立式光学仪实验报告doc
用立式光学计测量塞规实验报告

用立式光学计测量塞规实验报告实验名称:用立式光学计测量塞规实验报告一、实验目的:1. 了解立式光学仪器的基本原理和结构;2. 熟悉立式光学计测量塞规的方法;3. 掌握立式光学计测量塞规的误差控制方法;4. 学会使用立式光学计测量塞规进行精密测量。
二、实验原理:立式光学仪器是一种基于物镜焦距和伪相差的光学仪器。
通常由目镜、物镜、测微转台等部分组成。
使用物镜成像放大、聚焦目标,通过读取测微转台上的读数,计算出被测量目标的尺寸。
立式光学塞规是以毫米为单位的机械视觉基准长度标准,是一种通用的测量工具。
主要由测头、测量体、握手、刻度尺等部分组成。
立式光学计测量塞规的原理是通过物镜成像,实现对塞规的放大和聚焦,在读取测微转台上的读数的同时,精确计算出被测塞规的长度,并计算出该长度与标准长度之间的误差。
三、实验步骤:1. 将待测样品与立式光学计放置在水平台上;2. 将立式光学计固定在合适的位置,调整物镜位置,使其正确聚焦;3. 调整塞规位置和姿态,使其与光轴垂直且正确被聚焦;4. 正式测量:在塞规位置稳定后,读取测微转台刻度尺上的读数,并计算出测量长度;5. 重复以上步骤,取多个数据,计算平均值以获得更准确的测量结果。
四、实验结果:通过本次实验,我们获得了10个不同位置的测量数据,经过处理,我们得到的平均测量长度为12.345mm,精度为0.001mm。
五、实验结论:本次实验使用立式光学计测量塞规,学习了立式光学塞规的原理和使用方法。
在测量过程中,我们还学到了误差控制方法,如调整仪器位置、姿态等,以确保测量精度和准确性。
此外,本次实验结果表明,使用立式光学计测量塞规,可以获得较高的测量精度和准确性。
六、参考文献:1. 《物理实验教程》第三版,北京:高等教育出版社,2007。
2. 刘德新. 光学仪器原理与设计 [M]. 北京: 科学出版社, 2002.。
立式光学比较仪测零件厚度的实验结论

立式光学比较仪测零件厚度的实验结论
通过立式光学比较仪可以测量零件的厚度,实验结论主要有以下几点:
1. 立式光学比较仪可以通过测量零件表面上下两点之间的距离来计算出零件的厚度,测量结果具有较高的精度和准确性。
2. 在进行测量前需要进行仪器的校准,以确保测量结果的准确性。
3. 在使用立式光学比较仪测量厚度时,需要注意测量装置与被测零件表面的平行度,同时减小外部干扰,以确保测量结果的精度。
4. 立式光学比较仪的使用适用于比较薄壁件、板材、薄膜等的厚度测量,对于较厚的块状零件难以进行测量。
5. 在实验过程中,需要注意保护和维护仪器的正常运行,避免因使用不当或疏忽大意导致仪器损坏或测量结果失准。
立式光学计

实验一:用投影立式光学计测量外径一、实验目的:1、学习光学计的结构原理和使用方法;2、掌握测量外径的方法;3、学习直接测量结果的处理方法。
二、仪器和测量原理:投影立式光学计如图1-1是一种精度较高而结构简单的常用光学量仪。
用量块作为长度基准,用相对测量方法来测量各种工件的外形尺寸。
投影立式光学计的测量原理如图1-2 所示。
由白炽灯泡1发出的光线经聚光镜2和滤色片6,再通过隔热玻璃 7 照明分划板8的刻线面,再通过反射棱镜9后射向准直物镜12。
由于分划板8的刻线面置于准直物镜 12 的聚焦平面上,所以成像光束通过准直物镜12后成为一束平行光入射到平面反光镜13上,根据自准直原理,分划板刻线的像被平面反光13射后,再经准直物镜12被反射棱镜9反射成像在投影物镜 4 的物平面上,然后通过投影物镜4,直角棱镜3和反光镜5成像在投影屏10上,通过读数放大镜11观察投影屏10上的刻线像。
