SPC常用公式和参数
SPC常用公式和参数

R X -一、 管制图公式说明1. 计量值公式管制图 1.1X 管制图:n 为组内样本量,m 为抽样组数;标准偏差 nσσ=2m i nm a x X X R -=估计标准偏差 2^d R=σ 全距平均值 m R m R R R R mi im ∑==+++=121...... 管制上限 → R A X R nd X U C L 22)3(+=+= 中心线 → X CL = 管制下限 → R A X R nd X L C L 22)3(-=-=其中 nd A 223=R 管制图: R 的标准偏差 )(23d R d R =σ 管制上限 → R D d Rd R R U C L R 423)(33=+=+=σ中心线 → R CL =管制下限 → R D d Rd R R U C L R 323)(33=-=-=σ 其中 23331d d D -= , 23431d dD +=mx nx x x x mi in∑=++++==++=1m ....32121 m x x x x x ......X 管制图:第i 组之标准偏差1)(12--=∑=n x xS ni ii∑==mi i S m S 11估计标准偏差 4C S =σ 管制上限 →S A X S nC X U C L 34)3(+=+=中心线 → X CL = 管制下限 → S A X S nC X L C L 34)3(-=-=其中nC A 433=S 管制图: 管制上限 → S B U C L s4= 中心线 → S C L s= 管制下限 → S B L C L s 3=1.3 X-Rm 管制图Rm 管制图:移动全距 1--=i i i x x MR nMRMR ni i∑==1管制上限 → MR D UCL 4=中心线 → MR CL =管制下限 → MR D LCL 3=(当n=2时,3D 和4D 以样本数为2来查表)个别管制图管制上限 → 23d MRx UCL +=中心线 → x CL =管制下限 → 23d MRx LCL -= (当n=2时,2d 以样本数为2来查表)**中位数随着计算机技术的发展,计算已经不是困难,逐步被淘汰**2. 计数值公式2.1不良率管制图 ( P Chart )当每组之样本数均相同时:中心线 → ∑==Ki i P K P 11管制上限 → ) 1 , )1(3min(n P P P UCL -+= 管制下限 → ) 0 , )1(3max(nP P P LCL --=当各组之样本数不相同时:中心线 → ∑==Ni i i P n N P 11 , 其中 k n n n N +++= (21)各组管制上下限分别为 管制上限 → ) 1 , )1(3min(i n P P P UCL -+= 管制下限 → ) 0 , )1(3max(in P P P LCL --=n 管制上限 → )1(3P P P U C L n n -+=管制下限 → )1(3P P P L C L n n --= 其中 n P 为各组之不合格数。
SPC常用公式和全参数

SPC常用公式和全参数
SPC(Statistical Process Control)即统计过程控制,是一种可以检测和预防生产过程中发生的未预期变异的统计技术,涉及概率统计学、质量控制、过程设计等多个领域。
它被广泛用于制造业、服务业以及其他行业,可以有效识别与控制过程中发生的质量问题,从而提高工作效率和质量。
1、X-R图(X-R chart):X-R 图是 SPC 中最常用的一种图表,它用于检测和控制过程中发生的质量变异情况。
X-R 图可以通过样本数据来分析过程变异,并用线性直线限制上下限的范围,从而确定是否存在质量问题。
2、np图(np chart):np 图是用于检测和控制质量问题的一种统计图表,可以用于检测和控制多个样本中每一个样本的变异情况。
np 图中的上下限被用于确定质量问题是否存在,可以根据上下限的范围来判断多个样本的变异程度。
3、C图(C chart):C 图用于检测和控制过程中同一种类样本的变异情况,它将质量变异的概率分布密度函数作为观测变量,可以用来检测和控制样本数据之间的偏差。
4、P图(P chart):P 图用于检测和控制过程中发生的质量变异情况,并使用概率分布函数来分析样本数据之间的差异,可以用来检测和控制不同样本的变异程度。
SPC常用公式和参数

SPC常用公式和参数SPC(Statistical Process Control,统计过程控制)是一种质量管理方法,通过使用统计方法来监控生产过程中的变异性,以及使过程保持在可控状态,确保产品质量的稳定性。
在SPC中,常用的公式和参数用于描述、分析和控制过程的变异性,以及进行质量指标的计算和分析。
下面是SPC中常用的公式和参数:1. 均值(Mean):均值是一组数据的平均值,用于描述数据的集中趋势。
