高三上学期期中数学试卷真题

合集下载

山东省青岛第五十八中学2024-2025学年高三上学期期中考试数学试题(含答案)

山东省青岛第五十八中学2024-2025学年高三上学期期中考试数学试题(含答案)

2022级高三调研测试4(期中)数学试题 2024.10注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需要改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,,则A .{1,2,3} B .{0,1,2}C .{1,2,5}D .{0,1,2,5}2.已知,则|z |=A .2B .1CD3.已知,.若,则A .B . CD4.已知等比数列的前n 项和为,且,则“”是“的公比为2”的A .必要不充分条件 B .充分不必要条件C .充要条件D .既不充分也不必要条件5,则此正四棱锥的体积为A.B .C .D .6.已知函数则f (x )图象上关于原点对称的点有A.1对B .2对C .3对D .4对7.已知函数,函数f (x )的图象各点的横坐标缩小为原来的6|,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}|15Q x x =-<≤P Q = i22iz =-||a = ||1b =()2a b a +⊥ cos ,a b ={}n a n S 31S ma =7m ={}n a ()21,0,2|2|,0,xx f x x x x ⎧⎛⎫⎪ ⎪=⎨⎝⎭⎪-+<⎩≥()2211cos sin cos 222222x x x x f x =-12(纵坐标不变),再向左平移个单位长度,得到函数的图象.若方程在上有两个不同的解,,则的值为A .B .C .D .π8.若关于x 不等式恒成立,则当时,的最小值为A .B .C .eD .1二.多项选择题(本大题共3小题,每小题6分,共18分。

