焊接缺陷及防止措施(最新版)

合集下载

常见焊接缺陷及防止措施和注意事项

常见焊接缺陷及防止措施和注意事项

焊接缺陷原因分析及防止措施在现场焊接过程中一般都存在缺陷,缺陷的存在必将会影响焊缝的质量,而焊缝质量又会直接影响现场管道的安全使用。

对焊接缺陷进行分析,一方面是为了找出缺陷产生的原因,以防止缺陷的产生。

一、未焊透焊接时,母材金属之间应该熔合而未焊上的部分称为未焊透。

出现在单面焊的坡口根部(见下图),未焊透会造成较大的应力集中,往往从其末端产生裂纹。

单面未焊透角焊缝未焊透产生原因:(1)由于坡口角度小,组对间隙小或错边超标,使熔敷金属送不到坡口根部。

(2)焊接电流小、送丝角度不当或焊接电弧偏向坡口一侧,焊接速度过快。

(3)由于操作不当,使熔敷金属未能送到预定位置,或者未能击穿坡口形成尺寸一定的熔孔。

防止措施:(1)打磨合适的坡口角度(37°±2.5°),组对间隙尺寸(4mm左右)合适并防止错边超标(≤e/20+1mm,最大为1.5mm,e为管子壁厚)。

(2)选择合适的焊接电源,焊丝及氩弧焊把角度应适当。

(3)掌握正确的焊接操作方法,氩弧焊丝的送进应稳、准确、熟练地击穿尺寸适宜的熔孔,应把熔敷金属送至坡口根部。

二、未熔合这种缺陷常出现在坡口的侧壁、多层焊的层间及焊缝的根部(见下图)。

产生原因:(1)由于焊丝和氩弧焊把角度不当,电弧不能良好地加热坡口两侧母材金属,致坡口面母材母材金属未能充分熔化。

(2)在焊接时由于上侧坡口金属熔化后产生下坠,影响下侧坡口面金属的加热熔化,造成“冷接”。

(3)2GT位置操作时,在上、下坡口面击穿顺序不对,未能先击穿下坡口后击穿上坡口,或者在上、下坡口面上击穿熔孔位置未能错开一定的距离,使上坡口熔化金属下坠产生粘接,造成未熔合。