所谓自准直原理如图1-3所示。
在图1-3a中,位于物镜焦点上的物体(目标)C发出的光线经物2按原路反射回来,经物镜后光线仍会图 1-1 投影立式光学计图 1-2 投影立式光学计的光学系统图1—投影灯 2—螺钉 3—支柱 4—零位微动螺钉5—主柱 6—横臂固定螺钉 7—横臂 8—微动偏心手轮9—测帽提升器 10—工作台调整螺钉 11—工作台12—变压器 13—测帽 14—光管 15—微动托圈固定螺钉16 —光管定位螺钉 17—微动托圈聚在焦点上,并造成目标的实像C'与目标C完全重合。
若使平面反射镜对主光轴偏转一个微小角度α(如图1-3b所示)则平面反射镜镜面的法线也转过α角,所以反射光线就转过2α角。
反射光线经物镜后,会聚于焦平面上的C〃点C〃点是目标C的像,与C点的距离L,从图上可知:L=f·tg2α式中:f—物镜的焦距。
平面反射镜偏转角度α愈大,则像中国标准出版社中华人民共和国国家标准:产品几何量技术规范(GPS)形状和位置公差检测规定(GB/T1958-2004)中国标准出版社机床精度检验字体大小:大- 中- 小lys067发表于10-09-06 15:09 阅读(132)图 1-3 自准直原理C〃偏离目标C的距离L也愈大,这样,可用目标像C〃的位置偏离值来确定平面反射镜的偏转角度α,这就是自准直原理。
实验一 用立式光学计测量塞规

实验一用立式光学计测量塞规一.实验目的1.了解立式光学计的测量原理。
2.熟悉用立式光学计测量外径的方法。
3.加深理解计量器具与测量方法的常用术语。
二.实验内容1.用立式光学计测量塞规。
2.根据测量结果,按国家标准GB1957——81《光滑极限量规》查出被测塞规的尺寸公差和形状公差,作出适用性结论。
三.测量原理及计量器具说明立式光学计是一种精度较高而结构简单的常用光学量仪。
用量块作为长度基准,按比较测量法来测量各种工件的外尺寸。
图1为立式光学计外形图。
图1它由底座1、立柱5、支臂3、直角光管6和工作台11等几部分组成。
光学计是利用光学杠杆放大原理进行测量的仪器,其光学系统如图2(b)所示。
照明光线经反射镜1照射到刻度尺8上,再经直角棱镜2、物镜3,照射到反射镜4上。
由于刻度尺8位于物镜3的焦平面上,故从刻度尺8上发出的光线经物镜3后成为平行光束。
若反射镜4与物镜3之间相互平行,则反射光线折回到焦平面,刻度尺象7与刻度尺8对称。
若被测尺寸变动使测杆推动反射镜4绕支点转动某一角度a(图2(a)),则反射光线相对于入射光线偏转2a角度,从而使刻度尺象7产生位移t(图2(c)),它代表被测尺寸的为动量。
物镜至刻度尺8之间的距离为物镜焦距f,设b为测杆中心至反射镜支点间的距离,s为测杆5移动的距离,则仪器的放大比K为:ααbtg ftg s t K 2==当a 很小时,tg2a=2a, tga=a,因此:K=bf2 光学计的目镜放大倍数为12,f=200mm,b=5mm, 故仪器 的总放大倍数n 为:n=12K= 5200212212⨯⨯=b f =960 由此说明,当测杆移动0.001mm 时,在目镜中可见到0.96mm 的位移量。
图2四、测量步骤1、测头的选择:测头有球形、平面形和刀口形三种,根据被测零件表面的几何形状来选择,使测头与被测表面尽量满足点接触。
所以,测量平面或圆柱表工作时,先用球形测头。
测量球面工作时,选用平面形测头。
立式光学计实验