在每小题给出的四个选项中,有多项符合题目要求。

2023-2024学年河北省邢台市部分高中高三(上)期中数学试卷【答案版】

2023-2024学年河北省邢台市部分高中高三(上)期中数学试卷【答案版】

2023-2024学年河北省邢台市部分高中高三(上)期中数学试卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2},B ={x |x <1},则如图中阴影部分所表示的集合为( )A .{1}B .{2}C .{﹣1,0}D .{1,2}2.已知(1+i )Z =2﹣4i ,则|Z |=( ) A .2 B .√10 C .4 D .103.已知a =313,b=log 213,c =log 131e ,则( )A .a >c >bB .c >a >bC .a >b >cD .c >b >a4.已知向量a →=(2,1),b →=(1,−3),(ka →−b →)⊥(a →+b →),则实数k 的值为( ) A .−94B .94C .﹣1D .15.已知函数f(x)=(m 2−m −1)x m2+m−3是幂函数,且在(0,+∞)上单调递减,若a ,b ∈R ,且a <0<b ,|a |<|b |,则f (a )+f (b )的值( ) A .恒大于0B .恒小于0C .等于0D .无法判断6.若命题“对任意的x ∈(0,+∞),x +1x−m >0恒成立”为假命题,则m 的取值范围为( )A .{m |m ≥2}B .{m |m >2}C .{m |m ≤2}D .{m |m <2}7.函数y =x−3sinxe |x|的大致图像是( )A .B .C .D .8.将函数f(x)=sin(ωx +π6)(ω>0)的图像向左平移π6个单位长度后,得到的图像关于y 轴对称,且函数f (x )在[0,π6]上单调递增,则ω的取值是( )A .12B .2C .32D .1二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)9.设等差数列{a n }的前n 项和为S n ,且S 30>0,S 31<0,则下列结论正确的是( ) A .a 15>0 B .{Sn n}是等差数列C .a 16>0D .对任意n ∈N *,都有S n ≤S 1510.设f (x )是定义在R 上的奇函数,且f (x )在(0,+∞)上单调递减,f (﹣7)=0,则( ) A .f (x )在(﹣∞,0)上单调递增 B .f (8)<0C .不等式f (x )>0的解集为(﹣∞,﹣7)∪(0,7)D .f (x )的图象与x 轴只有3个交点11.已知函数f(x)={2(x+2)2,x ≤−1|log 2(x +1)|,x >−1,若关于x 的方程f (x )=m 有四个不等实根x 1、x 2、x 3、x 4(x 1<x 2<x 3<x 4),则下列结论正确的是( ) A .1<m ≤2B .﹣3<x 1<﹣2C .﹣1≤4x 3+x 4<0D .x 12+x 22+log m √2的最小值为1012.如图,在△ABC 中,BA =BC =1,延长BC 到点D ,使得BC =CD ,以AD 为斜边向外作等腰直角三角形ADE ,则( )A .AD 2=5﹣4cos BB .sin ∠CAD ∈(12,√32)C .△ACD 面积的最大值为12D .四边形ACDE 面积的最大值为5+2√54三、填空题(共4小题,每小题5分,满分20分)13.已知函数f(x)={(a +2)x ,x ≥2a x +1,x <2是R 上的单调递增函数,则实数a 的取值范围是 .14.已知函数f(x)=1−e x1+e x ,若m >0,n >0,且f (2m )+f (n ﹣1)=f (0),则1m +2n的最小值为 .15.已知x ,y ,z ∈R ,且x ﹣2y +2z =5,则(x +5)2+(y ﹣1)2+(z +3)2的最小值是 .16.已知函数f (x ),g (x )的定义域均为R ,f (x )为奇函数,g (x +1)为偶函数,f (﹣1)=2,g (x +2)﹣f (x )=1,则∑g(i)2023i=1= .四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知数列{a n }的前n 项和为S n ,且a n ={5,n =12n +2,n ≥2.(1)求S n ; (2)若b n =1S n +1,求数列{b n }的前n 项和T n . 18.(12分)已知函数y =f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过点(4,2).(1)若f (3x ﹣1)>f (﹣x +5)成立,求x 的取值范围;(2)若对于任意x ∈[1,4],不等式f (2x )g (x4)−m <0恒成立,求实数m 的取值范围.19.(12分)已知向量a →=(√3,−sin ωx 2),b →=(sinωx ,2sin ωx2),函数f(x)=a →⋅b →+1(其中0<ω<1),函数f (x )的图象的一条对称轴是直线x =π2.(1)求ω的值;(2)若0<α<π3且f(32α)=43,求f(32α+3π8)的值.20.(12分)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cosA a+cosB b=2√3sinC 3a.(1)求角B 的大小;(2)若b =2√3,求△ABC 面积的取值范围.21.(12分)为了改善湖泊的水质,某市环保部门于2021年年终在该湖泊中投入一些浮萍,这些浮萍在水中的繁殖速度越来越快,2022年2月底测得浮萍覆盖面积为360m 2,2022年3月底测得浮萍覆盖面积为480m 2,浮萍覆盖面积y (单位:m 2)与2022年的月份x (单位:月)的关系有两个函数模型y =ka x (k >0,a >1)与y =mx 2+n (m >0)可供选择. (1)分别求出两个函数模型的解析式;(2)若2021年年终测得浮萍覆盖面积为200m 2,从上述两个函数模型中选择更合适的一个模型,试估算至少到哪一年的几月底浮萍覆盖面积能超过8100m 2?(参考数据:lg 2≈0.30,lg 3≈0.48) 22.(12分)已知{a n }是等差数列,a 2+a 5=16,a 5﹣a 3=4.(Ⅰ)求{a n }的通项公式及∑ 2n−1i=2n−1a i (n ∈N *);(Ⅱ)设{b n}是等比数列,且对于任意的k∈N*,当2k﹣1≤n≤2k﹣1时,b k<a n<b k+1.(i)当k≥2时,求证:2k﹣1<b k<2k+1;(ii)求{b n}的通项公式及前n项和.2023-2024学年河北省邢台市部分高中高三(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2},B ={x |x <1},则如图中阴影部分所表示的集合为( )A .{1}B .{2}C .{﹣1,0}D .{1,2}解:阴影部分表示的集合为A ∩∁R B ,又∁R B ={x |x ≥1},所以A ∩∁R B ={1,2}. 故选:D .2.已知(1+i )Z =2﹣4i ,则|Z |=( ) A .2B .√10C .4D .10解:(1+i )Z =2﹣4i ,则Z =2−4i 1+i =(2−4i)(1−i)(1+i)(1−i)=−1﹣3i ,故|Z |=√(−1)2+(−3)2=√10. 故选:B . 3.已知a =313,b=log 213,c =log 131e ,则( )A .a >c >bB .c >a >bC .a >b >cD .c >b >a解:因为函数y =3x 为单调递增函数, 所以a =313>30=1,即a >1; 因为y =log 2x 为单调递增函数, 所以b =log 213<log 21=0,即b <0;因为y =log 13x 单调递减,所以log 131<log 131e <log 1313,即0<c <1, 故a >c >b . 故选:A .4.已知向量a →=(2,1),b →=(1,−3),(ka →−b →)⊥(a →+b →),则实数k 的值为( )A .−94B .94C .﹣1D .1解:a →=(2,1),b →=(1,−3),则ka →−b →=(2k −1,k +3),a →+b →=(3,−2), (ka →−b →)⊥(a →+b →),则3(2k ﹣1)﹣2(k +3)=0,解得k =94.故选:B .5.已知函数f(x)=(m 2−m −1)x m2+m−3是幂函数,且在(0,+∞)上单调递减,若a ,b ∈R ,且a <0<b ,|a |<|b |,则f (a )+f (b )的值( ) A .恒大于0B .恒小于0C .等于0D .无法判断解:由m 2﹣m ﹣1=1得m =2或m =﹣1, m =2时,f (x )=x 3在R 上是增函数,不合题意,m =﹣1时,f (x )=x ﹣3,在(0,+∞)上是减函数,满足题意,所以f (x )=x ﹣3,a <0<b ,|a |<|b |,则b >﹣a >0,f (﹣a )>f (b ), f (x )=﹣x 3是奇函数,因此f (﹣a )=﹣f (a ), 所以﹣f (a )>f (b ),即f (a )+f (b )<0. 故选:B .6.若命题“对任意的x ∈(0,+∞),x +1x−m >0恒成立”为假命题,则m 的取值范围为( )A .{m |m ≥2}B .{m |m >2}C .{m |m ≤2}D .{m |m <2}解:当原命题为真时,m <x +1x恒成立,即y =x +1x ≥2√x ×1x =2,m <(x +1x)min =2, 则当命题为假命题时,m ≥2, 所以m 的取值范围为{m |m ≥2}. 故选:A . 7.函数y =x−3sinxe |x|的大致图像是( )A .B .C .D .解:设f(x)=y =x−3sinxe |x|,x ∈R , 由f(−x)=−x+3sinxe |x|=−f(x),得f (x )为奇函数,故B ,D 错误;由f(π2)=π2−3sin π2e |π2|=π2−3e π2<0,故A 正确,C 错误.故选:A .8.将函数f(x)=sin(ωx +π6)(ω>0)的图像向左平移π6个单位长度后,得到的图像关于y 轴对称,且函数f (x )在[0,π6]上单调递增,则ω的取值是( )A .12B .2C .32D .1解:f(x)=sin(ωx +π6)的图像向左平移π6个单位长度后,得到g(x)=sin(ωx +π6ω+π6)的图象.因为g(x)=sin(ωx +π6ω+π6)关于y 轴对称,所以π6ω+π6=π2+kπ,k ∈Z ,解得ω=2+6k ,k ∈Z .因为ω>0,故当x ∈[0,π6]时,ωx +π6∈[π6,ωπ6+π6],因为函数f (x )在[0,π6]上单调递增,所以ωπ6+π6∈(π6,π2],解得ω∈(0,2].故ω=2+6k ∈(0,2],解得k ∈(−13,0].因为k ∈Z ,所以k =0,故ω=2. 故选:B .二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)9.设等差数列{a n }的前n 项和为S n ,且S 30>0,S 31<0,则下列结论正确的是( ) A .a 15>0 B .{Sn n}是等差数列C .a 16>0D .对任意n ∈N *,都有S n ≤S 15解:设等差数列{a n } 的公差为d , 则S n =na 1+n(n−1)d2,得S n n =a 1+(n−1)d 2, 所以S n+1n+1−S n n=a 1+nd 2−a 1−(n−1)d 2=d 2,所以{Sn n } 是以a 1为首项,d 2为公差的等差数列,选项B 正确;S 31=31(a 1+a 31)2=31a 16<0,即a 16<0,选项C 错误;S 30=30(a 1+a 30)2=15(a 15+a 16)>0,由于a 16<0,所以a 15>0,A 正确;因为a 15>0,a 16<0,所以当n =15 时,S n 取得最大值,故对任意n ∈N *,恒有S n ≤S 15,选项D 正确. 故选:ABD .10.设f (x )是定义在R 上的奇函数,且f (x )在(0,+∞)上单调递减,f (﹣7)=0,则( ) A .f (x )在(﹣∞,0)上单调递增 B .f (8)<0C .不等式f (x )>0的解集为(﹣∞,﹣7)∪(0,7)D .f (x )的图象与x 轴只有3个交点解:函数f (x )是定义在R 上的奇函数,且f (x )在(0,+∞)上单调递减, 函数f (x )在(﹣∞,0)上单调递减,A 错误;由f (﹣7)=0,得f (7)=0,则f (8)<f (7)=0,B 正确;当x <0时,f (x )>f (﹣7),则x <﹣7,当x >0时,f (x )>f (7),则0<x <7, 因此不等式f (x )>0的解集为(﹣∞,﹣7)∪(0,7),C 正确; 当x <0时,函数f (x )的图象交x 轴于点(﹣7,0), 当x >0时,函数f (x )的图象交x 轴于点(7,0),而f (0)=0,则点(0,0)是函数f (x )的图象与x 轴的公共点, 所以f (x )的图象与x 轴只有3个交点,D 正确. 故选:BCD .11.已知函数f(x)={2(x+2)2,x ≤−1|log 2(x +1)|,x >−1,若关于x 的方程f (x )=m 有四个不等实根x 1、x 2、x 3、x 4(x 1<x 2<x 3<x 4),则下列结论正确的是( ) A .1<m ≤2B .﹣3<x 1<﹣2C .﹣1≤4x 3+x 4<0D .x 12+x 22+log m √2的最小值为10解:作出函数f(x)={2(x+2)2,x ≤−1|log 2(x +1)|,x >−1的图象如下图所示:根据图象知:f(﹣1)=2,f(﹣2)=1,因为直线y=m与函数f(x)的图象有四个交点,则1<m≤2,故A正确;对于B选项,由图可知x1<﹣2,由f(x1)=2(x1+2)2∈(1,2],可得0<(x1+2)2≤1,所以﹣3≤x1<﹣2,故B错误;对于C选项,由图可知﹣1<x3<0<x4,则0<x3+1<1<x4+1,由f(x3)=f(x4),得|log2(x3+1)|=|log2(x4+1)|,即﹣log2(x3+1)=log2(x4+1),所以x4+1=1x3+1,化简得到x4=1x3+1−1.