(4)氩弧焊时电弧两侧坡口的加热不均(线能量不同),或者坡口面存在污物等。

防止措施:(1)选择适宜的焊丝和氩弧把角度。

(2)操作时注意观察坡口两侧金属熔化情况,使之熔合良好。

(3)2GT位置操作时,掌握好上、下坡口面的击穿顺序和保持适宜的熔孔位置和尺寸大小,焊丝的送进应熟练地从熔孔上坡口拉到下坡口。

常见焊接缺陷及预防措施 新

常见焊接缺陷及预防措施 新
3、焊条内含硫、磷、碳高时焊缝容易产生裂纹。硫磷是有害元素, 含硫高焊缝有热脆性,含磷高焊缝有冷脆性,焊条含硫磷量都 必须在0.0035以下。
4、被焊结构刚性大、构件的焊接顺序不当也容易产生裂纹。当顺 序安排不当时会形成焊接收缩受阻,妨碍焊缝的自由收缩,以 致产生较大的收缩应力而产生焊缝裂纹。
5、焊接时周围的环境温度低,或在风口散热条件过好造成散热过 快也会引起裂纹。
1、热裂纹(又称结晶裂纹)
15
➢ 热裂纹的特征 热裂纹可发生在焊缝区或热影响区,沿焊缝长度方向
分布。 热裂纹的微观特征是沿晶界开裂,所以又称晶间裂
纹。因热裂纹在高温下形成,所以有氧化色彩。 焊后立即可见。
➢ 热裂纹产生原因。 焊缝金属的晶界上存在低熔点共晶体(含硫、磷、铜
等杂质)。 接头中存在拉应力。
工件焊前预热,焊后缓冷(大部分材料的温度可查表), 可降低焊后冷却速度,避免产生淬硬组织,并可减少焊接 残余应力
采取减小焊接应力的工艺措施,如对称焊,小线能量的多 层多道焊等,焊后进行清除应力的退火处理。
焊后立即进行去氢(后热)处理,加热到250℃,保温2~ 6h,使焊缝金属中的扩散氢逸出金属表面。
焊接部位不洁净容易产生气孔。因此,焊接部位要求在焊 接前清除油污、铁锈等脏物;使用低氢焊条焊接时要求更 为严格。
焊条和焊剂一定要严格按照规定的温度进行烘焙和保温。 要求采取适宜的焊接规范,不要采用过大的焊接电流。 注意控制母材及焊材的化学成分。 焊接速度过快,焊接时操作不当,电弧拉得过长,使得有
八、咬边(1)
在母材与焊缝熔合线附近因为熔化过强会造成熔敷金属与母材金 属的过渡区形成凹陷(沿焊趾的母材部位产生的沟槽和凹陷), 它是由于焊接过程中焊件边缘的母材金属被熔化后未及时得到熔 化金属的填充所致。可分为外咬边和内咬边。咬边不仅减少了焊 接接头的有效工作截面, 而且在咬边处造成严重 的应力集中。咬边缺陷 多见于横、立、仰焊。

