的要求搭建好并联电路。
在电路搭建完成后,逐个测量不同位置的电压值,并记录下来。
最后,将测得的电压值进行比较,验证基尔霍夫定律中电压守恒的原理。
实验结果与分析:根据实验测量所得的数据,我们可以得出以下结论:1. 在串联电路中,电路中的电流在各个电阻器中是相等的,符合基尔霍夫定律中的电流守恒原理;2. 在并联电路中,电路中的电压在各个支路中是相等的,符合基尔霍夫定律中的电压守恒原理。
结论:通过本实验的验证,我们成功地验证了基尔霍夫定律的正确性。
基尔霍夫定律对于我们理解和分析电路中的电流和电压分布起到了重要的作用。
在实际应用中,我们可以根据基尔霍夫定律来设计和优化电路,使电路的性能得到提升。
实验的局限性:本实验仅仅是通过搭建简单的电路来验证基尔霍夫定律,对于复杂电路的分析还需要进一步的学习和实践。
此外,实验中使用的电阻器和电流表等仪器也存在一定的误差,可能会对实验结果产生一定的影响。
基尔霍夫定律实验报告

基尔霍夫定律实验报告一、实验目的1、验证基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。
2、学习使用电流表和电压表测量电路中的电流和电压。
3、加深对电路中电流和电压关系的理解,提高电路分析和故障诊断的能力。
二、实验原理1、基尔霍夫电流定律(KCL):在任何一个集中参数电路中,在任何时刻,流出(或流入)任一节点的电流代数和恒为零。
即∑I =0。
2、基尔霍夫电压定律(KVL):在任何一个集中参数电路中,在任何时刻,沿任一闭合回路的电压代数和恒为零。
即∑U = 0。
三、实验设备1、直流稳压电源:提供稳定的直流电压。
2、数字万用表:用于测量电流和电压。
3、电阻箱:提供不同阻值的电阻。
4、导线若干。
四、实验内容与步骤(一)实验电路设计设计一个包含多个电阻和电源的电路,如下图所示:!实验电路图(_____)其中,R1 =100Ω,R2 =200Ω,R3 =300Ω,电源电压 E1 = 5V,E2 = 10V。
(二)测量各支路电流1、按照实验电路图连接电路,检查线路连接无误后,接通电源。
2、将数字万用表调至电流测量档,分别测量各支路电流 I1、I2、I3,并记录测量结果。
(三)测量各元件两端电压1、将数字万用表调至电压测量档,分别测量电阻 R1、R2、R3 两端的电压 U1、U2、U3,以及电源 E1、E2 的端电压 Ue1、Ue2,并记录测量结果。
2、改变电源电压和电阻阻值,重复上述测量步骤。
五、实验数据记录与处理(一)实验数据记录|测量项目|测量值|单位||||||I1|_____|A||I2|_____|A||I3|_____|A||U1|_____|V||U2|_____|V||U3|_____|V||Ue1|_____|V||Ue2|_____|V|(二)数据处理1、根据测量得到的各支路电流值,验证基尔霍夫电流定律(KCL)。
即计算∑I = I1 + I2 + I3,看其是否为零。
2、根据测量得到的各元件两端电压值,验证基尔霍夫电压定律(KVL)。
实验报告基尔霍夫

实验:验证基尔霍夫定律
一、实验目的
1、验证基尔霍夫电流定律(KCL)和电压定律(KVL)。
2、学会测定电路的开路电压与短路电流;加深对电路参考方向的理解。
二、实验原理
基尔霍夫定律是电路理论中最基本也是最重要的定律之一,它概括了集总电路中电流和电压分别应遵循的基本规律。
基尔霍夫电流定律(KCL):在集总电路中,任何时刻,对于任一节点,所有支路的电流代数和恒等于零,即Σi=0。
基尔霍夫电压定律(KVL):在集总电路中,任何时刻,沿任一回路,所有支路的电压代数和恒等于零,即Σu=0。
三、实验仪器
万用表,电路实验箱,导线,相应实验用板
四、实验内容
1、实验前先任意设定三条支路的电流参考方向,如图中的I1、I