由f(x3)=﹣log2(x3+1)∈(1,2],可得14≤x3+1<12,所以4x3+x4=4x3+1x3+1−1=4(x3+1)+1x3+1−5,由双勾函数的单调性可知g(x)=4x+1x在[14,12)上单调递减,所以4(x3+1)+1x3+1−5>4×12+2−5=−1,且4(x3+1)+1x3+1−5≤4×14+4−5=0,当x3=−34时取等号,所以﹣1<4x3+x4≤0,故C错误;由2(x+2)2=m,可得x2+4x+4﹣log2m=0,所以x1、x2为方程x2+4x+4﹣log2m=0的两根,由根与系数的关系可得{x1+x2=−4x1x2=4−log2m,所以x12+x22+log m√2=(x1+x2)2−2x1x2+log m√2=16−8+2log2m+12log m2=2log2m+12log2m+8≥2√2log2m×12log2m+8=10,当且仅当2log2m=12log2m时,即当m=√2时等号成立,故D正确.故选:AD.12.如图,在△ABC中,BA=BC=1,延长BC到点D,使得BC=CD,以AD为斜边向外作等腰直角三角形ADE ,则( )A .AD 2=5﹣4cos BB .sin ∠CAD ∈(12,√32)C .△ACD 面积的最大值为12D .四边形ACDE 面积的最大值为5+2√54解:在△ABD 中,由余弦定理得AD 2=AB 2+BD 2−2AB ⋅BDcosB =5−4cosB ,A 正确;∠ACB =∠CAB =π−B 2,∠ACD =π−∠ACB =π2+B 2∈(π2,π),则∠CAD ∈(0,π2),所以sin ∠CAD ∈(0,1),B 错误;易得S △CAD =12S △BAD 当BA ⊥CD 时,S △BAD S △ACD 取最大值12,C 正确;S 四边形ACDE =S △ADE +S △ACD =S △ADE +S △ABC =AD 24+12sinB=54−cosB +12sinB =54+√12+(12)2sin(B −φ)≤54+√12+(12)2=5+2√54,其中sinφ=2√55,cosφ=√55,D 正确. 故选:ACD .三、填空题(共4小题,每小题5分,满分20分)13.已知函数f(x)={(a +2)x ,x ≥2a x+1,x <2是R 上的单调递增函数,则实数a 的取值范围是 (1,3] .解:函数f (x )是R 上的增函数,则f (x )在[2,+∞)上单调递增, 故a +2>0⇒a >﹣2,f (x )在(﹣∞,2)上单调递增,则a >1, 且在x =2处,有a 2+1≤2(a +2)⇒﹣1≤a ≤3, 所以a 的取值范围是(1,3]. 故答案为:(1,3].14.已知函数f(x)=1−e x 1+e x ,若m >0,n >0,且f (2m )+f (n ﹣1)=f (0),则1m +2n 的最小值为 8 .解:因为f(x)=1−e x1+e x的定义域为R ,关于(0,0)对称,且f(−x)=1−e −x1+e −x =e x −1e x1+e xe x =e x −11+e x=−f(x),即函数f (x )为奇函数, 又因为f(0)=1−e 01+e 0=0,所以f (2m )+f (n ﹣1)=f (0)=0, 即2m +(n ﹣1)=0,所以2m +n =1,则1m +2n =(1m +2n )(2m +n)=n m +4m n +4≥2√n m ⋅4m n +4=8, 当且仅当{n m =4m n 2m +n =1时,即{m =14n =12,取等号. 所以1m +2n的最小值为8. 故答案为:8.15.已知x ,y ,z ∈R ,且x ﹣2y +2z =5,则(x +5)2+(y ﹣1)2+(z +3)2的最小值是 36 .解:由于[(x +5)2+(y ﹣1)2+(z +3)2][(12+(﹣2)2+22)]≥[(x +5)+(﹣2)(y ﹣1)+2(z +3)]2 =324,则(x +5)2+(y ﹣1)2+(z +3)2≥36(当且仅当x+51=y−1−2=z+32,即{x =−3y =−3z =1时取等号. 故答案为:3616.已知函数f (x ),g (x )的定义域均为R ,f (x )为奇函数,g (x +1)为偶函数,f (﹣1)=2,g (x +2)﹣f (x )=1,则∑g(i)2023i=1= 2023 .解:因为f (x )为奇函数,所以f (﹣x )=﹣f (x ),因为g (x +1)为偶函数,所以g (﹣x +1)=g (x +1),所以g (x +2)=g (﹣x ),g (﹣x +2)=g (x ),又因为g (x +2)﹣f (x )=1,所以g (x +2)=f (x )+1,①所以g (﹣x +2)=f (﹣x )+1,所以g (x )=﹣f (x )+1,②①+②得g (x +2)+g (x )=2,所以g (x +4)+g (x +2)=2,所以g (x +4)=g (x ),又因为g (1)+g (3)=g (2)+g (4)=2,g (2)=f (0)+1=0+1=1,所以∑g(i)2023i=1=505×[g (1)+g (2)+g (3)+g (4)]+g (1)+g (2)+g (3),=505×4+2+1=2023.故答案为:2023.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知数列{a n }的前n 项和为S n ,且a n ={5,n =12n +2,n ≥2. (1)求S n ;(2)若b n =1S n +1,求数列{b n }的前n 项和T n . 解:(1)当n ≥2时,S n =5+(n−1)(6+2n+2)2=5+(n −1)(n +4)=n 2+3n +1. 当n =1时,S 1=a 1=5,也适合上式.故S n =n 2+3n +1.(2)由(1)可得b n =1n 2+3n+2=1(n+1)(n+2)=1n+1−1n+2, 则T n =b 1+b 2+⋯+b n =(12−13)+(13−14)+⋯+(1n+1−1n+2)=12−1n+2=n 2n+4. 18.(12分)已知函数y =f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过点(4,2).(1)若f (3x ﹣1)>f (﹣x +5)成立,求x 的取值范围;(2)若对于任意x ∈[1,4],不等式f (2x )g (x 4)−m <0恒成立,求实数m 的取值范围. 解:∵g (4)=log a 4=2,∴a 2=4,解得a =2,∴g (x )=log 2x ,由已知得f (x )=lo g 12x ,即f (x )=﹣log 2x .(1)∵f (x )=lo g 12x 在(0,+∞)上单调递减,∴{3x −1>0,−x +5>0,3x −1<−x +5,解得13<x <32, ∴x 的取值范围为(13,32). (2)∵f (2x )g (x 4)−m <0, ∴m >f (2x )g (x 4)对于任意x ∈[1,4]恒成立等价于m >(f(2x)g(x 4))max . ∵y =f (2x )g (x 4)=−log 22x log 2x 4=−(1+log 2x )(log 2x ﹣2)=﹣(log 2x )2+log 2x +2, 令u =log 2x ,1≤x ≤4,则u ∈[0,2],∴y =﹣u 2+u +2=−(u −12)2+94, 当u =12,即log 2x =12,即x =√2时,y max =94, ∴实数m 的取值范围是m >94. 即m ∈(94,+∞). 19.(12分)已知向量a →=(√3,−sin ωx 2),b →=(sinωx ,2sin ωx 2),函数f(x)=a →⋅b →+1(其中0<ω<1),函数f (x )的图象的一条对称轴是直线x =π2. (1)求ω的值;(2)若0<α<π3且f(32α)=43,求f(32α+3π8)的值. 解:(1)已知向量a →=(√3,−sin ωx 2),b →=(sinωx ,2sin ωx 2), 则f(x)=a →⋅b →+1=√3sinωx −2sin 2ωx 2+1=√3sinωx +cosωx =2sin(ωx +π6), ∵函数f (x )的图象的一条对称轴是直线x =π2, ∴π2ω+π6=kπ+π2,k ∈Z , 得ω=23+2k ,k ∈Z , ∵0<ω<1,∴ω=23; (2)由(1)可得f(x)=2sin(23x +π6), 由f(32α)=43得2sin(α+π6)=43, 即sin(α+π6)=23, 结合0<α<π3, 则π6<α+π6<π2, 得cos(α+π6)=√1−sin 2(α+π6)=√53, ∴f(32α+3π8)=2sin[(α+π6)+π4]=2sin(α+π6)cos π4+2cos(α+π6)sin π4=2×23×√22+2×√53×√22=2√2+√103.20.(12分)在锐角三角形ABC中,内角A,B,C的对边分别为a,b,c,且cosAa+cosBb=2√3sinC3a.(1)求角B的大小;(2)若b=2√3,求△ABC面积的取值范围.解:(1)由已知条件得bcosA+acosB=2√33bsinC,由正弦定理得sinBcosA+cosBsinA=2√33sinBsinC,即sin(A+B)=2√33sinBsinC,因为在△ABC中,sin(A+B)=sin C≠0,所以sinB=√32,又B是锐角,所以B=π3.(2)由正弦定理得asinA=csinC=bsinB=√3√32=4,则a=4sin A,c=4sin C,所以S△ABC=√34ac=4√3sinAsinC=4√3sin(π3+C)sinC=4√3(√32cosC+12sinC)sinC=6sinCcosC+2√3sin2C=2√3sin(2C−π6)+√3,由0<C<π2,0<2π3−C<π2,得π6<C<π2,所以π6<2C−π6<5π6,所以sin(2C−π6)∈(12,1],所以2√3sin(2C−π6)+√3∈(2√3,3√3],所以△ABC面积的取值范围为(2√3,3√3].21.(12分)为了改善湖泊的水质,某市环保部门于2021年年终在该湖泊中投入一些浮萍,这些浮萍在水中的繁殖速度越来越快,2022年2月底测得浮萍覆盖面积为360m2,2022年3月底测得浮萍覆盖面积为480m2,浮萍覆盖面积y(单位:m2)与2022年的月份x(单位:月)的关系有两个函数模型y=ka x (k>0,a>1)与y=mx2+n(m>0)可供选择.(1)分别求出两个函数模型的解析式;(2)若2021年年终测得浮萍覆盖面积为200m2,从上述两个函数模型中选择更合适的一个模型,试估算至少到哪一年的几月底浮萍覆盖面积能超过8100m2?(参考数据:lg2≈0.30,lg3≈0.48)解:(1)若选择模型y=ka x(k>0,a>1),则{ka 2=360ka 3=480,解得a =43,k =4052, 故函数模型为y =4052(43)x , 若选择模型y =mx 2+n (m >0),则{4m +n =3609m +n =480, 解得m =24,k =264,故函数模型为y =24x 2+264.(2)把x =0代入y =4052(43)x 可得,y =4052=202.5, 把x =0代入y =24x 2+264可得,y =264,∵202.5﹣200<264﹣200,∴选择函数模型y =4052(43)x 更合适, 令y =4052(43)x >8100,可得(43)x >40,两边取对数可得,xlg(43)>lg40, ∴x >lg4+lg10lg4−lg3=2lg2+12lg2−lg3≈2×0.3+12×0.3−0.48≈13.3, 故浮萍至少要到2023年2月底覆盖面积能超过8100m 2.22.(12分)已知{a n }是等差数列,a 2+a 5=16,a 5﹣a 3=4.(Ⅰ)求{a n }的通项公式及∑ 2n−1i=2n−1a i (n ∈N *); (Ⅱ)设{b n }是等比数列,且对于任意的k ∈N *,当2k ﹣1≤n ≤2k ﹣1时,b k <a n <b k +1. (i )当k ≥2时,求证:2k ﹣1<b k <2k +1;(ii )求{b n }的通项公式及前n 项和.解:(Ⅰ)∵{a n }是等差数列,a 2+a 5=16,a 5﹣a 3=4.∴{a 1+d +a 1+4d =2a 1+5d =16a 1+4d −a 1−2d =2d =4,得d =2,a 1=3, 则{a n }的通项公式a n =3+2(n ﹣1)=2n +1(n ∈N •),∑ 2n −1i=2n−1a i 中的首项为a i =2×2n−1+1=2n +1,项数为2n ﹣1﹣2n ﹣1+1=2n ﹣2n ﹣1=2×2n ﹣1﹣2n ﹣1=2n ﹣1,则∑ 2n −1i=2n−1a i =2n ﹣1(2n +1)+2n−1(2n−1−1)2×2=2n ﹣1(2n +1)+2n ﹣1(2n ﹣1﹣1)=2n ﹣1(2n +1+2n ﹣1﹣1)=2n ﹣1(2n +2n ﹣1)=2n ﹣1×3×2n ﹣1=3×4n ﹣1. (Ⅱ)(i )∵2k ﹣1≤n ≤2k ﹣1,∴2k ≤2n ≤2k +1﹣2,1+2k ≤2n +1≤2k +1﹣1, 即1+2k ≤a n ≤2k +1﹣1,当k ≥2时,∵b k <a n <b k +1.∴b k<1+2k,且b k+1>2k+1﹣1,即b k>2k﹣1,综上2k﹣1<b k<1+2k,故成立;(ii)∵2k﹣1<b k<2k+1成立,∵{b n}为等比数列,∴设公比为q,当k≥2时,2k+1﹣1<b k+1<2k+1+1,12k+1<1b k<12k−1,则2k+1−12k+1<b k+1b k<2k+1+12k−1,即2(2k+1)−32k+1<b k+1b k<2(2k−1)+32k−1,即2−32k+1<q<2+32k−1,当k→+∞,2−32k+1→2,2+32k−1→2,∴q=2,∵k≥2时,2k﹣1<b k<2k+1,∴2k﹣1<b12k﹣1<2k+1,即2k−12k−1<b1<2k+12k−1,即2−12k−1<b1<2+12k−1,当k→+∞,2−12k−1→2,2+12k−1→2,则b1=2,则b n=2×2n﹣1=2n,即{b n}的通项公式为b n=2n,则{b n}的其前n项和T n=2(1−2n)1−2=2n+1﹣2.。