焊接缺陷及防止措施

焊接缺陷及防止措施

焊接缺陷及防止措施焊接是一种常见的连接金属材料的方法,但由于操作不当或材料质量不合格等原因,会出现焊接缺陷。

焊接缺陷会影响焊缝的强度和可靠性,甚至可能导致结构或设备的故障。

因此,了解焊接缺陷的种类及其防止措施,对于保证焊接质量和工件的安全具有重要意义。

常见的焊接缺陷包括:1.气孔:气孔是焊接过程中产生的气体聚集而形成的孔洞。

气孔会导致焊缝强度降低,易于产生裂纹。

防止气孔的措施包括使用合适的焊接电流和电焊材料,保证焊缝周围环境干燥和清洁,焊接前对材料进行充分预热等。

2.熔花:熔花是焊接过程中溢出的熔融金属。

熔花会导致焊缝表面不平整,增加氧化层的形成几率,从而降低焊缝的质量。

防止熔花的方法包括调整焊接电流和电压,控制焊接速度,使用合适的电焊材料等。

3.裂纹:裂纹是焊接过程中由于热应力或冷却过程中的变形而导致的断裂。

裂纹会明显降低焊缝的强度和可靠性。

为防止裂纹的产生,可以在焊接前对材料进行适当的预热和热处理,控制焊接过程中的热输入和温度梯度,以及进行合适的焊后热处理。

4.缩孔:缩孔是焊接过程中由于熔池冷却快速造成的孔洞。

缩孔会导致焊缝的密封性和强度下降。

为防止缩孔的产生,可以使用合适的焊接工艺参数,如焊接电流、电压和焊接速度,控制焊接过程中材料的预热温度和冷却速度,以及在焊接过程中进行适当的保护气体或熔敷金属。

5.错边:错边是焊接过程中由于材料对位不准确而产生的焊缝偏移。

错边会导致连接部位的强度和精度下降。

为避免错边,应进行合适的材料对位和夹持,控制焊接过程中的热输入和焊接速度,以及采用合适的焊接工艺。

针对以上不同类型的焊接缺陷,需采取相应的防止措施,如合理选择适用的材料、控制合适的焊接参数、确保焊缝周围环境条件良好等,以保证焊接质量。

此外,还应注意人员技术培训和操作规程的制定,提高焊接人员的技术能力和安全意识,从而减少人为因素对焊接缺陷产生的影响。

总之,焊接缺陷在焊接过程中是难免的,但通过合适的防止措施,可以降低焊接缺陷的发生概率,并提高焊接质量和工件的安全性。

金属材料焊接缺陷与防治方法

金属材料焊接缺陷与防治方法

金属材料焊接缺陷与防治方法金属材料中常见的焊接缺陷有:气孔、夹杂、裂缝、未焊透、焊接变形等。

这些缺陷会严重影响焊接质量,导致焊接件使用寿命降低、故障率增加、甚至还可能引起安全事故。

下面我们就来讲一下如何防治这些焊接缺陷。

一、气孔:气孔是焊接过程中产生的气体形成的小孔洞,直接影响焊接强度。

原因有:焊材含水量高、焊工技术不过硬、气源未清洁等。

防治方法:选择高质量的焊材、保证焊材干燥、焊接前充分清洁表面及环境,保证气源的清洁度。

二、夹杂:夹杂是指在焊缝中存在的非金属或金属异物,影响焊缝的密实度。

原因有焊工操作不当、焊接材料含有杂质。

防治方法:进行充分的清洁加工处理,选择加工质量较好的材料,也可选择特点的焊接方法如TIG和电子束焊接,能有效降低夹杂的概率。

三、裂缝:裂缝是指焊接区域内出现塑性破坏的缝状裂纹,会直接影响焊接件的使用寿命。

原因有焊接材料硬度过高、焊接不均匀等。

防治方法:选择较为柔韧的焊接材料,避免震动、应力集中区域的焊接。

对于需求高强度的焊接,可采用多道次焊接的方法进行。

四、未焊透:未焊透是指在焊接过程中焊缝未能达到设计要求的焊接深度。

原因有焊接材料形状或厚度不符合要求、焊接电流过小等。

防治方法:采用适当大小规格的焊接材料,根据实际情况调整焊接电流大小。

五、焊接变形:焊接材料加工中容易发生变形,严重会导致直接影响到焊接质量,如视觉效果不佳以及尺寸精度下降等。

原因有材料本身强度方向不一致、焊接热输入量过大等。

防治方法:尽可能采用低温焊接技术,控制焊接热输入,选用较小的焊接设备,将焊接材料切成小块逐次组合焊接。

总之,防治焊接缺陷的方法主要是从材料质量、操作技巧、设备及工艺上入手,掌握正确的防治方法能有效提高焊接质量,并延长器件的使用寿命。

焊接常见缺陷的预防措施

焊接常见缺陷的预防措施

焊接常见缺陷的预防措施引言焊接技术是现代制造业中必不可少的一种加工技术,焊接质量的好坏直接影响到焊接件的使用寿命和安全性。

而焊接常见缺陷则在一定程度上影响着焊接件的质量和使用效果,如焊缝裂纹、气孔、夹渣、质量不符合标准等。

为了提高焊接质量和保障焊接安全,本文将就焊接常见缺陷的原因和预防措施进行详细介绍。

焊缝裂纹缺陷原因焊缝裂纹是指在焊接过程中产生的裂纹,影响着焊接件的质量和使用寿命。

焊缝裂纹主要由以下几种原因造成:1.焊接接受应力过大,使得焊缝裂开;2.焊缝结构设计不合理,强度不足;3.材料质量问题;4.焊接参数不合适,影响了焊缝的质量。

预防措施预防焊缝裂纹,需要从以下几个方面着手:1.控制焊接接受应力:在焊接过程中,需要控制焊接接受应力,避免过大的应力导致焊缝裂纹。

2.合理设计结构:焊接结构设计应保证焊缝的强度足够,并且需要进行细致的分析和计算,避免设计不合理造成焊缝裂纹。

3.确保材料质量:在选择焊料和母材的时候,应根据实际需要选择质量优秀的材料。

4.控制焊接参数:根据实际需要,选择合适的焊接参数进行焊接,保证焊缝质量。

气孔缺陷原因气孔指的是焊缝内部存在空洞或者气泡。

气孔往往由以下几种原因造成:1.焊接材料表面存在油脂等物质;2.焊接过程中,气体没有完全排出;3.焊接技术水平不高,焊接不均匀;4.焊接过程中的温度和环境问题。

预防措施预防气孔的产生,需要从以下几方面注意:1.确保焊接材料表面清洁,去除油脂等不良物质;2.焊接前,需要进行充分的预热和退火工作,确保焊接材料温度符合要求;3.焊接过程中,需要控制气体流速和压力,保证焊接材料内部的气体充分排放;4.焊接过程中,需要控制焊接技术,保证焊接均匀;5.确保焊接过程中的温度和环境符合要求。