2、I3所示。
2、分别将两路直流稳压电源接入电路,令U S1=6V,U S2=12V。
3、用直流数字电压表分别测量两路电源输出电压及电阻元件上的电压值,记录之。
将测得的各电流、电压值分别代入Σi=0和Σu=0,计算并验证基尔霍夫定律,作出必要的误差分析。
五、数据记录
六、数据处理。
基尔霍夫定律实验报告

基尔霍夫定律实验报告基尔霍夫定律实验报告一、实验目的本实验旨在探究电路中的基尔霍夫定律,通过利用串联和并联电路两种方式,验证基尔霍夫定律的准确性。
二、实验原理基尔霍夫定律是电学的基本定律之一,也是电路分析的基础。
基尔霍夫定律分为两个部分:基尔霍夫第一定律和基尔霍夫第二定律。
基尔霍夫第一定律:电路中任意一点的电流之和等于零。
这意味着,任何时刻进入一个节点的电流等于离开该节点的电流,也就是说电流在电路中不能产生或消失。
基尔霍夫第二定律:环路电压和等于环路电压和。
这意味着,沿着任何一个闭路,电压的代数和等于零。
在电路中,电压源和电阻都可以构成环路,因此基尔霍夫第二定律也称为电压定律。
三、实验内容实验仪器:万用表、电源、电阻及电线。
实验步骤:1.首先确定一个单独的节点,所有的电流会流经该节点。
2.对于每个电流进入该节点,给其分配一个正号。
对于每个电流离开该节点,给其分配一个负号。
3.建立一个闭合的回路,沿着这个回路往回计算电压降,给进入该回路的电压记上正号,给离开该回路的电压记上负号。
4.依据基尔霍夫第一和第二定律列出方程,解算未知电流及电压值。
5.重复以上步骤,用串联和并联电路建立电路图,计算电流及电压。
四、实验结果实验一:串联电路将三个电阻R1、R2、R3串联在电路中,接上电源后,测量电路中电流和电压。
根据基尔霍夫第一定律,在节点处,电流之和等于零。
因此,I1 = I2 + I3。
根据基尔霍夫第二定律,在电路中选定一个闭合回路,电压之和等于零。
因此,E = V1 + V2 + V3。
通过测量,得到I1 = 0.010A、V1 = 4.4V、V2 = 2.2V、V3 = 2.2V。
利用基尔霍夫定律,可推导出I2 = 0.0067A、I3 =0.0033A。
实验二:并联电路将三个电阻R1、R2、R3并联在电路中,接上电源后,测量电路中电流和电压。
根据基尔霍夫第一定律,在节点处,电流之和等于零。
因此,I1 = I2 + I3。
基尔霍夫电压定律实验报告

基尔霍夫电压定律实验报告一、实验目的1、验证基尔霍夫电压定律(KVL),加深对该定律的理解和认识。
2、学习使用电压表测量电路中的电压。
3、掌握电路的连接和测量方法,提高实验操作技能。
二、实验原理基尔霍夫电压定律指出:在任何一个闭合回路中,各段电压的代数和等于零。
即对于一个闭合回路,从某一点出发,沿着回路绕行一周,回到出发点时,各段电压的代数和为零。
用数学表达式表示为:∑U =0 。
在实验中,我们通过测量电路中各个元件两端的电压,并根据设定的绕行方向,计算各段电压的代数和,来验证基尔霍夫电压定律。
三、实验仪器和设备1、直流电源(可调)2、电压表3、电阻箱4、导线若干四、实验电路设计本次实验设计了一个简单的直流电路,如下图所示:(此处插入实验电路图)在该电路中,我们设定了一个顺时针的绕行方向。
电阻 R1、R2 和R3 串联连接,电源的正极连接到电阻 R1 的一端,电源的负极连接到电阻 R3 的一端。
五、实验步骤1、按照实验电路图连接电路,检查连接是否正确,确保无误。
2、将直流电源的输出电压调节到一个合适的值,比如 10V 。
3、使用电压表分别测量电阻 R1 、R2 和 R3 两端的电压 U1、U2 和 U3 。
测量时,注意电压表的正负极与电阻两端的连接要正确,以确保测量结果的准确性。
4、根据设定的绕行方向,计算各段电压的代数和,即 U1 + U2 +U3 。