2023-2024学年江苏省淮安市、南通市部分学校高三(上)期中数学试卷【答案版】

2023-2024学年江苏省淮安市、南通市部分学校高三(上)期中数学试卷【答案版】

2023-2024学年江苏省淮安市、南通市部分学校高三(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A ={x |x 2+x ﹣6=0},B ={2,3},则A ∩B =( ) A .∅B .{2}C .{3}D .{2,3}2.已知a ∈R ,若(2+i )(1+ai )为纯虚数,则a =( ) A .−12B .12C .﹣2D .23.“a =1”是“函数f(x)=2x−a2x +a是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.学校以“布一室馨香,育满园桃李”为主题开展了系列评比活动,动员师生一起为营造舒心愉悦的学习生活环境奉献智慧.张老师特地培育了一盆绿萝放置在教室内,绿萝底部的盆近似看成一个圆台,圆台的上、下底面半径之比为3:2,母线长为10cm ,其母线与底面所成的角为60°,则这个圆台的体积为( )A .2375√33πcm 3B .4750√33πcm 3C .7125√33πcm 3 D .9500√33πcm 35.已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π2),现有如下四个命题: 甲:该函数图象的相邻两条对称轴之间的距离为π2;乙:该函数图象可以由y =cos2x −√3sin2x 的图象向右平移π4个单位长度得到;丙:该函数在区间(−π12,π6)上单调递增; 丁:该函数满足f(π3+x)+f(π3−x)=0. 如果只有一个假命题,那么该命题是( )A .甲B .乙C .丙D .丁6.已知奇函数f (x )的图象关于直线x =1对称,当x ∈[0,1]时,f (x )=2x +b ,则f(20232)=( ) A .−1−√2B .1−√2C .√2+1D .√2−17.若sin(α+π6)=35,则sin(2α+5π6)=( ) A .−725B .−1625C .725D .16258.已知函数f (x )=x 3+ax 2+bx +c (a ,b ,c ∈R ),若不等式f (x )<0的解集为{x |x <m +1且x ≠m },则函数f (x )的极小值是( ) A .−14B .0C .−427D .−49二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD ﹣A 1B 1C 1D 1中,M ,N 分别为CC 1,A 1D 1的中点,则( ) A .BM ∥AD 1 B .AM ⊥BDC .B 1M ⊥平面ABND .MN ∥平面A 1BD10.设a >b >0,c ∈R ,则( ) A .a |c |>b |c | B .ba≤b+c 2a+c 2C .a 2−b 2<1a−1bD .a +b <√2(a 2+b 2)11.已知数列{a n }满足a 4=4,a n a n +1=2n (n ∈N *),则( ) A .a 1=1B .数列{a n }为递增数列C .a 1+a 2+…+a 2023=21013﹣3D .1a 1+1a 2+⋯+1a n<312.已知函数f (x )=a 2x ﹣x (a >0,a ≠1),则下列结论中正确的是( ) A .函数f (x )恒有1个极值点B .当a =e 时,曲线y =f (x )恒在曲线y =lnx +2上方C .若函数f (x )有2个零点,则1<a <e 12eD .若过点P (0,t )存在2条直线与曲线y =f (x )相切,则0<t <1 三、填空题:本题共4小题,每小题5分,共20分.13.已知向量a →=(λ,1),b →=(−1,2),若a →与b →共线,则|a →−b →|= . 14.写出一个同时满足下列两个性质的函数:f (x )= . ①f (x 1+x 2)=f (x 1)•f (x 2);②∀x ∈R ,f ′(x )<0.15.咖啡适度饮用可以提神醒脑、消除疲劳,让人精神振奋.冲咖啡对水温也有一定的要求,把物体放在空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,经过t 分钟后物体的温度为θ℃满足θ=θ0+(θ1−θ0)e −0.08t .研究表明,咖啡的最佳饮用口感会出现在65℃.现有一杯85℃的热水用来冲咖啡,经测量室温为25℃,那么为了获得最佳饮用口感,从冲咖啡开始大约需要等待 分钟.(结果保留整数)(参考数据:ln 2≈0.7,ln 3≈1.1,ln 11≈2.4)16.在平面四边形ABCD 中,AB =AD =√2,BC =CD =1,BC ⊥CD ,将四边形沿BD 折起,使A ′C =√3,则四面体A ′﹣BCD 的外接球O 的表面积为 ;若点E 在线段BD 上,且BD =3BE ,过点E 作球O 的截面,则所得的截面中面积最小的圆的半径为 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知函数f(x)=(1−2sin 2x)sin2x +12cos4x . (1)求f (x )的最大值及相应x 的取值集合;(2)设函数g (x )=f (ωx )(ω>0),若g (x )在区间 (0,π2) 上有且仅有1个极值点,求ω的取值范围.18.(12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且tan A +tan B =−√3cacosB.(1)求角A ;(2)已知a =7,D 是边BC 的中点,且AD ⊥AB ,求AD 的长. 19.(12分)已知数列{a n }中,a 1=1,a n+1n+1−a n n=1n(n+1),n ∈N ∗.(1)求数列{a n }的通项公式; (2)设b n =(﹣1)n﹣14na n a n+1,求数列{b n }的前n 项和S n .20.(12分)已知函数f (x )=ax ﹣a ﹣lnx .(1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)证明:当a =1时,f (x )≥0;(3)设m 为整数,若对于∀n ∈N ∗,(1+13)(1+232)(1+2233)⋯(1+2n−13n )<m 成立,求m 的最小值.21.(12分)如图,AB 是半球O 的直径,AB =4,M ,N 是底面半圆弧AB ̂上的两个三等分点,P 是半球面上一点,且∠PON =60°. (1)证明:PB ⊥平面P AM ;(2)若点P 在底面圆内的射影恰在ON 上,求直线PM 与平面P AB 所成角的正弦值.22.(12分)已知函数f(x)=1+lnx.x(1)讨论f(x)的单调性;(2)设a,b为两个不相等的实数,且ae b﹣be a=e a﹣e b,证明:e a+e b>2.2023-2024学年江苏省淮安市、南通市部分学校高三(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A ={x |x 2+x ﹣6=0},B ={2,3},则A ∩B =( ) A .∅B .{2}C .{3}D .{2,3}解:A ={x |x 2+x ﹣6=0}={﹣3,2},故A ∩B ={2}. 故选:B .2.已知a ∈R ,若(2+i )(1+ai )为纯虚数,则a =( ) A .−12B .12C .﹣2D .2解:(2+i )(1+ai )=2﹣a +(1+2a )i , 因为a ∈R ,且(2+i )(1+ai )为纯虚数, 所以{2−a =01+2a ≠0,解得a =2.故选:D .3.“a =1”是“函数f(x)=2x−a2x +a是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:若a =1,则f(x)=2x−12x +1,f(−x)=12x −112x +1=1−2x 1+2x =−2x−12x +1=−f(x),所以f (x )是奇函数; 若函数f(x)=2x−a2x +a在其定义域上为奇函数,可得f(−x)=12x −a 12x +a =1−a⋅2x 1+a⋅2x =−f(x)=−2x −a 2x +a =a−2x2x +a, 解得a =±1,∴a =1是函数f(x)=2x−a2x +a在其定义域上为奇函数的充分不必要条件.故选:A .4.学校以“布一室馨香,育满园桃李”为主题开展了系列评比活动,动员师生一起为营造舒心愉悦的学习生活环境奉献智慧.张老师特地培育了一盆绿萝放置在教室内,绿萝底部的盆近似看成一个圆台,圆台的上、下底面半径之比为3:2,母线长为10cm ,其母线与底面所成的角为60°,则这个圆台的体积为( )A .2375√33πcm 3B .4750√33πcm 3C .7125√33πcm 3 D .9500√33πcm 3解:根据题意,设圆台的上、下底面半径分别为3x ,2x , 因为母线长为10,且母线与底面所成的角为60°, 所以圆台的高为10sin60°=5√3,并且x =10×12=5,所以圆台的上底面半径为3x =15,下底面半径为2x =10,高为5√3. 由此可得圆台的体积为V =13π(152+102+15×10)×5√3=2375√3π3(cm 3). 故选:A .5.已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π2),现有如下四个命题: 甲:该函数图象的相邻两条对称轴之间的距离为π2;乙:该函数图象可以由y =cos2x −√3sin2x 的图象向右平移π4个单位长度得到;丙:该函数在区间(−π12,π6)上单调递增; 丁:该函数满足f(π3+x)+f(π3−x)=0. 如果只有一个假命题,那么该命题是( ) A .甲B .乙C .丙D .丁 解:对于甲,该f (x )图象的相邻两条对称轴之间的距离为T 2=πω=π2,则f (x )的周期T =π;对于乙,将函数y =cos2x −√3sin2x =2cos(2x +π3)的图象向右平移 π4个单位长度,得到y =2cos[2(x −π4)+π3]=2sin(2x +π3) 的图象;对于丙,函数f(x)在区间(−π12,π6)上单调递增;对于丁,函数f(x)满足f(π3+x)+f(π3−x)=0,即f(x)图象关于(π3,0)对称.因为只有乙的条件最具体,所以从乙入手,若乙正确,此时f(x)的单调递增区间为[−5π12+kπ,π12+kπ](k∈Z),与丙的结论矛盾,根据题设“只有一个命题是假命题”,可知这一个假命题只能是乙或丙,若丙是真命题,则甲、丙、丁三个是真命题,由f(x)图象关于(π3,0)对称,且周期为π,可知:在点(π3,0)的左侧且距离最近的f(x)图象的对称轴为x=π12,而π12∈(−π12,π6),说明f(x)在区间(−π12,π6)上不单调,与丙是真命题矛盾.若乙是真命题,则甲、乙、丁三个都是真命题,此时f(x)=2sin(2x+π3),最小正周期T=π,且图象关于(π3,0)对称,甲、乙、丁之间相符合.综上所述,丙不可能是真命题,即唯一的假命题是丙.故选C.6.已知奇函数f(x)的图象关于直线x=1对称,当x∈[0,1]时,f(x)=2x+b,则f(20232)=()A.−1−√2B.1−√2C.√2+1D.√2−1解:因为f(x)为奇函数,且当x∈[0,1]时,f(x)=2x+b,所以f(0)=1+b=0,解得:b=﹣1,即当x∈[0,1]时,f(x)=2x﹣1,又因为f(x)的图象关于直线x=1对称,所以f(x)=f(2﹣x),且f(x)=﹣f(﹣x)则f(x)=f(2﹣x)=﹣f(x﹣2)=﹣f[2﹣(x﹣2)]=﹣f(4﹣x)=f(x﹣4),即函数f(x)是以4为周期的周期函数,故f(20232)=f(252×4+72)=f(72−4)=f(−12)=−f(12)=1−√2.故选:B.7.若sin(α+π6)=35,则sin(2α+5π6)=()A.−725B.−1625C.725D.1625解:∵sin(α+π6)=35,∴sin(2α+5π6)=sin(2α+π3+π2)=cos(2α+π3)=1−2sin2(α+π6)=1−2×(35)2=725.故选:C.8.已知函数f(x)=x3+ax2+bx+c(a,b,c∈R),若不等式f(x)<0的解集为{x|x<m+1且x≠m},则函数f(x)的极小值是()A.−14B.0C.−427D.−49解:因为不等式f(x)<0的解集为{x|x<m+1且x≠m},所以f(m)=f(m+1)=0,且x=m为f(x)=0的二重根,所以f(x)=(x﹣m)2[x﹣(m+1)],则f′(x)=2(x﹣m)[x﹣(m+1)]+(x﹣m)2=(x﹣m)(3x﹣3m﹣2),则当x>3m+23或x<m时f′(x)>0,当m<x<3m+23时f′(x)<0,所以f(x)在(3m+23,+∞),(﹣∞,m)上单调递增,在(m,3m+23)上单调递减,所以f(x)在x=3m+23处取得极小值,即f(x)极小值=f(3m+23)=(3m+23−m)2[3m+23−(m+1)]=−427.故选:C.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD﹣A1B1C1D1中,M,N分别为CC1,A1D1的中点,则()A.BM∥AD1B.AM⊥BDC.B1M⊥平面ABN D.MN∥平面A1BD解:对于选项A:连接BC1,则BC1∥AD1,又BC1∩BM=B,所以BM∥AD1不正确,故选项A不正确;对于选项B:在正方体中,BD⊥AA1,BD⊥AC且AA1∩AC=A,AA1⊂平面AA1C1C,AC⊂平面AA1C1C,所以BD⊥平面AA1C1C,又AM⊂平面AA1C1C,所以AM⊥BD,故选项B正确;对于选项C:在正方体中,AB⊥平面B1BCC1,又B1M⊂平面B1BCC1,所以AB⊥B1M,取B1C1的中点Q,连接BQ,在正方形BCC1B1中(如图),△BB1Q≅△B1C1M,∠BQB1=∠B1MC1,又∠B1MC1+∠MB1C1=90°,所以∠B1QB+∠MB1C1=90°,所以B1M⊥BQ,又在正方体中,AN∥BQ,所以B1M⊥AN,又AN∩AB=A,所以B1M⊥平面ABN,故选项C正确;对于选项D:取A1D的中点E,连接EN,EC,则EN∥AA1,且EN=1AA1,2所以EN∥MC,且EN=MC,故四边形NECM为平行四边形,则MN∥EC,又EC与平面A1BD相交于点E,所以MN不可能与平面A1BD平行,故选项D不正确.故选:BC .10.设a >b >0,c ∈R ,则( ) A .a |c |>b |c | B .ba≤b+c 2a+c 2C .a 2−b 2<1a−1bD .a +b <√2(a 2+b 2)解:选项A .当c =0时,a |c |>b |c |不成立,故选项A 不正确. 选项B .由b+c 2a+c 2−b a=(b+c 2)a−b(a+c 2)a(a+c 2)=c 2(a−b)a(a+c 2)>0,所以ba≤b+c 2a+c 2,故选项B 正确.选项C .由 a 2−b 2−(1a−1b)=(a −b)(a +b)−b−a ab =(a −b)(a +b +1ab)>0, 所以a 2−b 2>1a−1b,故选项C 不正确.选项D .由[√2(a 2+b 2)]2−(a +b)2=a 2+b 2−2ab =(a −b)2>0,所以a +b <√2(a 2+b 2),故选项D 正确. 故选:BD .11.已知数列{a n }满足a 4=4,a n a n +1=2n (n ∈N *),则( ) A .a 1=1B .数列{a n }为递增数列C .a 1+a 2+…+a 2023=21013﹣3D .1a 1+1a 2+⋯+1a n<3解:依题意,a 4=4,a n a n+1=2n,a n =2na n+1,a n+1=2na n,所以a 3=23a 4=84=2,a 2=22a 3=42=2,a 1=21a 2=22=1,A 选现正确.所以a 3=a 2,所以B 选项错误. 由a n a n+1=2n 得a n+1a n+2=2n+1,两式相除得a n+2a n=2,所以数列{a n }的奇数项是首项为1,公比为2的等比数列;偶数项是首项为2,公比为2的等比数列.a 1+a 2+⋯+a 2023=(a 1+a 3+⋯+a 2023)+(a 2+a 4+⋯+a 2022)=1(1−21012)1−2+2(1−21011)1−2=21012−1+21012−2=21013−3,所以C 选项正确.由上述分析可知,数列{1a n}的奇数项是首项为1,公比为12的等比数列;偶数项是首项为12,公比为12的等比数列. 当n 为偶数时,1a 1+1a 2+⋯+1a n=(1a 1+1a 3+⋯+1a n−1)+(1a 2+1a 4+⋯+1a n),=1(1−12n 2)1−12+12(1−12n 2)1−12=3−32n 2<3;当n 为奇数时,1a 1+1a 2+⋯+1a n =(1a 1+1a 3+⋯+1a n)+(1a 2+1a 4+⋯+1a n−1),=1(1−12n+12)1−12+12(1−12n−12)1−12=3−22n+12−12n−12<3, 综上所述,1a 1+1a 2+⋯+1a n<3,所以D 选项正确.故选:ACD .12.已知函数f (x )=a 2x ﹣x (a >0,a ≠1),则下列结论中正确的是( ) A .