夹渣缺陷原因夹渣是指焊缝内部存在非金属物质,影响着焊接件的质量。

夹渣往往由以下几种原因造成:1.焊接材料内部存在杂质;2.焊接参数不合适;3.焊接结构设计不合理。

焊接缺陷及预防措施

焊接缺陷及预防措施

焊接缺陷及预防措施焊接是制造业中非常重要的一个工艺,它可以将两个或更多的金属部件结合在一起,使其成为一个整体。

焊接技术的应用范围非常广泛,可以用于制造工业、建筑业、汽车工业、航空工业等领域。

然而,在实际操作中,焊接缺陷的问题也经常出现。

本文将介绍几种常见的焊接缺陷和预防措施。

一、焊接缺陷的类型1.沉积物沉积物是一种常见的焊接缺陷,它指的是表面或内部附着在焊接深度中的异物。

沉积物可能是焊接材料中的杂质、坩埚涂层等,也可能是焊接前表面存在的油污和灰尘等。

沉积物可能会导致焊缝出现微孔、气泡、裂缝等现象。

2.接触不良接触不良是焊接过程中又一个常见的缺陷。

它指的是焊接接头内部接触不良,造成焊接材料之间无法充分融合,导致焊缝表面出现裂缝、气孔等缺陷,从而影响焊缝的强度和密封性。

3.气孔气孔是焊接中比较严重的一种缺陷,它通常是由于焊接接头中存在过多的气体,或在焊接过程中材料表面吸收大气中的水蒸气等原因引起的。

气孔损伤焊缝的外观和机械性能,特别是当焊接部位处于极端载荷下时。

二、焊接缺陷的预防措施1.洁净表面确保焊接接头的表面清洁,去除油污和灰尘等杂质。

在焊接前,清洗焊接接头表面并加工整齐的接头边缘将有助于焊接过程的稳定性和精度。

2.合适的焊接材料选择具有合适力学特性和化学成分的焊接材料,并且需要适配与被焊接材料的特性和属性。

在选择合适的焊接材料时,需要考虑到材料的强度、延展性、抗热、耐腐蚀性能等因素。

3.适当的焊接方法应选择适当的焊接方法和焊接参数,确保焊接过程中材料的稳定性和质量。

同时,应遵循焊接规程的建议,控制好焊接温度、焊接速度、保护气环境等参数。

4.检查和评估在焊接过程中,应定期检查和评估焊接质量和焊缝的特征。

检查焊缝的外观、尺寸和形状等特征,以确保焊接的质量和完整性。

结论在焊接过程中,焊接缺陷的出现是非常常见的。

要预防焊接缺陷,需要实施一系列的措施,例如保持表面干净,选择合适的焊接材料和方法以及定期检查焊接质量等。

常见焊接缺陷类型产生原因与防止措施(范文大全)

常见焊接缺陷类型产生原因与防止措施(范文大全)

常见焊接缺陷类型产生原因与防止措施(范文大全)第一篇:常见焊接缺陷类型产生原因与防止措施常见焊接缺陷类型产生原因与防止措施1)焊缝尺寸不符合要求角焊缝的K值不等—一般发生在角平焊,也称偏下。