均值可以表示为:Mean = (x1 + x2 + ... + xn) / n其中,x1 ~ xn表示一组数据,n表示数据的个数。
2. 范围(Range):范围用于描述一组数据的离散程度,即最大值与最小值之间的差异。
范围可以表示为:Range = xmax - xmin其中,xmax表示一组数据的最大值,xmin表示最小值。
3. 标准差(Standard Deviation):标准差是一组数据的离散程度的度量,用于衡量数据的波动性。
标准差可以表示为:Standard Deviation = sqrt[((x1 - mean)^2 + (x2 - mean)^2+ ... + (xn - mean)^2) / n]其中,x1 ~ xn表示一组数据,mean表示数据的均值,n表示数据的个数。
4. 方差(Variance):方差是标准差的平方,也是一组数据的离散程度的度量。
Variance = (Standard Deviation)^25. 控制图(Control Chart):控制图是SPC中最常用的工具,它用于监控过程的变异性,并确定过程是否处于可控状态。
在控制图中,常用的参数有:- 中心线(Center Line):控制图的中心线表示过程的平均值或目标值。
- 控制限(Control Limit):控制限是确定过程的可控状态的界限。
常用的控制图有三个控制限:- 上控制限(Upper Control Limit,UCL):表示过程变异性在正常范围内的上限,超过该限制则表明过程存在特殊原因。
SPC各值计算公式

SPC各值计算公式SPC(统计过程控制)是一种统计方法,用于检测和控制过程的稳定性和变异性。
SPC各值计算公式包括控制图参数和过程能力指数等。
以下是常见的SPC各值计算公式及其解释:1.控制图参数:a.X̄控制图上的中心线是过程的平均值的估计量。
计算公式为:X̄=ΣX/n,其中X是测量值的总和,n是样本大小。
b. R 控制图上的极差线是过程的极差的估计量。
计算公式为:R = Xmax - Xmin,其中Xmax和Xmin是样本中最大值和最小值。
c.S控制图上的标准偏差线是过程的标准偏差的估计量。
计算公式为:S=√(Σ(X-X̄)²/(n-1)),其中Σ(X-X̄)²是样本值与平均值的差的平方的总和。
d.UCL控制图上的上限控制限是过程的可接受上限。
计算公式为:UCL=X̄+3S,其中3是标准差的倍数,用于确定上限控制限。
e.LCL控制图上的下限控制限是过程的可接受下限。
计算公式为:LCL=X̄-3S,其中3是标准差的倍数,用于确定下限控制限。
2.过程能力指数:a.Cp过程能力指数是衡量过程发生误差在可接受范围内的能力。
计算公式为:Cp=(USL-LSL)/(6σ),其中USL和LSL是规范上限和下限,σ是标准偏差的估计量。
b. Cpk 过程能力指数是衡量过程发生误差在可接受范围内的能力,同时考虑了过程的中心线偏移。
计算公式为:Cpk = min((USL - X̄) /(3σ), (X̄ - LSL) / (3σ)),其中USL和LSL是规范上限和下限,X̄是过程的平均值的估计量,σ是标准偏差的估计量。
c. Cpm 过程能力指数是衡量过程发生误差在可接受范围内的能力,同时考虑了过程的中心线偏移和过程的极差。
计算公式为:Cpm = (USL - LSL) / (6√((ΣR/n)² + σ²)),其中USL和LSL是规范上限和下限,ΣR/n是极差均值的估计量,σ是标准偏差的估计量。
SPC所有公式详细解释及分析

SPC所有公式详细解释及分析SPC(统计过程控制)是一种通过统计方法对产品或过程的变化进行控制的质量管理工具。
它以数据为基础,通过收集、分析和解释数据,帮助确定过程是否稳定、符合规范,并提供改进措施。
在SPC中,有一些重要的公式用于计算和分析数据,下面将介绍其中一些常用的公式及其详细解释和分析。
1. 平均值(Mean):平均值是统计数据的中心点,通过计算数据的总和除以数据的个数得到。
平均值用于评估过程的中心位置,并对过程的稳定性进行评估。
2. 中位数(Median):中位数是将数据按照大小顺序排列后,排在中间位置的数值,它能够反映数据的集中趋势。
与平均值相比,中位数对异常值的影响较小,更适用于非正态分布的数据。
3. 标准差(Standard Deviation):标准差是数据分布离散程度的度量,用于描述数据的波动性。
标准差越大,表示数据越分散;标准差越小,表示数据越集中。
标准差可以帮助确定过程是否稳定,是否存在特殊因素影响。
4. 变异系数(Coefficient of Variation):变异系数是标准差除以平均值的比值,用于比较不同数据集的离散性。
较小的变异系数表示数据越稳定,较大的变异系数表示数据集的离散性较大。