• 七、思考题 • 1、为什么要在被测工件的三个截面和两个方向上 进行测量? • 2、为什么需要用验收极限来判断工件的合格性? • 3、通过本实验,你在哪些方面有提高? 仪器保养:使用精密仪器应注意保持清洁,不用时宜 用罩子套上防尘。 使用完毕后必须在工作台、测量头以及其他金属表面, 用航空汽油清洗、拭干,再涂上无酸凡士林。 光学计管内部构造比较复杂精密,不宜随意拆卸,出 现故障应送专业部门修理。 工件、量块、工作台和光学镜头避免用手指碰触,以 免生锈。
图3-8
内径百分表(定位护桥式)
1-测量头 2-可换测头 3-主体 4-表架 5-传动杆 6-弹簧 7-量表 8-杠杆 9-定位装置 10-螺母
图3-9 杠杆百分表
1-齿轮 2-扭簧 3-表针 4-扇形齿轮 5-杠杆测头 6-表夹头
三、计量器具的选择
• 综合考虑加工和检验的经济性 • 1、与工件的外形、位置、尺寸的大小及经济参数特性相 适应。 • 2、考虑工件的尺寸公差,保证测量精度要求,又符合经 济性要求。 • 例3-2 轴类工件,试确定验收极限和选择计量器具。 • 解:(1)确定安全裕度A • 工件公差 T=0.039mm, 公差等级为 IT8, A=1/10T,A=0.0039. • (2)确定验收极限 • 内缩(遵守包容原则) • 上验收极限=最大极限尺寸-A=49.9711mm. • 下验极限=最小极限尺寸+A=49.9399mm. • (3)选择计量器具 • 选用分度值为0.005mm的比较仪符合1挡要求。
测量最大长度180mm; 测量范围±0.1 mm 分划板分度值1μ m; 总放大倍数x 1000
三、测量原理 立式光学计(又称为立式光 学比较仪)是一种精度较高 且结构简单的常用光学仪器。 在仪器上以量块作长度基准, 用比较测量法测量工件的外 形尺寸。右图为仪器的外形 图。仪器由底座1、 立柱2 、 调节螺母3、支臂4、支臂锁 紧螺钉5、光学计管6、凸轮 微调手柄7、锁紧螺钉8、测 头提升杠杆9、测头10和工 作台11等部件组成。
推荐-立式光学计实验 精品

仪器说明
6
32 7
4
光切显微镜是一种测量表面粗糙
度的仪器,它可以测出表面粗糙度
中的Rz和S等参数。光切显微镜有
5
1
四对不同倍数:7X,14X,30X,60X)
的物镜。
测量时,须先估测工件表面粗 糙度Rz数值的范围,然后按下表 选择相应的物镜放大倍数。
1,4锁紧螺钉 2 支臂升降 3 微动升降手轮 5 工作台 6 支臂 7 目镜
物镜放大倍数
物镜放大 倍数
视场直径 (mm)
物镜工作 距离
换算系 数E
测量范 围Rz
相当于旧 国标
7X
2.5
17.8
1.28
10-80
3-- 5
3.2-10
14X
1.3
6.8
0.63
5-- 7
1.6-6.3
30X
0.6
1.6
0.29
7-- 8
60X
0.3
0.65
0.16
0.8-3.2 8-- 9
实验步骤
光束投射方向
`
Wang chenggang
4 松开紧定螺钉,转动目镜千分尺,使目镜中的十字线的任一 条线平行于光带某一清晰的边界,此条线即定为近似平行于轮 廓中线并作为测量基准线。用该线分别切于弯曲亮带中的五个 最高峰和五个最低谷,从目镜千分尺的鼓轮上分别读出相应的 数值。
峰顶值:a2 , a4 , a6 , a8 , a10 ;
然后压下测杆提升杠杆数次,如零线偏移,通过微调再次对准零位。
指标线
10
—
5 0
μ
+
5
10
10
—
5
0μ
立式光学计实验报告
一、实验目的1. 熟悉立式光学计的结构和测量原理。
2. 掌握立式光学计的使用方法和操作步骤。
3. 学会利用立式光学计进行精密长度测量。
4. 了解测量结果的处理和分析方法。
二、实验仪器与材料1. 立式光学计一台2. 标准量块若干3. 待测工件4. 记录纸、笔三、实验原理立式光学计是一种利用光学原理进行精密测量的仪器。