偏下或焊缝没有圆滑过渡会引起应力集中,容易产生焊接裂纹。

焊条角度问题,应该考虑铁水瘦重力影响问题。

许多教授在编写教材注重理论性而忽略实用性。

焊条角度适当上抬,48/42度合适。

另外,在K值要求较大时,尽量采用斜圆圈型运条方法。

焊缝宽窄不一致:一是运条速度不均匀,忽快忽慢所致;二是坡口宽度不均匀,焊接时没有进行调整。

三是在熔池边缘停留时间不均匀。

所以焊接时焊接速度均匀、考虑坡口宽度、熔池边缘停留时间合适。

焊缝高低不一致:与焊接速度不均匀有关外,与弧长变化有关。

所以采用均匀的焊接速度、保持一定的弧长,是防止焊缝高低不一致的有效措施。

弧坑:息弧时过快。

与焊接电流过大、收弧方法不当有关。

平焊缝可以采用多种收弧方法,例如回焊法、画圈法、反复息弧法。

立对接、立角焊采用反复息弧法,减小焊接电流法。

焊缝尺寸不符合要求,在凸起时应力集中,产生裂纹;在焊缝尺寸不足时,降低承载能力;所以在焊接前尽量预防,在焊接中尽量防止,在焊接以后及时修补,保证焊缝尺寸符合施工图纸要求。

2)夹渣夹渣是非金属化合物在焊接熔池冷却没有及时上浮而被封闭在焊缝内,所以与清渣不够、打底层、填充层的成型太差、焊条角度没有进行调整而及时对准坡口两个死角,焊接速度过快、焊接电流过小、非正规的运条方法,没有分清铁水与熔渣,保持熔池的净化氛围。

平对接采用合适推渣动作,分清铁水与熔池,焊条角度特别重要。

最容易产生夹渣的部位是:平对接各层、填充层与打底层结合部的两个死角,横对接打底层、填充层的最上部的夹角,仰对接的坡口边缘。

实际就是焊缝成型没有实现略凹、或平,而特别容易形成过凸的成型所致。

夹渣降低焊缝有效截面使用性能,容易产生裂纹等其他缺陷,影响焊缝的致密性。

3)未焊透与未熔合未焊透一般产生在坡口根部,与埋弧焊偏丝、焊接电流过小、焊接速度快、坡口角度过小、反面清根不彻底。

焊接中常见的缺陷及防治措施

焊接中常见的缺陷及防治措施

1、现象焊缝波纹粗劣,焊缝不均匀、不整齐,焊缝与母材不圆滑过渡,焊接接头差,焊缝高低不平。

2、原因分析焊缝成型差的原因有:焊件坡口角度不当或者装配间隙不均匀;焊口清理不干净;焊接电流过大或者过小;焊接中运条(枪)速度过快或者过慢;焊条(枪)摆动幅度过大或者过小;焊条(枪)施焊角度选择不当等。

3、防治措施⑴焊件的坡口角度与装配间隙必须符合图纸设计或者所执行标准的要求。

⑵焊件坡口打磨清理干净,无锈、无垢、无脂等污物杂质,露出金属光泽。

⑶加强焊接联系,提高焊接操作水平,熟悉焊接施工环境。

⑷根据不同的焊接位置、焊接方法、不同的对口间隙等,按照焊接工艺卡与操作技能要求,选择合理的焊接电流参数、施焊速度与焊条(枪)的角度。

4、管理措施⑴加强焊后自检与专检,发现问题及时处理;⑵对于焊缝成型差的焊缝,进行打磨、补焊;⑶达不到验收标准要求,成型太差的焊缝实行割口或者换件重焊;⑷加强焊接验收标准的学习,严格按照标准施工。

1、现象管道焊口与板对接焊缝余高大于 3 ㎜;局部浮现负余高;余高差过大;角焊缝高度不够或者焊角尺寸过大,余高差过大。

2、原因分析焊接电流选择不当;运条(枪)速度不均匀,过快或者过慢;焊条(枪)摆动幅度不均匀;焊条(枪)施焊角度选择不当等。

3、防治措施⑴根据不同焊接位置、焊接方法,选择合理的焊接电流参数;⑵增强焊工责任心,焊接速度适合所选的焊接电流,运条(枪)速度均匀,避免忽快忽慢;⑶焊条(枪)摆动幅度不一致,摆动速度合理、均匀;⑷注意保持正确的焊条(枪)角度。