函数f (x )恒有1个极值点B .当a =e 时,曲线y =f (x )恒在曲线y =lnx +2上方C .若函数f (x )有2个零点,则1<a <e 12eD .若过点P (0,t )存在2条直线与曲线y =f (x )相切,则0<t <1 解:f (x )=a 2x ﹣x (a >0,a ≠1),f ′(x )=2a 2x lna ﹣1,对于A :因为a 2x >0恒成立,所以当a ∈(0,1)时,f ′(x )<0,此时f (x )单调递减, 所以此时不存在极值点,A 错误;对于B :当a =e 时,f (x )=e 2x ﹣x ,令g (x )=f (x )﹣(lnx +2)=e 2x ﹣x ﹣lnx ﹣2, 下面先证明:e x ≥x +1和lnx ≤x ﹣1,令f 1(x)=e x −x −1,则f 1′(x)=e x −1>0⇒x >0,所以f 1(x )在(﹣∞,0)单调递减,在(0,+∞)单调递增,所以f 1(x )≥f 1(0)=0,所以e x ≥x +1,当且仅当x =0时,取到等号; 令f 2(x )=lnx ﹣x +1,则f 2′(x)=1x −1>0⇒0<x <1, 所以f 2(x )在(0,1)单调递增,在(1,+∞)单调递减,所以f 2(x )≤f 2(1)=0,所以lnx ≤x ﹣1,当且仅当x =1时,取到等号, 由上结论可得:e 2x ≥2x +1,﹣lnx ≥﹣x +1,因为不能同时取等,所以两式相加可得:e 2x ﹣lnx >x +2, 即e 2x ﹣lnx ﹣x ﹣2>0恒成立,即g (x )>0恒成立, 所以y =f (x )恒在曲线y =lnx +2上方,B 正确;对于C :函数f (x )有2个零点等价于方程a 2x ﹣x =0有两个根, 即a 2x =x ⇒lna 2x =lnx ⇒2xlna =lnx ⇒2lna =lnxx有两个根, 令ℎ(x)=lnxx ,则ℎ′(x)=1−lnxx 2<0⇒x >e , 所以h (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,所以ℎ(x)max =ℎ(e)=1e ,当x →0时,h (x )→﹣∞,当x →+∞时,h (x )→0, 所以要使得2lna =lnx x 有两个根,则2lna ∈(0,1e), 所以0<lna <12e⇒1<a <e 12e ,所以C 正确;对于D :设切点坐标为(x 0,a 2x 0−x 0),则k =f ′(x 0)=2a 2x 0lna −1,又因为切线经过点P (0,t ),所以k =a 2x 0−x 0−tx 0, 所以2a2x 0lna −1=a 2x 0−x 0−tx 0,解得t =a 2x 0−a 2x 0lna 2x 0,令m =a 2x 0,则m ∈(0,+∞),所以t =m ﹣mlnm , 因为过点P (0,t )存在2条直线与曲线y =f (x )相切, 所以方程t =m ﹣mlnm 有两个不同的解,令φ(m )=m ﹣mlnm ,则φ′(m )=﹣lnm >0⇒0<m <1, 所以φ(m )在(0,1)上单调递增,在(1,+∞)上单调递减,所以φ(m )max =φ(1)=1,当m →0时,φ(m )→0,当m →+∞时,φ(m )→﹣∞, 所以要使得方程t =m ﹣mlnm 有两个根,则t ∈(0,1),D 正确. 故选:BCD .三、填空题:本题共4小题,每小题5分,共20分.13.已知向量a →=(λ,1),b →=(−1,2),若a →与b →共线,则|a →−b →|=√52. 解:由于a →与b →共线,所以λ×2=1×(−1),λ=−12,a →=(−12,1),a →−b →=(−12,1)−(−1,2)=(12,−1), 所以|a →−b →|=√14+1=√52.故答案为:√52. 14.写出一个同时满足下列两个性质的函数:f (x )= a x (0<a <1)(答案不唯一) . ①f (x 1+x 2)=f (x 1)•f (x 2); ②∀x ∈R ,f ′(x )<0.解:由性质②,f(x)是R上的减函数,且满足性质①f(x1+x2)=f(x1)•f(x2),可以是指数函数,所以函数f(x)=a x(0<a<1)符合题意.故答案为:a x(0<a<1)(答案不唯一).15.咖啡适度饮用可以提神醒脑、消除疲劳,让人精神振奋.冲咖啡对水温也有一定的要求,把物体放在空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,经过t分钟后物体的温度为θ℃满足θ=θ0+(θ1−θ0)e−0.08t.研究表明,咖啡的最佳饮用口感会出现在65℃.现有一杯85℃的热水用来冲咖啡,经测量室温为25℃,那么为了获得最佳饮用口感,从冲咖啡开始大约需要等待5分钟.(结果保留整数)(参考数据:ln2≈0.7,ln3≈1.1,ln11≈2.4)解:由题意得,65=25+(85﹣25)e﹣0.08t,即e−0.08t=2 3,所以−0.08t=ln 23,解得t=−252×(ln2−ln3)≈252×(0.7−1.1)=5,所以大约需要等待5分钟.故答案为:5.16.在平面四边形ABCD中,AB=AD=√2,BC=CD=1,BC⊥CD,将四边形沿BD折起,使A′C=√3,则四面体A′﹣BCD的外接球O的表面积为3π;若点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得的截面中面积最小的圆的半径为23.解:如图所示:因为AB=AD=√2,BC=CD=1,BC⊥CD,所以BE=CE=DE=√22,AE=√AD2−DE2=√(√2)2−(√22)2=√62,且AC⊥BD,点E为△BCD外接圆的圆心,所以四面体A′﹣BCD的外接球的球心O一定在过点E且垂直面BCD的直线上,如图不妨设GE⊥面BCD,A′F⊥面BCD,四面体A′﹣BCD的外接球的半径OE=ℎ,OB=R=√OE2+EB2=√ℎ2+12,FE=x,则由对称性可知点F也在直线CE上且A′F⊥FC,A′F=2OE=2h,由题意A ′E =AE =√62,FC =FE +EC =x +√22,A ′C =√3, 在Rt △A ′FE 中,有A ′F 2+FE 2=A ′E 2,即x 2+(2ℎ)2=32, 在Rt △A ′FC 中,有A ′F 2+FC 2=A ′C 2,即(x +√22)2+(2ℎ)2=3,联立以上两式解得x =√22,ℎ=12, 所以R =√ℎ2+12=√14+12=√32, 从而四面体A ′﹣BCD 的外接球O 的表面积为S =4πR 2=4π×(√32)2=3π;如图所示:由题意将上述第一空中的点E 用现在的点F 来代替,而现在的点E 为线段BD 的靠近点B 的三等分点, 此时过点E 作球O 的截面,若要所得的截面中面积最小,只需截面圆半径最小, 设球心到截面的距离为d ,截面半径为r ,则r =√R 2−d 2, 所以只需球心到截面的距离为d 最大即可,而当且仅当OE 与截面垂直时,球心到截面的距离为d 最大,即d max =OE , 由以上分析可知此时OO 1=FE =FB −BE =12BD −13BD =√26,OF =12,OE =√14+118=√116,R =√32,所以r =r min =√R 2−OE 2=√34−1136=23. 故答案为:3π;23.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知函数f(x)=(1−2sin 2x)sin2x +12cos4x . (1)求f (x )的最大值及相应x 的取值集合;(2)设函数g (x )=f (ωx )(ω>0),若g (x )在区间 (0,π2) 上有且仅有1个极值点,求ω的取值范围.解:(1)f(x)=(1−2sin 2x)sin2x +12cos4x =cos2x sin2x +12cos4x=12(sin4x +cos4x )=√22sin (4x +π4), 当4x +π4=π2+2k π,k ∈Z ,即x =π16+kπ2,k ∈Z 时,函数取得最大值√22,此时{x |x =π16+kπ2,k ∈Z }; (2)因为g (x )=f (ωx )=√22sin (4ωx +π4),ω>0,若g (x )在区间 (0,π2) 上有且仅有1个极值点,则极值点只能为极大值, 根据五点作图法,令4ωx +π4=π2,则x =π16ω, 令4ωx +π4=3π2,则x =5π16ω,所以{π16ω<π25π16ω≥π2ω>0解得18<ω≤58,故ω的范围为(18,58].18.(12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且tan A +tan B =−√3cacosB . (1)求角A ;(2)已知a =7,D 是边BC 的中点,且AD ⊥AB ,求AD 的长.解:(1)因为tan A +tan B =−√3cacosB ,所以sinA cosA +sinBcosB =−√3c acosB,由正弦定理得,sinAcosA +sinBcosB =−√3sinCsinAcosB ,因为sinAcosA+sinB cosB=sinAcosB+cosAsinB cosAcosB=sin(A+B)cosAcosB=sinC cosAcosB,所以sinCcosAcosB=−√3sinCsinAcosB,因为0<C <π,所以sin C ≠0, 又cos B ≠0,所以tan A =−√3, 因为0<A <π,所以A =2π3.(2)因为D 是边BC 的中点,所以BD =CD =12BC =72, 因为AD ⊥AB ,所以∠DAC =∠BAC ﹣∠BAD =2π3−π2=π6,在Rt △ABD 中,sin B =AD BD =AD 72=2AD7, 在△ACD 中,由正弦定理知,ADsinC=CD sin∠DAC,所以sin C =ADsin∠DAC CD=AD×1272=AD7, 在△ABC 中,由正弦定理知,bsinB=c sinC=a sin∠BAC=√32=√3,所以b2AD 7=cAD 7=√3,所以b =4AD 3,c =2AD3, 在△ABC 中,由余弦定理得,a 2=b 2+c 2﹣2bc cos A , 所以49=b 2+c 2﹣2bc ×cos 2π3,即b 2+c 2+bc =49, 所以(√3)2+(√3)23×3=49,解得AD =√212.19.(12分)已知数列{a n }中,a 1=1,a n+1n+1−a n n=1n(n+1),n ∈N ∗.(1)求数列{a n }的通项公式; (2)设b n =(﹣1)n ﹣14na n a n+1,求数列{b n }的前n 项和S n .解:(1)因为a n+1n+1−a n n=1n(n+1)⇒a n+1n+1−a n n=1n−1n+1⇒a n+1+1n+1=a n +1n,所以{a n +1n }是常数列,所以a n +1n =a 1+11=2,所以a n =2n ﹣1. (2)b n =(−1)n−14na n a n+1=(−1)n−14n(2n−1)(2n+1)=(−1)n−1(12n−1+12n+1),当n 为偶数时,S n =(1+13)−(13+15)+⋯+(12n−3+12n−1)−(12n−1+12n+1)=1−12n+1=2n2n+1, 当n 为奇数时,S n =(1+13)−(15+12)+⋯−(12n−3+12n−1)+(12n−1+12n+1)=1+12n+1=2n+22n+1,所以S n =2n+1+(−1)n−12n+1.20.(12分)已知函数f (x )=ax ﹣a ﹣lnx .(1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)证明:当a =1时,f (x )≥0;(3)设m 为整数,若对于∀n ∈N ∗,(1+13)(1+232)(1+2233)⋯(1+2n−13n )<m 成立,求m 的最小值.解:(1)已知f (x )=ax ﹣a ﹣lnx ,函数定义域为(0,+∞),可得f′(x)=a−1x,此时f′(1)=a﹣1,又f(1)=0,所以曲线y=f(x)在点(1,f(1))处的切线方程为y=(a﹣1)(x﹣1),即(a﹣1)x﹣y﹣a+1=0;(2)证明:当a=1时,f(x)=x﹣1﹣lnx,函数定义域为(0,+∞),可得f′(x)=1−1x=x−1x,当0<x<1时,f′(x)<0,f(x)单调递减;当x>1时,f′(x)>0,f(x)单调递增,所以当x=1时,函数f(x)取得极小值也是最小值,最小值f(1)=0,故f(x)≥0;(3)由(2)知lnx≤x﹣1,当且仅当x=1时,等号成立,令x=2n−13n+1,此时ln(1+2n−13n)<2n−13n,可得ln(1+13)+ln(1+232)+ln(1+2233)+⋯+ln(1+2n−13n)<13+232+⋯+2n−13n=13(1−2n3n)1−23=1−2n3n<1,即ln[(1+13)(1+232)(1+2233)⋯(1+2n−13n)]<1,所以(1+13)(1+232)(1+2233)⋯(1+2n−13n)<e,当n≥4时,(1+13)(1+232)(1+2233)⋯(1+2n−13n)≥(1+13)(1+232)(1+2233)(1+2334)=12139659049>2,所以对于任意n∈N*,(1+13)(1+232)(1+2233)⋯(1+2n−13n)<m成立时,整数m的最小值为3.21.(12分)如图,AB是半球O的直径,AB=4,M,N是底面半圆弧AB̂上的两个三等分点,P是半球面上一点,且∠PON=60°.(1)证明:PB⊥平面P AM;(2)若点P在底面圆内的射影恰在ON上,求直线PM与平面P AB所成角的正弦值.证明:(1)连接OM ,MN ,BM ,因为M ,N 是底面半圆弧AB ̂上的两个三等分点, 所以有∠MON =∠NOB =60°,又因为OM =ON =OB =2,所以△MON ,△NOB 都为正三角形,所以MN =NB =BO =OM ,即四边形OMNB 是菱形, 记ON 与BM 的交点为Q ,Q 为ON 和BM 的中点, 因为∠PON =60°,OP =ON , 所以三角形OPN 为正三角形, 所以PQ =√3=12BM ,所以PB ⊥PM ,因为P 是半球面上一点,AB 是半球O 的直径,所以PB ⊥P A , 因为PM ∩P A =P ,PM ,P A ⊂平面P AM , 所以PB ⊥平面P AM ;解:(2)因为点P 在底面圆内的射影恰在ON 上,由(1)知Q 为ON 的中点,△OPN 为正三角形,所以PQ ⊥ON , 所以PQ ⊥底面ABM ,因为四边形OMNB 是菱形,所以MB ⊥ON , 即MB 、ON 、PQ 两两互相垂直,以点Q 为坐标原点,QM ,QN ,QP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则O(0,−1,0),M(√3,0,0),B(−√3,0,0),N(0,1,0),A(√3,−2,0),P(0,0,√3), 所以PM →=(√3,0,−√3),OP →=(0,1,√3),OB →=(−√3,1,0),设平面P AB 的一个法向量为m →=(x ,y ,z), 则{m →⋅OP →=0m →⋅OB →=0,所以{y +√3z =0−√3x +y =0, 令x =1,则y =√3,z =﹣1,所以m →=(1,√3,−1), 设直线PM 与平面P AB 的所成角为θ, 所以sinθ=|cos〈PM →,m →〉|=3+36×5=√105,故直线PM 与平面P AB 所成角的正弦值为√105. 22.(12分)已知函数f(x)=1+lnxx. (1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的实数,且ae b ﹣be a =e a ﹣e b ,证明:e a +e b >2. 解:(1)由f(x)=1+lnx x 得,f ′(x)=−lnxx2, 当x ∈(0,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0. 故f (x )的递增区间为(0,1),递减区间为(1,+∞). (2)将ae b ﹣be a =e a ﹣e b 变形为a+1e a=b+1e b .令e a =m ,e b =n ,则上式变为1+lnm m=1+lnnn,即有f (m )=f (n ),于是命题转换为证明:m +n >2.不妨设m <n ,由(1)知0<m <1,n >1. 要证m +n >2,即证n >2﹣m >1,由于f (x )在(1,+∞)上单调递减,故即证f (n )<f (2﹣m ), 由于f (m )=f (n ),故即证f (m )<f (2﹣m ), 即证f (m )﹣f (2﹣m )<0在0<m <1上恒成立. 令g (x )=f (x )﹣f (2﹣x ),x ∈(0,1),则g ′(x)=f ′(x)+f ′(2−x)=−lnx x 2−ln(2−x)(2−x)2=−(2−x)2lnx+x 2ln(2−x)x 2(2−x)2, =−(4−4x+x 2)lnx+x 2ln(2−x)x 2(2−x)2=−(4−4x)lnx+x 2ln[(2−x)x]x 2(2−x)2≥0,所以g (x )在区间(0,1)内单调递增, 所以g (x )<g (1)=0,即m +n >2成立. 所以e a +e b >2.。