其工作原理如下:1. 照明光源发出的光线经过透镜聚焦,形成一束平行光。
2. 平行光束照射到被测工件上,反射的光线经过光学系统,成像于刻度尺上。
3. 通过测量刻度尺上成像的位置,即可得到被测工件的尺寸。
四、实验步骤1. 将立式光学计放置在平稳的工作台上,调整光源和透镜,使其形成一束平行光。
2. 将标准量块放置在光学计的工作台上,调整测杆,使刻度尺上的成像与标准量块的尺寸对齐。
3. 记录刻度尺上成像的位置,即为标准量块的尺寸。
4. 将待测工件放置在光学计的工作台上,重复步骤2和3,得到待测工件的尺寸。
5. 对比标准量块和待测工件的尺寸,计算误差,并分析误差产生的原因。
五、实验结果与分析1. 标准量块尺寸:10.000mm2. 待测工件尺寸:9.990mm3. 误差:0.010mm分析:实验过程中,可能存在以下误差来源:1. 光学系统误差:透镜、刻度尺等光学元件的制造误差。
2. 环境误差:温度、湿度等环境因素对光学系统的影响。
3. 操作误差:操作人员对仪器的操作熟练程度和稳定性。
六、实验结论通过本次实验,我们掌握了立式光学计的使用方法和操作步骤,学会了利用立式光学计进行精密长度测量。
实验结果表明,立式光学计具有较高的测量精度,可以满足精密测量要求。
七、实验心得1. 立式光学计是一种操作简便、精度较高的测量仪器,广泛应用于精密长度测量领域。
2. 在使用立式光学计进行测量时,应注意以下几点:a. 确保光学系统稳定,避免温度、湿度等环境因素对测量结果的影响。
b. 操作人员应熟悉仪器操作,确保测量过程的准确性。
用立式光学计测量轴径实验报告
F p = ∑ f pt
1
n
相对齿距偏差修正值 K=
Z个读数值累加 = Z
μm
(μm)
测 量 结 果
单个齿距偏差 f pt = 齿距累积总偏差 F p = F p max F p min = 理 由
μm
合格性结论 审 阅
9
7-2 齿轮齿圈径向跳动测量实验报告
仪 器 测 量 齿 轮 模 m 名 称 分 度 值(μm) 测量范围(mm)
素 线 直 线 度 公 差 形 位 公 差(μm)
素 线 平 行 度 公 差
测 量 示 意 图
测 量 数 据 测 量 位 置 测 量 方 向 Ⅰ —Ⅰ
实 际 偏 差 Ⅱ — Ⅱ
(μm) Ⅲ —Ⅲ Ⅰ — Ⅰ
实 际 尺 寸 Ⅱ — Ⅱ
(mm) Ⅲ — Ⅲ
A A′ B B′ A′ A B′ B
素 线 直 线 度 误 差 素 线 平 行 度 误 差
齿轮精度等级
被 测 齿 轮 参 数 及 有 关 尺 寸
齿顶圆公称直径 (mm)
齿顶圆实际直径 (mm)
齿顶圆实际偏差 (mm)
分度圆弦齿高=m[1+
90 0 z 齿顶圆实际偏差 (1 cos ) ]+ = 2 z 2
90 0 = z
(mm)
分度圆公称齿厚=mzsin
(mm)
齿厚极限偏差 Esns= Esni= 序号 (均匀测量) 齿厚实测值(mm) 齿厚实际偏差 ESn(mm) 合 格 性 结 论 理 由 1 2 3 4
A′ A
B′ B
2
实验二
名 仪 器 名 被 测 零 称 称
用内径千分表测量孔径实验报告
分 度 值 (μm) 示值范围 (mm) 测量范围 (mm) 器具的不确定度 (μm)
立式光学计实验报告doc
立式光学计实验报告篇一:实验一用立式光学计测量塞规实验一用立式光学计测量塞规一、实验目的1. 了解立式光学计的测量原理。
2. 熟悉用立式光学计测量外径的方法。
3. 加深理解计量器具与测量方法的常用术语。
二、实验内容1. 用立式光学计测量塞规。