4、管理措施⑴加强焊工操作技能培训,提高焊缝盖面水平;⑵对焊缝进行必要的打磨与补焊;⑶加强焊后检查,发现问题及时处理;⑷技术员的交底中,对焊角角度要求做详细说明。

三、焊缝宽窄差不合格1、现象焊缝边缘不匀直,焊缝宽窄差大于3 ㎜。

2、原因分析焊条(枪)摆动幅度不一致,部份地方幅度过大,部份地方摆动过小;焊条(枪)角度不合适;焊接位置艰难,妨碍焊接人员视线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焊接缺陷及防止措施(最新版)Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management.( 安全管理 )单位:______________________姓名:______________________日期:______________________编号:AQ-SN-0541焊接缺陷及防止措施(最新版)1、外观缺陷:外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。

常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。

单面焊的根部未焊透等。

A、咬边是指沿着焊趾,在母材部分形成的凹陷或沟槽,它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。

产生咬边的主要原因是电弧热量太高,即电流太大,运条速度太小所造成的。

焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。

直流焊时电弧的磁偏吹也是产生咬边的一个原因。

某些焊接位置(立、横、仰)会加剧咬边。

咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。

矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。

焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。

B、焊瘤焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。

焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。

在横、立、仰位置更易形成焊瘤。

焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。

同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。

管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。

防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。

C、凹坑凹坑指焊缝表面或背面局部的低于母材的部分。

凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。

凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。

防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短时间停留或环形摆动,填满弧坑。

D、未焊满未焊满是指焊缝表面上连续的或断续的沟槽。

填充金属不足是产生未焊满的根本原因。

规范太弱,焊条过细,运条不当等会导致未焊满。

未焊满同样削弱了焊缝,容易产生应力集中,同时,由于规范太弱使冷却速度增大,容易带来气孔、裂纹等。

防止未焊满的措施:加大焊接电流,加焊盖面焊缝。

E、烧穿烧穿是指焊接过程中,熔深超过工件厚度,熔化金属自焊缝背面流出,形成穿孔性缺。

焊接电流过大,速度太慢,电弧在焊缝处停留过久,都会产生烧穿缺陷。

工件间隙太大,钝边太小也容易出现烧穿现象。

烧穿是锅炉压力容器产品上不允许存在的缺陷,它完全破坏了焊缝,使接头丧失其联接飞及承载能力。

选用较小电流并配合合适的焊接速度,减小装配间隙,在焊缝背面加设垫板或药垫,使用脉冲焊,能有效地防止烧穿。

F、其他表面缺陷:(1)成形不良指焊缝的外观几何尺寸不符合要求。

有焊缝超高,表面不光滑,以及焊缝过宽,焊缝向母材过渡不圆滑等。

(2)错边指两个工件在厚度方向上错开一定位置,,它既可视作焊缝表面缺陷,又可视作装配成形缺陷。

(3)塌陷单面焊时由于输入热量过大,熔化金属过多而使液态金属向焊缝背面塌落,成形后焊缝背面突起,正面下塌。

(4)表面气孔及弧坑缩孔。

(5)各种焊接变形如角变形、扭曲、波浪变形等都属于焊接缺陷O角变形也属于装配成形缺陷。

2、气孔和夹渣A、气孔气孔是指焊接时,熔池中的气体未在金属凝固前逸出,残存于焊缝之中所形成的空穴。

其气体可能是熔池从外界吸收的,也可能是焊接冶金过程中反应生成的。

(1)气孔的分类气孔从其形状上分,有球状气孔、条虫状气孔;从数量上可分为单个气孔和群状气孔。

群状气孔又有均匀分布气孔,密集状气孔和链状分布气孔之分。

按气孔内气体成分分类,有氢气孔、氮气孔、二氧化碳气孔、一氧化碳气孔、氧气孔等。

熔焊气孔多为氢气孔和一氧化碳气孔。

(2)气孔的形成机理常温固态金属中气体的溶解度只有高温液态金属中气体溶解度的几十分之一至几百分之一,熔池金属在凝固过程中,有大量的气体要从金属中逸出来。

当凝固速度大于气体逸出速度时,就形成气孔。

(3)产生气孔的主要原因母材或填充金属表面有锈、油污等,焊条及焊剂未烘干会增加气孔量,因为锈、油污及焊条药皮、焊剂中的水分在高温下分解为气体,增加了高温金属中气体的含量。