2023-2024学年山东省聊城市高三(上)期中数学试卷【答案版】

2023-2024学年山东省聊城市高三(上)期中数学试卷【答案版】

2023-2024学年山东省聊城市高三(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A ={x|0<x <5},B ={x|x+1x−4≤0},则A ∩B =( ) A .[﹣1,4]B .[﹣1,5)C .(0,4]D .(0,4)2.在平面直角坐标系xOy 中,已知角α的始边是x 轴的非负半轴,终边经过点P (﹣1,2),则cos (π﹣α)=( )A .√55B .2√55C .−√55D .−2√553.设复数z 满足2z +z =3+i ,则z i=( ) A .1+iB .1﹣iC .﹣1+iD .﹣1﹣i4.定义在R 上的函数f (x ),满足f (x )=f (﹣x ),且在(﹣∞,0]为增函数,则( ) A .f(cos2023π)<f(log120232022)<f(212023)B .f(212023)<f(cos2023π)<f(log 120232022) C .f(212023)<f(log 120232022)<f(cos2023π)D .f(log 120232022)<f(cos2023π)<f(212023)5.已知命题p :∃x ∈[1,4],log 12x <2x +a ,则p 为假命题的一个充分不必要条件是( )A .a >﹣1B .a >﹣11C .a <﹣1D .a <﹣116.函数f(x)=sin(2x +π6)向右平移m (m >0)个单位后,所得函数g (x )是偶函数,则m 的最小值是( ) A .−π6B .π6C .π3D .2π37.已知x >0,y >0,且x +2y =1,则3x +9y 的最小值为( ) A .2√3B .3√2C .3√3D .2√28.已知0<α<π2,2sin β﹣cos α=1,sinα+2cosβ=√3,则cos(α+π3)=( ) A .14B .−14C .13D .−13二、多项选择题:本题共4小题,每小题5分,共20分。