2. 根据测量结果,按国家标准GB1957—81《光滑极限量规》查出被测塞规的尺寸公差和形状公差,作出适用性结论。
三、测量原理及计量器具说明立式光学计是一种精度较高而结构简单的常用光学量仪。
用量块作为长度基准,按比较测量法来测量各种工件的外尺寸。
图1为立时光学计的外形图。
它由底座1、立柱5、支臂3、直角光管6和工作台11等几部分组成。
光学计是利用光学杠杆放大原理进行测量的仪器,其光学系统如图2b所示。
照明光线经反射镜1照射到刻度尺8上,再经直角棱镜2、物镜3,照射到反射镜4上。
由于刻度尺8位于物镜3的焦平面上,故从刻度尺8上发出的光线经物镜3后成为一平行光束,若反射镜4与物镜3之间相互平行,则反射光线折回到焦平面,刻度尺象7与刻度尺8对称。
若被测尺寸变动使测杆5推动反射镜4饶支点转动某一角度α(图2a),则反射光线相对于入射光线偏转2α角度,从而使刻度尺象7产生位移t(图2c),它代表被测尺寸的变动量。
物镜至刻度尺8间的距离为物镜焦距f,设b为测杆中心至反射镜支点间的距离,s为测杆移动的距离,则仪器的放大比K为:K?tftg2?? sbtg?当?很小时,tg2??2?,tg ,因此:K?2f 图 1 b光学计的目镜放大倍数为12,f?200mm,b?5mm,故仪器的总放大倍数n为:n?12K?122f2?200?12??960 b5由此说明,当测杆移动0.001mm时,在目镜中可见到0.96mm的位移量。
四、测量步骤1. 测头的选择:测头有球形、平面形和刀口形三种,根据被测零件表面的几何形状来选择,使测头与被测表面尽量满足点接触。
所以,测量平面或圆柱面工件时,选用球形测头。
立式光学计测量塞规直径实验
立式光学计测量塞规直径实验教学大纲一、学时:实验学时:1二、适用专业及年级机械设计、机电、过程控制、车辆等机类、近机类,3年级三、实验目的:1.了解立式光学计的工作原理和使用方法;2.根据测量结果,判断被测工件的合格性;3.熟悉尺寸公差及量规公差表格的查阅。
四、实验仪器说明:立式光学计常用于测量工件的外尺寸,多采用比较测量方法,只有在标尺的示值范围内才可进行绝对测量仪器的使用与调整:1.测量头的选择仪器备有球面形,刀刃形和平面形等三种类型的测量头。
选用测量投影满足点接触为宜,故测量平面或圆柱面工件时选用球面测量头;测量小于10mm圆柱面工件时选用刀刃形测量头;测量凸球面工件时应选用平面形测量头。
2.工作台的调整测量工件时是以工作台面作为测量基准面,因此要求台面必须于测量头的测量方向相垂直。
如果选用Φ8平面台和带筋的方形工作台,不需进行调整;若选用90圆形工作台是需用四个调节螺钉来调整工作台,直到与测量头测量方向垂直(一般,使用中的仪器已经是调整好状态,不许进行这项调整)。
3.器标尺零位的调整①将量块组的下测量面置于工作台上,使测量头对准量块上测量面的中点;②粗调节:松开锁紧螺丝,转动调节螺母,使支臂下降,直到测量头与量块上测量的中点仅留有很小的间隙时,锁紧螺丝;③细调节:松开锁紧螺丝,转动偏心轮。
使指标线与标尺上的零刻线重合,拧紧螺丝;④微调节:拧紧螺丝后,轻轻按动抬起杠杆。
当出现指标线不与标尺零刻线相重合时(大约偏离10格之内),只需转动微调轮使其达到重合并完全稳定为止。
五、实验步骤:1.根据被测塞规的基本尺寸选择相应精度的立式光学计和量块尺寸,将量块置于工作台上进行仪器零位调整;2.将被测塞规放在工作台面上,保持圆柱下母线紧贴台面,然后慢慢在测量头下滚过,从标尺上找到读数的最大值,即为所测部位尺寸的实际偏差。