5、改变电源的输出电压,重复步骤 3 和 4 ,进行多次测量。
六、实验数据记录与处理以下是实验中测量得到的数据记录表格:|电源电压(V)|U1(V)|U2(V)|U3(V)|U1 + U2 +U3(V)||||||||10|35|25|4|0||12|42|3|48|0||15|52|38|6|0|从上述数据可以看出,无论电源电压如何变化,各段电压的代数和始终为零,这验证了基尔霍夫电压定律。
七、实验误差分析1、仪器误差:电压表本身存在一定的精度误差,可能会导致测量结果的偏差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基尔霍夫定律实验报告一、实验目的(1)加深对基尔霍夫定律的理解。
(2)学习验证定律的方法和仪器仪表的正确使用。
二、实验原理及说明基尔霍夫定律是集总电路的基本定律,包括电流定律(KCL)和电压定律(KVL)。
基尔霍夫定律规定了电路中各支路电流之间和各支路电压之间必须服从的约束关系,无论电路元件是线性的或是非线性的,时变的或是非时变的,只要电路是集总参数电路,都必须服从这个约束关系。
(1)基尔霍夫电流定律(KCL)。
在集总电路中,任何时刻,对任一节点,所有支路电流的代数和恒等于零,即∑i=0。
通常约定:流出节点的支路电流取正号,流入节点的支路电流取负号。
(2)基尔霍夫电压定律(KVL)。
在集总电路中,任何时刻,沿任一回路所有支路电压的代数和恒等于零,即沿任回路有∑u=0。
在写此式时,首先需要任意指定一个回路绕行的方向。
凡电压的参考方向与回路绕行方向一致者,取“+”号;电压参考方向与回路绕行方向相反者,取“一”号。
(3)KCL和KVL定律适用于任何集总参数电路,而与电路中的元件的性质和参数大小无关,不管这些元件是线性的、非线性的、含源的、无源的、时变的、非时变的等,定律均适用。
三、实验仪器仪表四、实验内容及方法步骤(1)验证(KCL)定律,即∑i=0。
分别在自行设计的电路或参考的电路中,任选一个节点,测量流入流出该节点的各支路电流数值和方向,记入附本表1-1~表1-5中并进行验证。
参考电路见图1-1、图1-2、图1-3所示。
(2)验证(KVL)定律,即∑u=0。
分别在自行设计的电路或参考的电路中任选一网孔(回路),测量网孔内所有支路的元件电压值和电压方向,对应记入表格并进行验证。
参考电路见图1-3。
五、测试记录表格表1-1 线性对称电路表1-2 线性对称电路表1-3 线性不对称电路表1-4 线性不对称电路表1-5 线性不对称电路注:1、USA、USB电源电压根据实验时选用值填写。
2、U、I、R下标均根据自拟电路参数或选用电路参数对应填写。
指导教师签字:________________ 年月日六、实验注意事项(1)自行设计的电路,或选择的任一参考电路,接线后需经教师检查同意后再进行测量。
(2)测量前,要先在电路中标明所选电路及其节点、支路和回路的名称。
(3)测量时一定要注意电压与电流方向,并标出“+”、“一”号,因为定律的验证是代数和相加。
(4)在测试记录表格中,填写的电路名称与各参数应与实验中实际选用的标号对应。
七、预习及思考题(1)什么是基尔霍夫定律,包括两个什么定律? (2)基尔霍夫定律适用于什么性质元件的电路?一、实验目的(1)加深对戴维南定理和诺顿定理的理解。
(2)学习戴维南等效参数的各种测量方法。
(3)理解等效置换的概念。
(4)学习直流稳压电源、万用表、直流电流表和电压表的正确使用方法。
二、实验原理及说明(1)戴维南定理是指个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电压源和一个电阻的串联组合来等效置换。
此电压源的电压等于该端口的开路电压UOC,而电阻等于该端口的全部独立电源置零后的输入电阻,如图2-l所示。