2023-2024学年山东省潍坊市高三(上)期中数学试卷【答案版】

2023-2024学年山东省潍坊市高三(上)期中数学试卷【答案版】

2023-2024学年山东省潍坊市高三(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a →=(1,k ),b →=(2,1),若a →∥b →,则实数k =( ) A .12B .−12C .2D .﹣22.若“∃x ∈R ,sin x <a ”为真命题,则实数a 的取值范围为( ) A .a ≥1B .a >1C .a ≥﹣1D .a >﹣13.已知集合A ={1,3,a 2},B ={1,a +2},则满足A ∪B =A 的实数a 的个数为( ) A .0B .1C .2D .34.北京故宫博物院展示着一件来自2200年前的宝物——秦诏文权(如图1).此文权下部呈圆台形,上部为鼻钮,被誉为最美、最具文化、最有政治和历史意义的文物之一.某公司仿照该文权制成一纸镇(如图2),已知该纸镇下部的上、下底面半径分别为3,4,高为3,则该纸镇下部的侧面积与体积分别为( )A .21π 37πB .21π 111πC .7√10π 37πD .7√10π 111π5.设等差数列{a n }的前n 项和为S n ,且公差不为0,若a 4,a 5,a 7构成等比数列,S 11=66,则a 7=( ) A .5B .6C .7D .86.已知a =20.5,b =log 25,c =log 410,则a ,b ,c 的大小关系为( ) A .a <b <cB .a <c <bC .c <a <bD .b <c <a7.设函数f (x )={x +1,x ≤0√x −1,x >0,则方程f (f (x ))=0的实根个数为( )A .4B .3C .2D .18.已知cos(π4−α)=35,sin(5π4+β)=−1213,其中α∈(π4,3π4),β∈(0,π4),则tanαtanβ=( )A .−5663B .5663C .﹣17D .17二、多项选择题:本大题共4小题,每小题5分,共20分,在每个小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD ﹣A 1B 1C 1D 1中,直线l ⊂平面ABB 1A 1,直线m ⊂平面BCC 1B 1,直线n ⊂平面ABCD ,则直线l ,m ,n 的位置关系可能是( )A .l ,m ,n 两两垂直B .l ,m ,n 两两平行C .l ,m ,n 两两相交D .l ,m ,n 两两异面10.已知函数f(x)=2sin(2x +π3),把f (x )的图象向左平移π3个单位长度得到函数g (x )的图象,则( )A .g (x )是奇函数B .g (x )的图象关于直线x =−π4对称C .g (x )在[0,π2]上单调递增D .不等式g (x )≤0的解集为[kπ+π2,kπ+π],k ∈Z11.已知a ,b 为方程2x 2﹣8x +m =0(m >0)的两个实根,则( ) A .a 2+b 2≥8 B .ab ≥4 C .√a +√b ≤2√2D .1a+2+12b≥3+2√21212.已知正项数列{a n }满足:a 1=1,a n =na n+12na n+1+1,则( )A .a 2=√5−12B .{a n }是递增数列C .a n+1−a n >1n+1D .a n+1<1+∑ n k=11k三、填空题:本大题共4小题,每小题5分,共20分.13.已知点A (2,1),向量OA →绕原点O 顺时针旋转π2得到向量OB →,则点B 的坐标为 .14.诺沃尔(Knowall )在1740年发现了一颗彗星,并推算出在1823年、1906年…人类都可以看到这颗彗星,即该彗星每隔83年出现一次.从现在开始到公元3000年,人类可以看到这颗彗星的次数为 .15.已知函数f(x)是R上的偶函数,f(x+2)为奇函数,若f(0)=1,则f(1)+f(2)+…+f(2023)=.16.右图为几何体Ω的一个表面展开图,其中Ω的各面都是边长为1的等边三角形,将Ω放入一个球体中,则该球表面积的最小值为;在Ω中,异面直线AB与DE的距离为.四、解答题:本大题共6道小题,共70分,解答应写出文字说明、证明过程或演算步骤17.(10分)已知函数f(x)=log12x,F(x)=f(x+1)+f(1﹣x).(1)判断F(x)的奇偶性,并证明;(2)解不等式|F(x)|≤1.18.(12分)已知函数f(x)=A sin(ωx+φ)+B(其中A,ω,φ,B均为常数,ω>0,A>0,|φ|<π2)的部分图象如图所示.(1)求f(x)的解析式;(2)求函数y=f(x+5π12)+f(x)在[−π3,π2]上的值域.19.(12分)在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,AD=2CD=2,AA1=A1D=√5,A1C=√6.(1)证明:平面AA1D1D⊥平面ABCD;(2)求二面角A1﹣CD﹣D1的余弦值.20.(12分)为方便居民休闲娱乐,某市计划在一块三角形空地上修建一个口袋公园,如图所示.在公园内部计划修建景观道路CD (道路的宽度忽略不计),已知CD 把三角形空地分成两个区域,△ACD 区域为儿童娱乐区,△BCD 区域为休闲健身区.经测量,AC =BC =100米,AB =100√3米.若儿童娱乐区每平方米的造价为100元,休闲健身区每平方米的造价为50元,景观道路每米的造价为2500元. (1)若∠ADC =π4,求景观道路CD 的长度;(2)求∠ADC 为何值时,口袋公园的造价最低?21.(12分)设S n 为数列{a n }的前n 项和,s n =3n+1−32.(1)求{a n }的通项公式; (2)若数列{S 2n +15a n}的最小项为第m 项,求m ; (3)设b n =2a n (a n −2)2,数列{b n }的前n 项和为T n ,证明:T n <132.22.(12分)已知函数f (x )=e x +aln (x +1)(a ∈R ).(1)当a =﹣2时,求曲线y =f (x )在点(0,f (0))处的切线方程; (2)若f (x )在定义域上存在极值,求a 的取值范围; (3)若f (x )≥1﹣sin x 恒成立,求a .2023-2024学年山东省潍坊市高三(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a →=(1,k ),b →=(2,1),若a →∥b →,则实数k =( ) A .12B .−12C .2D .﹣2解:因为a →=(1,k ),b →=(2,1),且a →∥b →,所以2k ﹣1=0,解得k =12.故选:A .2.若“∃x ∈R ,sin x <a ”为真命题,则实数a 的取值范围为( ) A .a ≥1B .a >1C .a ≥﹣1D .a >﹣1解:“∃x ∈R ,sin x <a ”,故a >(sin x )min ,a >﹣1. 故选:D .3.已知集合A ={1,3,a 2},B ={1,a +2},则满足A ∪B =A 的实数a 的个数为( ) A .0B .1C .2D .3解:A ∪B =A ,则B ⊆A ,当a +2=3,即a =1时,集合A 不满足元素的互异性,舍去, 当a +2=a 2,即a =2或a =﹣1,当a =2时,A ={1,3,4},B ={1,4},满足题意, 当a =﹣1时,集合B 不满足元素的互异性,舍去, 综上所述,a =2,故满足A ∪B =A 的实数a 的个数为1. 故选:B .4.北京故宫博物院展示着一件来自2200年前的宝物——秦诏文权(如图1).此文权下部呈圆台形,上部为鼻钮,被誉为最美、最具文化、最有政治和历史意义的文物之一.某公司仿照该文权制成一纸镇(如图2),已知该纸镇下部的上、下底面半径分别为3,4,高为3,则该纸镇下部的侧面积与体积分别为( )A .21π 37πB .21π 111πC .7√10π 37πD .7√10π 111π解:由题意得,S 侧=π(3+4)×√32+(4−3)2=7√10π,V =13π×(42+32+4×3)×3=37π.故选:C .5.设等差数列{a n }的前n 项和为S n ,且公差不为0,若a 4,a 5,a 7构成等比数列,S 11=66,则a 7=( ) A .5B .6C .7D .8解:等差数列{a n }的前n 项和为S n ,且公差d 不为0,若a 4,a 5,a 7构成等比数列,S 11=66, 故S 11=11(a 1+a 11)2=11a 6=66,解得a 6=6,故{a 6=6a 52=a 4⋅a 7,整理得{a 1+5d =6(a 1+4d)2=(a 1+3d)(a 1+6d),解得{a 1=−4d =2,故a 7=a 1+6d =8. 故选:D .6.已知a =20.5,b =log 25,c =log 410,则a ,b ,c 的大小关系为( ) A .a <b <cB .a <c <bC .c <a <bD .b <c <a解:因为a =20.5=√2,c =log 410=log 2√10<log 25,所以b >c ,c =log 410=log 2√10>log 22√2=32>√2,所以 c >a ,所以a <c <b .故选:B .7.设函数f (x )={x +1,x ≤0√x −1,x >0,则方程f (f (x ))=0的实根个数为( )A .4B .3C .2D .1解:令t =f (x ),则方程f (f (x ))=0,即f (t )=0, 当t ≤0时,t +1=0,∴t =﹣1; 当t >0时,√t −1=0,∴t =1;当t =﹣1时,若x ≤0,则x +1=﹣1,∴x =﹣2,符合题意; 若x >0,则√x −1=−1,∴x =0,不合题意; 当t =1时,若x ≤0,则x +1=1,∴x =0,符合题意;若x >0,则√x −1=1,∴x =4,符合题意,即方程f (f (x ))=0的实根个数为3. 故选:B .8.已知cos(π4−α)=35,sin(5π4+β)=−1213,其中α∈(π4,3π4),β∈(0,π4),则tanαtanβ=( )A .−5663B .5663C .﹣17D .17解:cos(π4−α)=35,∵α∈(π4,3π4),∴π4−α∈(−π2,0),∴sin (π4−α)=−√1−cos 2(π4−α)=−45,sin (α−π4)=45,cos α=cos[(α−π4)+π4]=cos (α−π4)cos π4−sin (α−π4)sin π4=35×√22−45×√22=−√210,则sin α=√1−(√210)2=7√210,则tan α=sinαcosα=−7, sin(5π4+β)=−1213,∵β∈(0,π4),∴5π4+β∈(5π4,3π2), ∴cos (5π4+β)=−√1−sin 2(5π4+β)=−513,sin β=sin [(5π4+β)−5π4]=sin(5π4+β)cos 5π4−cos(5π4+β)sin 5π4=−1213×(−√22)−513×√22=7√226,cos β=√1−(7226)2=17√226,则tan β=sinβcosβ=717,则tanαtanβ=−7717=−17. 故选:C .二、多项选择题:本大题共4小题,每小题5分,共20分,在每个小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD ﹣A 1B 1C 1D 1中,直线l ⊂平面ABB 1A 1,直线m ⊂平面BCC 1B 1,直线n ⊂平面ABCD ,则直线l ,m ,n 的位置关系可能是( )A .l ,m ,n 两两垂直B .l ,m ,n 两两平行C .l ,m ,n 两两相交D .l ,m ,n 两两异面解:如图,当l 为BB 1,m 为BC ,n 为CD 时,满足直线l ⊂平面ABB 1A 1,直线m ⊂平面BCC 1B 1,直线n ⊂平面ABCD ,l ,m ,n 两两相交且垂直,当l 为A 1B ,m 为B 1C 1,n 为AC 时,三条直线两两异面,故ACD 正确; 三条直线不可能两两平行,若l ∥n ,则l ∥AB ∥n ,而AB 与平面BCC 1B 1相交,则AB 与M 不平行,故B 错误. 故选:ACD .10.已知函数f(x)=2sin(2x +π3),把f (x )的图象向左平移π3个单位长度得到函数g (x )的图象,则( )A .g (x )是奇函数B .g (x )的图象关于直线x =−π4对称C .g (x )在[0,π2]上单调递增D .