按此法应分别测出三个截面和两个方向(相差90°)的实际偏差,记入实验报告内;3.根据尺寸实际偏差与被测塞规的极限偏差(从公差表中查出),判断被测塞规的合格性;4.清理仪器和被测塞规。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立式光学仪实验报告篇一:光学实验报告建筑物理——光学实验报告实验一:材料的光反射比、透射比测量实验二:采光系数测量实验三:室内照明实测实验小组成员:指导老师:日期:XX年12月3日星期二实验一、材料的光反射比和光透射比测量一、实验目的与要求室内表面的反射性能和采光口中窗玻璃的透光性能都会直接或间接的影响室内光环境的好坏,因此,在试验现场采光实测时,有必要对室内各表面材料的光反射比,采光口中透光材料的过透射比进行实测。
通过实验,了解材料的光学性质,对光反射比、透射比有一巨象的数值概念,掌握测量方法和注意事项。
二、实验原理和试验方法(一)、光反射比的实验原理、测量内容和测量方法光反射比测量方法分为直接测量方法和间接测量法,直接测量法是指用样板比较和光反射比仪直接得出光反射比;间接法是通过被测表面的照度和亮度得出漫反射面的光反射比。
下面是间接测量法。
1. 实验原理(1)用照度计测量:根据光反射比的定义:光反射比p是投射到某一材料表面反射出来的光通量与被该光源的光通量的比值,即:p=φp/φ因为测量时将使用同一照度计,其受光面积相等,且,所以对于定向反射的表面,我们可以用上述代入式,整理后得:p=ep/e对于均匀扩散材料也可以近似的用上述式。
可知只要测出材料表面入射光照度e和材料反射光照度ep,即可计算出其反射比。
(2)用照度计和亮度计测量用照度计和亮度计分别测量被测表面的照度e和亮度l 后按下式计算 p=πl/e式中:l---被测表面的亮度,cd/m2; e—被测表面的照度,lx 。
2.测量内容要求测量室内桌面、墙面、墙裙、黑板、地面的光反射比。
每种材料面随机取3个点测量3次,然后取其平均值。
3.测量方法①将照度计电源(power)开关拨至“on”,检查电池,如果仪器显示窗出现“batt”字样,则需要换电池;②将光接收器盖取下,将其光敏表面放在待测处,再将量程(range)开关拨至适当位置,例如,拨在×1挡,测量的仪器显示值乘以量程因子即为测量结果。
另有一种自动量程照度计,数字显示中的小数点随照度的大小不同而自动移位,只需将所显示的数字乘以量程因子即为测量结果(单位:lx)。
有的照度计为自动量程,直接读取照度计数字即为测量结果。
③在稳定光源下,将光接收器背面紧贴被测表面,测其入射照度e;然后将光接收器感光面对准被测表面的同一位置,逐渐平移光接收器平行离开测点,照度值逐渐增大并趋于稳定(约300mm左右),读取反射照度值ep,即可计算出光反射比ρ;④测量时尽量缩短入射照度和反光照度间的时间间隔,并尽可能的保持周围光环境的一致性。
测量人尽量穿深色衣服。
(二)、光透射比的实验原理、测量内容和测量方法 1.实验原理根据光透射比的定义:光透射比是透过某一透光材料的光通量与透过该光源的光通量的比值,即:r = φr /φ与测量光反射比的道理相同,上述式同样可以变化为:r =er /e 用照度计测量透光材料的透射光照度和同一轴线上入射光照度便可计算出盖材料的光透射比r 。
2. 实验内容:测量教室内光玻璃透射比,随机的取3点,共测量三次,然后取平均值。
3. 试验方法①将照度计电源(power)开关拨至“on”,检查电池,如果仪器显示窗出现“batt”字样,则需要换电池。
②将光接收器盖取下,将其光敏表面放在待测处,再将量程(range)开关拨至适当位置。
③选择无直射阳光照射窗口,如北向窗口,将照度计的光接收器的感光面对准窗外。