5. 极差(Range):极差是数据的最大值和最小值之间的差别,用于评估数据的波动范围。
较大的极差表示数据集的波动性较大,较小的极差表示数据集的波动性较小。
6. 四分位数(Quartiles):四分位数是将数据按大小顺序排列后,将数据分为四等份的数值。
第一四分位数是中位数的前一半数据的中位数,第二四分位数即中位数,第三四分位数是中位数之后的一半数据的中位数。
四分位数可以帮助了解数据的分布情况。
7. 直方图(Histogram):直方图使用柱状图形象地展示数据的分布情况。
通过将数据按照一定的区间划分,并统计每个区间内的数据个数,可以直观地了解数据的分布情况。
8. 管理图(Control Chart):管理图是SPC最重要的工具之一,它通过将数据的统计量(如平均值、标准差等)绘制在图表上,并与控制限进行比较,用于监控过程的稳定性。
SPC计算公式和判定准则

6、Cp:(过程能力指数)
Cp USL LSL 6
例:产品规格为(40±0.5),产品标准差为0.4,试计算CP CP=(40.5-39.5)/(6*0.4)=1/2.4=0.42
7、Cr:(过程能力比值 ) 例:产品规格为(40±0.5),产品标准差为0.4,试计算Cr
Cr 6 USL LSL
0.30
0.25
0.20
规格上限
0.15
USL
0.10
0.05
0.00 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0
所有检验数据形成一
个数据分布,而用
可以衡量数据分布离
散的大小; 越小分
布越好,数据越集中
8
计算公式
11、Cpk:(修正的过程能力指数 ) Cpk=Min(Cpl,Cpu)=Cp(1-k)
规格上限
0.15
USL
0.10
0.05
0.00 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0
所个有数检 据验 分数 布据 ,而形用成一ˆ 可散以的衡 大量 小数 ; 据ˆ越分小布分离
布越好,数据越集中
7
计算公式
10、Cpl:(下限过程能力指数 )
T2
2
规格中心 M
产品均值μ
0.30
0.25
0.20
规格宽度
0.15
T
0.10
0.05
0.00 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0
K越大说明产品均 值偏离中心值越远;
SPC常用公式和参数

SPC常用公式和参数SPC(Statistical Process Control,统计过程控制)是一种通过收集和分析数据,对过程进行统计学监控的方法。
它可以帮助企业实时监控生产过程的稳定性和一致性,并通过识别和纠正异常,改善产品质量和生产效率。
SPC常用的公式和参数包括:1. 均值(Mean):均值是一组数据的平均值,用于描述数据的中心趋势。
计算公式为:均值= Σ数据值 / 数据个数。
2. 范围(Range):范围是一组数据的最大值与最小值之间的差异,用于描述数据的离散程度。
计算公式为:范围 = 最大值 - 最小值。
3. 方差(Variance):方差是一组数据与其均值之间的差异的平方和的平均数,用于描述数据的波动程度。
计算公式为:方差= Σ(数据值- 均值)² / 数据个数。
4. 标准差(Standard Deviation):标准差是方差的算术平方根,用于描述数据的离散程度。
计算公式为:标准差= √方差。
5.Cp指数:Cp指数是过程能力指数,用于评估过程的稳定性,即过程的变异范围是否在产品规格范围内。
计算公式为:Cp=(规格上限-规格下限)/(6*标准差)。
6. Cpk指数:Cpk指数是过程能力指数的修正值,考虑了过程中离规格上下限最远的数据点,用于评估过程的能力。
计算公式为:Cpk =min[(规格上限 - 均值) / (3 * 标准差), (均值 - 规格下限) / (3 * 标准差)]。
7. 控制限(Control Limits):控制限是一组上限和下限,用于判断过程数据是否正常。
常用的控制限包括平均数控制限(X控制限)和范围控制限(R控制限),计算公式为:X控制限 = 均值± 3 * 标准差,R控制限 = D4 * 范围平均数。
8. 过程能力指数(Process Capability Index):过程能力指数用于评估过程的能力是否满足产品规格要求,常用的指数包括Cp、Cpk和Cpm。
SPC计算公式和判定准则

SPC计算公式和判定准则SPC(Statistical Process Control,统计过程控制)是一种通过统计方法对过程进行监控和控制来确保产品质量的方法。
SPC包含了一系列的计算公式和判定准则,用于对过程数据进行分析和判断。
本文将介绍SPC的常用计算公式和判定准则。