焊接线能量过小,熔池冷却速度大,不利于气体逸出。

焊缝金属脱氧不足也会增加氧气孔。

(4)气孔的危害气孔减少了焊缝的有效截面积,使焊缝疏松,从而降低了接头的强度,降低塑性,还会引起泄漏。

气孔也是引起应力集中的因素。

氢气孔还可能促成冷裂纹。

(5)防止气孔的措施a.清除焊丝,工作坡口及其附近表面的油污、铁锈、水分和杂物。

b.采用碱性焊条、焊剂,并彻底烘干。

c.采用直流反接并用短电弧施焊。

d.焊前预热,减缓冷却速度。

e.用偏强的规范施焊。

B、夹渣夹渣是指焊后溶渣残存在焊缝中的现象。

(1).夹渣的分类a.金属夹渣:指钨、铜等金属颗粒残留在焊缝之中,习惯上称为夹钨、夹铜。

b.非金属夹渣:指未熔的焊条药皮或焊剂、硫化物、氧化物、氮化物残留于焊缝之中。

冶金反应不完全,脱渣性不好。

(2)夹渣的分布与形状有单个点状夹渣,条状夹渣,链状夹渣和密集夹渣(3)夹渣产生的原因a.坡口尺寸不合理;b.坡口有污物;c.多层焊时,层间清渣不彻底;d.焊接线能量小;e.焊缝散热太快,液态金属凝固过快;f.焊条药皮,焊剂化学成分不合理,熔点过高;g.钨极惰性气体保护焊时,电源极性不当,电、流密度大,钨极熔化脱落于熔池中。