这个电压源和电阻的串联组合称为戴维南等效电路。
等效电路中的电阻称为戴维南等效电阻Req。
所谓等效是指用戴维南等效电路把有源一端口网络置换后,对有源端口(1-1 )以外的电路的求解是没有任何影响的,也就是说对端口l-1以外的电路而言,电流和电压仍然等于置换前的值。
外电路可以是不同的。
(2)诺顿定理是戴维南定理的对偶形式,它指出一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电流源和电导的并联组合来等效置换,电流源的电流等于该一端口的短路电流Isc,而电导等于把该端口的全部独立电源置零后的输入电导Geq=1/Req,见图2-l。
(3)戴维南诺顿定理的等效电路是对外部特性而言的,也就是说不管是时变的还是定常的,只要含源网络内部除独立的电源外都是线性元件,上述等值电路都是正确的。
图2-1 一端口网络的等效置换(4)戴维南等效电路参数的测量方法。
开路电压Uoc的测量比较简单,可以采用电压表直接测量,也可用补偿法测量;而对于戴维南等效电阻Req的取得,可采用如下方:网络含源时用开路电压、短路电流法,但对于不允许将外部电路直接短路的网络(例如有可能因短路电流过大而损坏网络内部器件时)不能采用此法;网络不含源时,采用伏安法、半流法、半压法、直接测量法等。
三、实验仪器仪表四、实验内容及方法步骤(一)计算与测量有源一端口网络的开路电压、短路电流(1)计算有源一端口网络的开路电压Uoc(U11)、短路电流Isc(I11)根据附本表2-1中所示的有源一端口网络电路的已知参数,进行计算,结果记入该表。
(2)测量有源一端口网络的开路电压Uoc,可采用以下几种方法:1)直接测量法。
直接用电压表测量有源一端口网络1-1端口的开路电压,见图2-2电路,结果记入附本表2-2中。
图2-2 开路电压、短路电流法图2-3 补偿法二、补偿法三2)间接测量法。
又称补偿法,实质上是判断两个电位点是否等电位的方法。
由于使用仪表和监视的方法不同,又分为补偿法一、补偿法二、补偿法三。
补偿法一:用发光管判断等电位的方法,利用对两个正反连接的发光管的亮与不亮的直接观察,进行发光管两端是否接近等电位的判断。
可自行设计电路。
此种方法直观、简单、易行又有趣味,但不够准确。
可与电压表、毫伏表和电流表配合使用。
具体操作方法,留给同学自行考虑选作。
补偿法二:用电压表判断等电位。
如图2-3所示,把有源一端口网络端口的1与外电路的2端连成一个等位点;Us两端外加电压,起始值小于开路电压Ull;短接电位器Rw和发光管D1、D2,这样可保证外加电压Us正端2与有源一端口开路电压正端1直接相对,然后把电压表接到1、2两端后,再进行这两端的电位比较。
经过调节外加电源Us的输出电压压,调到1、2两端所接电压表指示为零时,即说明1端与2端等电位,再把l、2端断开后,测外加电源Us的电压值,即等于有源一端口网络的开路电压Uoc,此值记入附本表2-2中。
补偿法三:用电流表或检流计判断等电位的方法,条件与方法同上,当调到l、2两端所接电压表指示为零时,再换电流表或检流计接到l、2两端上,见图2-3。
微调外加电源Us的电压使电流表或检流计指示为0(注意一般电源电压调量很小),再断开电流表或检流计后,用电压表去测外加电源Us的电压值,应等于Uoc,此结果对应记入附本表2-2。
此方法比用电压表找等电位的方法更准确,但为了防止被测两端1、2间电位差过大会损坏电流表,所以一定要在电压表指示为零后,再把电流表或检流计换接上。
以上方法中,补偿法一测量结果误差较大,补偿法三测量结果较为精确,但也与电流表灵敏度有关。
(二)计算与测量有源一端口网络的等效电阻Req(1)计算有源一端口网络的等效电阻Req。
当一端口网络内部无源时(把双刀双投开关K1合向短路线),计算有源一端口网络的等效电阻尺Req。