一、计算公式1. 平均值(X-bar)和范围(R)控制图的计算公式:平均值控制图:X-bar = (X1 + X2 + ... +Xn)/n范围控制图:R = Xmax - Xmin2.方差(S)控制图的计算公式:方差控制图:S = √((∑(xi - x̄)²)/(n-1))其中,xi为单个数据点,x̄为平均数,n为样本个数。
3.标准差(σ)控制图的计算公式:标准差控制图:σ = √((∑(xi - x̄)²)/n)其中,xi为单个数据点,x̄为平均数,n为样本个数。
4. 标准分数(Z-score)的计算公式:标准分数:Z=(X-μ)/σ其中,X为观测值,μ为总体平均值,σ为总体标准差。
5.概率(P)的计算公式:概率:P=1-Z其中,Z为标准分数。
二、判定准则SPC通过控制图上的控制限来进行判定,一般包括控制线和规范线。
常用的判定准则有以下几种:1.控制线:控制线用于界定过程是否处于统计控制状态。
一般有上限控制线(UCL)和下限控制线(LCL)。
当数据点超过控制线时,表明过程处于非随机状态,可能存在特殊原因。
2.规范线:规范线用于界定过程是否处于规范状态。
一般有上限规范线(USL)和下限规范线(LSL)。
当数据点超过规范线时,表明产品或过程不符合规格要求。
3.判定准则:SPC根据运行趋势和控制限来进行判定,常见判定准则包括:-单点超出控制限:当单个数据点超出控制限时,可能存在特殊原因,需要进行调查和纠正。
-一组连续点趋势逐渐上升或下降:当连续的数据点呈增加或减少的趋势时,表明过程可能不稳定,需要进行调查和纠正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R X -一、 管制图公式说明
1. 计量值公式 管制图
X 管制图:n 为组内样本量,m 为抽样组数;
标准偏差 n
σ
σ=
2
min max X X R -=
估计标准偏差 2
^
d R
=
σ 全距平均值 m R m R R R R m
i i
m ∑==+++=
121...... 管制上限 ? R A X R n
d X UCL 22)3
(
+=+= 中心线 ? X CL = 管制下限 ? R A X R n
d X LCL 22)3(-=-=
其中 n
d A 223=
R 管制图: R 的标准偏差 )(
2
3d R d R =σ 管制上限 ? R D d R
d R R UCL R 42
3)(33=+=+=σ
中心线 ? R CL =
管制下限 ? R D d R
d R R UCL R 32
3)(33=-=-=σ 其中 23331d d D -
= , 2
3431d d
D +=
m
x n
x x x x m
i i
n
∑=++++==++=
1
m ....32121 m x x x x x ......
X 管制图:
第i 组之标准偏差1
)(1
2
--=
∑=n x x
S n
i i
i
∑==m
i i S m S 1
1
估计标准偏差 4
C S =
σ 管制上限 ? S A X S n
C X UCL 34)3(+=+=
中心线 ? X CL =
管制下限 ? S A X S n
C X LCL 34)3(-=-=
其中n
C A 433=
S 管制图: 管制上限 ? S B UCLs 4= 中心线 ? S CLs =
管制下限 ? S B LCLs 3=
X-Rm 管制图
Rm 管制图:
移动全距 1--=i i i x x MR n
MR
MR n
i i
∑==
1
管制上限 ? MR D UCL 4=
中心线 ? MR CL =
管制下限 ? MR D LCL 3=
(当n=2时,3D 和4D 以样本数为2来查表)
个别管制图
管制上限 ? 23d MR
x UCL +=
中心线 ? x CL =
管制下限 ? 2
3d MR
x LCL -= (当n=2时,2d 以样本数为2来查表)
**中位数随着计算机技术的发展,计算已经不是困难,逐步被淘汰**
2. 计数值公式
不良率管制图 ( P Chart )
当每组之样本数均相同时:
中心线 ? ∑==K
i i P K P 1
1
管制上限 ? ) 1 , )
1(3min(n P P P UCL -+= 管制下限 ? ) 0 , )
1(3
max(n
P P P LCL --=
当各组之样本数不相同时:
中心线 ? ∑==N
i i i P n N P 1
1 , 其中 k n n n N +++= (21)
各组管制上下限分别为 管制上限 ? ) 1 , )
1(3
min(i n P P P UCL -+= 管制下限 ? ) 0 , )
1(3max(i
n P P P LCL --=
n 管制上限 ? )1(3P P P UCL n n -+=
管制下限 ? )1(3P P P LCL n n --= 其中 n P 为各组之不合格数。
n P 为各组不合格数之平均值。