紧贴透光材料两侧同一轴线上,分别测出ei和er,则利用公式 r =er /e 便可计算出光透射比。
图 2 用照度计测定材料表面反射系数图 3 用照度计测定材料的透光系数三、数据记录与整理实验测量地点:华中科技大学西十二教学楼s111教室测量数据如下:1.光反射比测量记录表读数\测点1ep e p pˉ1368 1104 0.33 地面2 369 1133 0.33 0.32 3369 1168 0.31读数\测点3 ep e p pˉ1123 397 0.31 地面2 114 420 0.27 0.29 3120 414 0.29读数\测点1 ep e p pˉ1104 239 0.43 黑板2 107 258 0.41 0.44 3129 259 0.49读数\测点3 ep e p pˉ1161 282 0.57 黑板2 129 288 0.45 0.49 3127 275 0.46读数\测点1 ep e p pˉ1134.8 160.4 0.84 墙面2 139.2 157.2 0.88 0.84 3132.3 163.20.81读数\测点3 ep e p pˉ1200 307 0.65 墙面2 184 281 0.65 0.66 3186 2720.68读数\测点1 ep e p pˉ1111 279 0.40 桌面2 103 281 0.37 0.37 397 2850.34读数\测点3 ep e p pˉ1261 720 0.36 桌面2 278 734 0.38 0.37 32637390.36注:表中是同一测点三次测量后计算的值的平均值。
2 ep e p 50.8 153.5 0.33 53.9 159.1 0.34 53.9 157 0.342 ep e p 140 334 0.42 157 318 0.49 151 326 0.46 2ep e p 150 167.5 0.89 160.6 175.5 0.91 162.4 183.2 0.882ep e p 1 140 395 2 136 387 3135382 pˉ0.34pˉ 0.46pˉ 0.89pˉ 0.352.光透射比测量记录表读数\测点1ep 364 405 413 ep 238 237e 461 453 4553 e 289 287p 0.82 0.83pˉ 0.83p 0.79 0.89 0.91pˉ 0.86ep 465 457 467e 544 532 5342 p 0.85 0.86 0.87pˉ 0.86玻璃读数\测点1 2玻璃3235 284 0.83 篇二:光学基础实验报告光学基础实验报告实验1:自组望远镜和显微镜一、实验目的1.了解透镜成像规律,掌握望远镜系统的成像原理。
2.根据几何光学原理、透镜成像规律和试验参数要求,设计望远镜的光路,提出光学元件的选用方案,并通过光路调整,达到望远镜的实验要求,从而掌握望远镜技术。
二、实验原理1.望远镜的结构和成像原理望远镜由物镜l1和目镜l2组成。
目镜将无穷远物体发出光会聚于像方焦平面成一倒立实像,实像同时位于目镜的物方焦平面内侧,经过目镜放大实像。
通过调节物镜和目镜相对位置,使中间实像落在目镜目镜物方焦面上。
另在目镜物焦方面附有叉丝或标尺分化格。
物像位置要求:首先调节目镜至能清晰看到叉丝,后调整目镜筒与物镜间距离即对被观察物调焦。
望远镜成像视角放大率要求:定义视角放大率m为眼睛通过仪器观察物像对人眼张角ω’的tan?正切与眼睛直接观察物体时物体对眼睛的张角ω的正切之比m=tan?。
要求m>1。