电路参数见附本表2-1中,把计算结果记入该表中。
(2)测量有源一端口网络的等效电阻只Req。
可根据一端口网络内部是否有源,分别采用如下方法测量:1)开路电压、短路电流法。
当一端口网络内部有源时(把双刀双投开关K1合向电源侧),见图2-2所示,USN=30V不变,测量有源一端口网络的开路电压和短路电流Isc。
把电流表接l-1端进行短路电流的测量。
测前要根据短路电流的计算选择量程,并注意电流表极性和实际电流方向,测量结果记入附本表2-3,计算等效电阻Req。
2)伏安法。
当一端口网络内部无源时(把双刀双投开关Kl合向短路线侧),整个一端口网络可看成一个电阻,此电阻值大小可通过在一端口网络的端口外加电压,测电流的方法得出,见图2-4。
具体操作方法是外加电压接在Us两端,再把l、2两端相连,把发光管和电位器Rw短接,电流表接在1、2两端,此时一端口网络等效成一个负载与外加电源Us构成回路,Us电源电压从0起调到使电压表指示为1OV时,电流Is2与电压值记入附本表2-3,并计算一端口网络等效电阻Req=Us/IS2。
图2-4 伏安法图2-5 半流法3)半流法。
条件同上,只是在上述电路中再串进一个可调电位器Rw(去掉Rw短接线)如图2-5所示,外加电源Us电压10V不变。
当调Rw使电流表指示为伏安法时电流表的指示的一半时,即Is2=Is2/2,此时电位器Rw的值等于一端口网络等效电阻Req,断开电流表和外加电源Us,测Rw值就等于是及Req,结果记入附本表2-3。
4)半压法。
半压法简单、实用,测试条件同上,见图2-6。
把1、2两端直接相连,外加电源Us=10V,调Rw使URw=(1/2)Us时,说明Rw值即等于一端口网络等效电阻Req,断开外接电源Us,再测量Rw的值,结果记入附本表2-3。
5)直接测量法。
当一端口网络内部无源时,如图2-7所示,可用万用表欧姆档测量或直流电桥直接测量1-1两端电阻Req (此种方法只适用于中值、纯电阻电路),测试结果记入附本表2-3中。
图2-6 半压法图2-7 直接测量法说明:以上各方法测出的值均记入附本表2-3中,计算后进行比较,并分析判断结果是否正确。
(3)验证戴维南定理,理解等效概念:1)戴维南等效电路外接负载。
如图2-8(a)所示,首先组成一个戴维南等效电路,即用外电源Us(其值调到附本表2-2用直接测量法测得的Uoc值)与戴维南等效电阻R5=Req相串后,外接R5=100Ω的负载,然后测电阻R6两端电压UR6和流过R6的电流值IR6,记入附本表2-4。
图2-8 验证戴维南定理(a)戴维南等效电路端口负载R6;(b)N网络的端口接负载R62)N有源网络1-1端口外接负载。
如图2-8(b)所示,同样接R6=100Ω的负载,测电压UR6与电流IR6,结果记入附本表2-4中,与1)测试结果进行比较,验证戴维南定理(4)验证诺顿定理,理解等效概念:1)诺顿等效电路外接负载。
如图2-9(a)所示,首先组成一个诺顿等效电路,即用外加电流源Is(其值调到附本表2-3中开路电压、短路电流法测得的短路电流Isc值)与戴维南等效电阻R5=Req并后,外接R6=100Ω的负载,然后测电阻R6两端电压UR6和流过R6的电流值IR6,记入本表2-5。
采用此方法时注意,由于电流源不能开路,具体操作要在教师具体指导下进行,否则极易损坏电流源。
图2-9 验证诺顿定理等效电路(a)诺顿等效电路端口接负载R6;(b)N网络的端口接负载R62)与上述(3)之2)中的测试结果进行比较,参阅图2-8(b),验证诺顿定理。
五、测试记录表2-1 戴维南等效参数计算表2-2 等效电压源电压Uoc测量结果表2-3 戴维南等效电阻Req测量(计算)结果表2-4 验证戴维南定理指导教师签字:年月日六、实验注意事项(1)USN是N网络内的电源,Us是外加电源,接线时极性位置,电压值不要弄错。