管制上限 ? 3C C UCL +=
管制下限 ? 3C C LCL -= 其中C 为平均不合格点数 k
C
C k
i ∑==
1
单位缺点数管制图 ( U Chart )
中心线 ? u CL =
管制上限 ? 3
n
u u UCL += 管制下限 ? 3
n
u u LCL -= 其中:n = 样本大小 (检查的单位数) C = 各组的缺点数
u = 各组的单位缺点数 = n
C
∑
∑=n C u
二、 统计指标说明
1. 制程能力指数 ( Process Capability Indexes )
★ )
,max ()
(LSL SL SL USL SL Ca ---=
μ ; 其中 μ:平均值
SL :规格标准 USL :规格上限 LSL :规格下限
★ σ6LSL)
-(USL Cp = ; σ:估计标准偏差 ( Capability Sigma )。
★ σμ3)
-(USL Cpu = ; σ:估计标准偏差 ( Capability Sigma )。
★ σ
μ3)
(Cpl LSL -= ; σ:估计标准偏差 ( Capability Sigma )。
★ ),min(Cpl Cpu Cpk =
★ USL X Cc =
★)
(61LSL USL CP CR -==σ ; σ:估计标准偏差 ( Capability Sigma )。
★2
2)
(6)
(SL LSL USL Cpm -+-=μσ ; σ:估计标准偏差 ( Capability Sigma )。
2. 制程表现指数 ( Process Performance Indexes )
★σ6LSL)
-(USL Pp =
; σ:制程标准偏差 ( Population Standard Sigma )。
★ σ
μ3)
-(USL Ppu = ; σ:制程标准偏差 ( Population Standard Sigma )。
★ σ
μ3)
(Ppl LSL -=
; σ:制程标准偏差 ( Population Standard Sigma )。
★ ),min(Ppl Ppu Ppk =
★ )
(61LSL USL PP PR -==σ ; σ:制程标准偏差 ( Population Standard Sigma )。
★ 2
2)
(6)
(SL LSL USL Ppm -+-=μσ ; σ:制程标准偏差 ( Population Standard Sigma )。
3. 直方图 < Z 值、偏态、峰度 >
★ σμ)
-(USL f)Zupper(Per = ; σ:制程标准偏差 ( Population Standard Sigma )。
★ σ
μ)
(
f)Zupper(Per LSL -= ; σ:制程标准偏差 ( Population Standard Sigma )。
★ σ
μ)
-(USL .)Zupper(cap = ; σ:估计标准偏差 ( Capability Sigma )。
★ σ
μ)
(
.)Zupper(cap LSL -= ; σ:估计标准偏差 ( Capability Sigma )。
★ Skew (偏态) = ∑⎪⎪⎭
⎫ ⎝⎛---i i S x x n n n
3
)2)(1( ;S :样本标准偏差,n 需大于2且S <> 0。
★ Kurtosis (峰度) = )3)(2()1(3)3)(2)(1()1(24
----⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛----+∑n n n S x x n n n n n i i ; S :样本标准偏差,n 需大于2且S <> 0。
★ Chi-Square = 2
2
)1(σS n - ; S :制程标准偏差,6
2LSL
USL -=
σ。
4. 散布图
★ 回归直线 Y = mX + b ; 其中 m :斜率,b :截距。
2
2)()
)(()(∑∑∑∑∑--=
x x n y x xy n m
2
22)(∑∑∑∑∑∑--=x x n xy x x y b
三、 标准偏差公式
◎ 估计标准偏差 ( Capability Sigma )
★ 以R 估计: 2
d R
=σ ;( R X - Chart 及 X-Rm Chart 时使用 )。
★ 以S 估计: 4
C S
=
σ ;( S X - Chart 时使用 )。
★ 实际计算:∑∑∑===--=
k
i i
k i n
j i ij
n
x x
1
11
2
)
1()(σ
◎ 制程标准偏差 ( Population Standard Devitation )
★)
1()(1
2
--=∑=n x x
n
i i
σ
四、 参数表
1. 表1:X(bar)-R 和X(bar)-S 参数
2.表2: 中位数和单值参数
3.表3:正态分布参数表PPM值:。