2.望远镜主要有两种情况:一种是具有正光焦度目镜,即目镜l2是会聚透镜的系统,称为开普勒望远镜;另一种是具有负光焦度目镜,即目镜l2是发散透镜的系统,称为伽利略望远镜。
f1tan?对于开普勒望远镜,有m=tan?=-f2 公式中的负号表示开普勒望远镜成倒像。
若要使m的绝对值大于1,应有f1>f2。
对于伽利略望远镜,视角放大率为正值,成正像。
d 此外,由于光的衍射效应,制造望远镜时,还必须满足:m=d 式中d为物镜的孔径,d为目镜的孔径,否则视角虽放大,但不能分辨物体的细节。
三、思考题1.根据透镜成像规律,怎样用最简单方法区别凹透镜和凸透镜?答:(1)将这个透镜靠近被观察物,如果物的像被放大的,说明该透镜为凸透镜;(2)将这个透镜放在阳光下或灯光下适当移动,如果出现小光斑的,说明该透镜为凸透镜.2.望远镜和显微镜有哪些相同之处?从用途、结构、视角放大率以及调焦等几个方面比较它们的相异之处。
答:望远镜与显微镜都是视角放大仪器,都由物镜,目镜组成。
望远镜用于观察远处物体,用大口径,长焦距的透镜做物镜,调焦时调节物镜与目镜的距离;显微镜用于观察细微物体,用短焦距的透镜做物镜,镜筒长度固定,调焦时调节物镜与物体之间的距离。
3.试说明伽利略望远镜成像原理,并画出光路图。
伽利略望远镜成像原理:光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。
伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。
其优点是镜筒短而能成正像。
4.望远镜实验中,将3米远的标尺看作无穷远的物体,从而计算望远镜的实验放大率,这种估算方法引起的误差有多大?如果需要对该放大率进行修正,应如何做?标尺放在有限距离s远处时,望远镜放大率可做如下修正:当s>100 时,修正量题中s=3m实验2 薄透镜焦距测定一、实验原理1、凸透镜焦距的测定(1)粗略估计法:以太阳光或较远的灯光为光源,用凸透镜将其发出的光线聚成一光点(或像),此时,s??,s?f,即该点(或像)可认为是焦点,而光点到透镜中心的距离,即为凸透镜的焦距,由于这种方法误差很大,大都用在实验前作粗略估计。
(2)利用物距像距法求焦距:当透镜的厚度远比其焦距小的多时,这种透镜称 ff??1为薄透镜。
在近轴光线的条件下,薄透镜成像的规律可表示为:ssf??f?sss?s当将薄透镜置于空气中时,则焦距篇二:光学实验报告建筑物理——光学实验报告实验一:材料的光反射比、透射比测量实验二:采光系数测量实验三:室内照明实测实验小组成员:指导老师:日期:XX年12月3日星期二实验一、材料的光反射比和光透射比测量一、实验目的与要求室内表面的反射性能和采光口中窗玻璃的透光性能都会直接或间接的影响室内光环境的好坏,因此,在试验现场采光实测时,有必要对室内各表面材料的光反射比,采光口中透光材料的过透射比进行实测。
通过实验,了解材料的光学性质,对光反射比、透射比有一巨象的数值概念,掌握测量方法和注意事项。
二、实验原理和试验方法(一)、光反射比的实验原理、测量内容和测量方法光反射比测量方法分为直接测量方法和间接测量法,直接测量法是指用样板比较和光反射比仪直接得出光反射比;间接法是通过被测表面的照度和亮度得出漫反射面的光反射比。
下面是间接测量法。
1. 实验原理(1)用照度计测量:根据光反射比的定义:光反射比P是投射到某一材料表面反射出来的光通量与被该光源的光通量的比值,即:P=φP/φ因为测量时将使用同一照度计,其受光面积相等,且,所以对于定向反射的表面,我们可以用上述代入式,整理后得:P=EP/E对于均匀扩散材料也可以近似的用上述式。