h.手工焊时,焊条摆动不良,不利于熔渣上浮。

可根据以上原因分别采取对应措施以防止夹渣的产生。

(4)夹渣的危害点状夹渣的危害与气孔相似,带有尖角的夹渣会产生尖端应力集中,尖端还会发展为裂纹源,危害较大。

3、裂纹焊缝中原子结合遭到破坏,形成新的界面而产生的缝隙称为裂纹。

A、.裂纹的分类根据裂纹尺寸大小,分为三类:(1)宏观裂纹:肉眼可见的裂纹。

(2)微观裂纹:在显微镜下才能发现。

(3)超显微裂纹:在高倍数显微镜下才能发现,一般指晶间裂纹和晶内裂纹。

从产生温度上看,裂纹分为两类:(1)热裂纹:产生于Ac3线附近的裂纹。

一般是焊接完毕即出现,又称结晶裂纹。

这种二裂纹主要发生在晶界,裂纹面上有氧化色彩,失去金属光泽。

(2)冷裂纹:指在焊毕冷至马氏体转变温度M3点以下产生的裂纹,一般是在焊后一段时间(几小时,几天甚至更长)才出现,故又称延迟裂纹。

按裂纹产生的原因分,又可把裂纹分为:(1)再热裂纹:接头冷却后再加热至500~700℃时产生的裂纹。

再热裂纹产生于沉淀强化的材料(如含Cr、Mo、V、Ti、Nb的金属)的焊接热影响区内的粗晶区,一般从熔合线向热影响区的粗晶区发展,呈晶间开裂特征。

(2)层状撕裂主要是由于钢材在轧制过程中,将硫化物(MnS)、硅酸盐类等杂质夹在其中,形成各向异性。

在焊接应力或外拘束应力的使用下,金属沿轧制方向的杂物开裂。

(3)应力腐蚀裂纹:在应力和腐蚀介质共同作用下产生的裂纹。

除残余应力或拘束应力的因素外,应力腐蚀裂纹主要与焊缝组织组成及形态有关。

B、.裂纹的危害裂纹,尤其是冷裂纹,带来的危害是灾难性的。

世界上的压力容器事故除极少数是由于设计不合理,选材不当的原因引起的以外,绝大部分是由于裂纹引起的脆性破坏。

C、.热裂纹(结晶裂纹)(1)结晶裂纹的形成机理热裂纹发生于焊缝金属凝固末期,敏感温度区大致在固相线附近的高温区,最常见的热裂纹是结晶裂纹,其生成原因是在焊缝金属凝固过程中,结晶偏析使杂质生成的低熔点共晶物富集于晶界,形成所谓\"液态薄膜\",在特定的敏感温度区(又称脆性温度区)间,其强度极小,由于焊缝凝固收缩而受到拉应力,最终开裂形成裂纹。

结晶裂纹最常见的情况是沿焊缝中心长度方向开裂,为纵向裂纹,有时也发生在焊缝内部两个柱状晶之间,为横向裂纹。

弧坑裂纹是另一种形态的,常见的热裂纹。

热裂纹都是沿晶界开裂,通常发生在杂质较多的碳钢、低合金钢、奥氏体不锈钢等材料气焊缝中(2)影响结晶裂纹的因素a合金元素和杂质的影响碳元素以及硫、磷等杂质元素的增加,会扩大敏感温度区,使结晶裂纹的产生机会增多。

b.冷却速度的影响冷却速度增大,一是使结晶偏析加重,二是使结晶温度区间增大,两者都会增加结晶裂纹的出现机会;c.结晶应力与拘束应力的影响在脆性温度区内,金属的强度极低,焊接应力又使这飞部分金属受拉,当拉应力达到一定程度时,就会出现结晶裂纹。

(3)防止结晶裂纹的措施a.减小硫、磷等有害元素的含量,用含碳量较低的材料焊接。

b.加入一定的合金元素,减小柱状晶和偏析。

如铝、锐、铁、镜等可以细化晶粒。

,c.采用熔深较浅的焊缝,改善散热条件使低熔点物质上浮在焊缝表面而不存在于焊缝中。

d.合理选用焊接规范,并采用预热和后热,减小冷却速度。

e.采用合理的装配次序,减小焊接应力。

D、.再热裂纹(1)再热裂纹的特征a.再热裂纹产生于焊接热影响区的过热粗晶区。

产生于焊后热处理等再次加热的过程中。

b.再热裂纹的产生温度:碳钢与合金钢550~650℃奥氏体不锈钢约300℃c.再热裂纹为晶界开裂(沿晶开裂)。

d.最易产生于沉淀强化的钢种中。

e.与焊接残余应力有关。

(2)再热裂纹的产生机理a.再热裂纹的产生机理有多种解释,其中模形开裂理论的解释如下:近缝区金属在高温热循环作用下,强化相碳化物(如碳化铁、碳化饥、碳化镜、碳化错等)沉积在晶内的位错区上,使晶内强化强度大大高于晶界强化,尤其是当强化相弥散分布在晶粒内时,阻碍晶粒内部的局部调整,又会阻碍晶粒的整体变形,这样,由于应力松弛而带来的塑性变形就主要由晶界金属来承担,于是,晶界应力集中,就会产生裂纹,即所谓的模形开裂。

(3)再热裂纹的防止a.注意冶金元素的强化作用及其对再热裂纹的影响。

b.合理预热或采用后热,控制冷却速度。

c.降低残余应力避免应力集中。

d.回火处理时尽量避开再热裂纹的敏感温度区或缩短在此温度区内的停留时间。

E、.冷裂纹.(1)冷裂纹的特征a.产生于较低温度,且产生于焊后一段时间以后,故又称延迟裂纹。

b.主要产生于热影响区,也有发生在焊缝区的。

c.冷裂纹可能是沿晶开裂,穿晶开裂或两者混合出现。

d.冷裂纹引起的构件破坏是典型的脆断。

相关文档
最新文档