不等式g (x )≤0的解集为[kπ+π2,kπ+π],k ∈Z解:由题意g (x )=2sin[2(x +π3)+π3]=2sin (2x +π)=﹣2sin2x ,A 中,可得g (x )为奇函数,所以A 正确;B 中,函数g (x )的对称轴方程满足2x =π2+k π,k ∈Z , 解得x =π4+k 2π,k ∈Z ,当k =﹣1时,x =−π4,所以函数g (x )的图象关于x =−π4对称,所以B 正确; C 中,x ∈[0,π2],则2x ∈[0,π],显然g (x )不单调,所以C 不正确;D 中,令g (x )≤0,则2k π≤2x ≤π+2k π,k ∈Z ,解得k π≤x ≤π2+k π,k ∈Z ,即x ∈[k π,π2+k π],k ∈Z ,所以D 不正确. 故选:AB .11.已知a ,b 为方程2x 2﹣8x +m =0(m >0)的两个实根,则( ) A .a 2+b 2≥8 B .ab ≥4 C .√a +√b ≤2√2D .1a+2+12b≥3+2√212解:因为已知a ,b 为方程2x 2﹣8x +m =0(m >0)的两个实根, 所以Δ=64﹣8m ≥0,即m ≤8,又因为m >0,所以0<m ≤8, 由韦达定理可得:a +b =4,ab =m2>0,所以a >0,b >0. 对于选项A ,由a+b 2≤√a 2+b 22,当且仅当a =b 时等号成立可得:a 2+b 2≥8,当且仅当a =b 时等号成立,故A 正确;对于选项B ,由a +b =4≥2√ab ,当且仅当a =b 时等号成立可得:ab ≤4,当且仅当a =b 时等号成立,故B 不正确;对于选项C ,由a+b 2≤√a 2+b 22,当且仅当a =b 时等号成立可得:√a+√b2≤√a+b 2,即√a +√b ≤2√2,当且仅当a =b 时等号成立,故C 正确;对于选项D ,1a+2+12b =(1a+2+12b)[(2a +4)+2b ]×112=112(2+2b a+2+a+2b +1)≥112(3+2√2b a+2⋅a+2b )=112(3+2√2),当且仅当2b a+2=a+2b,即a =√2b ﹣2时等号成立,故D 正确. 故选:ACD .12.已知正项数列{a n }满足:a 1=1,a n =na n+12na n+1+1,则( )A .a 2=√5−12B .{a n }是递增数列C .a n+1−a n >1n+1D .a n+1<1+∑ n k=11k解:由a 1=1,a n =na n+12na n+1+1,可得a 1=a 22a 2+1=1,解得a 2=1+√52(负的舍去),故A 错误;由a n +1﹣a n =na n+12+a n+1−na n+12na n+1+1=a n+1na n+1+1>0,即a n +1>a n ,则{a n }是递增数列,故B 正确;由a n+1na n+1+1−1n+1=a n+1−1(n+1)(na n+1+1)>0,则a n +1﹣a n >1n+1,故C 正确;由a n+1na n+1+1−1n=−1n(na n+1+1)<0,则a n +1﹣a n <1n ,所以a n +1=a 1+(a 2﹣a 1)+(a 3﹣a 2)+...+(a n +1﹣a n )<1+1+12+...+1n,故D 正确.故选:BCD .三、填空题:本大题共4小题,每小题5分,共20分.13.已知点A (2,1),向量OA →绕原点O 顺时针旋转π2得到向量OB →,则点B 的坐标为 (1,﹣2) .解:点A (2,1),向量OA →绕原点O 顺时针旋转π2后等于OB →,则OA →=(2,1),OB →=(1,﹣2),则点B 的坐标为(1,﹣2). 故答案为:(1,﹣2).14.诺沃尔(Knowall )在1740年发现了一颗彗星,并推算出在1823年、1906年…人类都可以看到这颗彗星,即该彗星每隔83年出现一次.从现在开始到公元3000年,人类可以看到这颗彗星的次数为 12 . 解:由题意可知:彗星出现的年份构成一个公差为d =83,首项为a 1=1740的等差数列,所以a n=a1+(n﹣1)d=1740+83(n﹣1)=83n+1657,令2023≤a n≤3000,即2023≤83n+1657≤3000,解得36683≤n≤134383,又n∈N*,所以n=5、6、 (16)所以从现在开始到公元3000年,人类可以看到这颗彗星的次数为16﹣5+1=12次.故答案为:12.15.已知函数f(x)是R上的偶函数,f(x+2)为奇函数,若f(0)=1,则f(1)+f(2)+…+f(2023)=﹣1.解:f(x+2)是奇函数,故f(x+2)=﹣f(﹣x+2)且f(2)=0,因为f(x)为偶函数,故f(x+2)=﹣f(﹣x+2)=﹣f(x﹣2),则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),即函数周期为8,因为f(x+2)=﹣f(﹣x+2),故f(3)+f(1)=0,f(4)+f(0)=0,即f(4)=﹣1,f(5)=﹣f(1),f(6)=﹣f(2)=0,f(7)=﹣f(3),f(8)=f(0)=1,故f(1)+f(2)+…+f(8)=0,f(1)+f(2)+…+f(2023)=﹣f(8)=﹣1.故答案为:﹣1.16.右图为几何体Ω的一个表面展开图,其中Ω的各面都是边长为1的等边三角形,将Ω放入一个球体中,则该球表面积的最小值为2π;在Ω中,异面直线AB与DE的距离为√63.解:把平面展开图还原为空间几何体为正八面体,如图所示:球表面积最小,则正八面体的八个顶点在球面上,∴正八面体外接球的球心为正方形ACFD的中心O,半径R=OA=12AF=12√12+12=√22,∴S表=4πR2=4π×12=2π;∵平面ABC∥平面DEF,∴异面直线AB与DE的距离为平面ABC与平面DEF的距离,又∵O到平面ABC的距离与O到平面DEF的距离相等,∴直线AB与DE的距离为O到平面ABC的距离2倍,∵V O﹣ABC=V B﹣AOC,∴13S△ABC•h=13S△AOC•OB,∴√34h=12×√22×√22×√22,∴h=√66,∴异面直线AB与DE的距离为√6 3.故答案为:2π;√6 3.四、解答题:本大题共6道小题,共70分,解答应写出文字说明、证明过程或演算步骤17.(10分)已知函数f(x)=log12x,F(x)=f(x+1)+f(1﹣x).(1)判断F(x)的奇偶性,并证明;(2)解不等式|F(x)|≤1.解:(1)F(x)为偶函数;证明:∵f(x)=log12x,由{x+1>01−x>0,得x∈(﹣1,1),∴F(x)=f(x+1)+f(1﹣x)=log12(x+1)+log12(1−x)的定义域为(﹣1,1),又F(﹣x)=log12(1−x)+log12(x+1)=F(x),∴F(x)为偶函数;(2)∵F(x)=log12(x+1)+log12(1−x)=log12(1−x2)≥log121=0,∴|F(x)|≤1⇔0≤F(x)=log12(1−x2)≤1,∴1≥1﹣x2≥12,解得−√22≤x≤√22,∴原不等式的解集为[−√22,√22].18.(12分)已知函数f(x)=A sin(ωx+φ)+B(其中A,ω,φ,B均为常数,ω>0,A>0,|φ|<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)求函数y =f(x +5π12)+f(x)在[−π3,π2]上的值域.解:(1)由图知A =3−02=32,B =3+02=32, 且{ω⋅(−π3)+φ=−π2+2kπ,k ∈Z ω⋅π2+φ=π2+2kπ,k ∈Z ,|φ|<π2,解得ω=65,φ=−π10, 所以f (x )=32sin (65x −π10)+32; (2)y =f (x +5π12)+f (x )=32sin[65(x +5π12)−π10]+32+32sin (65x −π10)+32=32[sin (65x −π10+π2)+32sin (65x x −π10)+3=32 [cos (65x x −π10)+sin (65x x −π10)]+3=3√22 s in (65x x −π10+π4)+3=3√22 s in (65x x +3π20)+3, 因为x ∈[−π3,π2],所以65x +3π20∈[−π4,3π4], 所以sin (65x +3π20)∈[−√22,1], 所以y ∈[3√22•−√22+3,3√22×1+3]=[32,3√22+3]. 即函数y 的值域为[32,3√22+3]. 19.(12分)在四棱柱ABCD ﹣A 1B 1C 1D 1中,底面ABCD 是矩形,AD =2CD =2,AA 1=A 1D =√5,A 1C =√6.(1)证明:平面AA 1D 1D ⊥平面ABCD ;(2)求二面角A 1﹣CD ﹣D 1的余弦值.(1)证明:取AD 的中点O ,连接OC ,因为AA 1=A 1D =√5,得A 1O ⊥AD ,因为A 1D =√5,OD =1,所以A 1O =2,又OD =DC =1,所以OC =√2,在△A 1OC 中,OC =√2,A 1C =√6,A 1O =2,所以A 1C 2=A 1O 2+OC 2,故△A 1OC 为直角三角形,A 1O ⊥OC ,因为OC ∩AD =O ,故A 1O ⊥平面ABCD ,因为A 1O ⊂平面AA 1D 1D ,所以平面AA 1D 1D ⊥平面ABCD ;(2)解:如图,以O 为坐标原点,分别以DC →,OD →,OA 1→的正方向为x 轴,y 轴,z 轴正方向, 建立如图所示空间直角坐标系:故A 1(0,0,2),C (1,1,0),D (0,1,0),D 1(0,2,2),则CD →=(−1,0,0),A 1C →=(1,1,﹣2),DD 1→=(0,1,2),设平面A 1CD 的一个法向量为m →=(x 1,y 1,z 1),则{m →⋅CD →=−x 1=0m →⋅A 1C →=x 1+y 1−2z 1=0,令y 1=2,则m →=(0,2,1),设平面CDD 1C 1的一个法向量为n →=(x 2,y 2,z 2),则{n →⋅CD →=x 2=0n →⋅DD 1→=y 2+2z 2=0,令y 2=2,则n →=(0,2,﹣1),所以cos <m →,n →>=|m →⋅n →||m →||n →|=3√5×√5=35, 由图可知二面角A 1﹣CD ﹣D 1为锐角,所以二面角A1﹣CD﹣D1的余弦值为3 5.20.(12分)为方便居民休闲娱乐,某市计划在一块三角形空地上修建一个口袋公园,如图所示.在公园内部计划修建景观道路CD(道路的宽度忽略不计),已知CD把三角形空地分成两个区域,△ACD区域为儿童娱乐区,△BCD区域为休闲健身区.经测量,AC=BC=100米,AB=100√3米.若儿童娱乐区每平方米的造价为100元,休闲健身区每平方米的造价为50元,景观道路每米的造价为2500元.(1)若∠ADC=π4,求景观道路CD的长度;(2)求∠ADC为何值时,口袋公园的造价最低?解:(1)在△ABC中,AC=BC=100,AB=100√3,所以AC2+AB2﹣BC2=1002﹣(100√3)2﹣1002=30000,则cosA=AC2+AB2−BC22AC⋅AB=√32,A∈(0,π),所以A=B=π6,在△ACD中,∠ADC=π4,由正弦定理得ACsin∠ADC=CDsinA,即CD=AC⋅sinAsin∠ADC=10Osinπ6sinπ4=50√2,所以景观道路CD的长度为50√2米.(2)设∠ADC=θ(π6<θ<5π6),在△ACD中,CD=50sinθ,所以S△ADC=12AC⋅CD sin∠ACD=12×100×50sin(5π6−θ)sinθ=2500sin(5π6−θ)sinθ,又S△ABC=12AC⋅AB•sin A=12×100×100√3×12=2500√3,所以S△BCD=2500√3−2500sin(5π6−θ)sinθ,所以投资总额y=2500CD+100S△ACD+50S△BCD=2500×50sinθ+100×2500sin(5π6−θ)sinθ+50[2500√3−2500sin(5π6−θ)sinθ]=2500×50[√3+1+sin(5π6−θ)sinθ]=2500×50(3√32+2+cosθ2sinθ),因为2+cosθ2sinθ=3cos2θ2+sin2θ24sinθ2cosθ2=34tanθ2+tanθ24≥2√34tanθ2⋅tanθ24=√34,当且仅当tan θ2=√3,即θ=2π3时取等号, 此时y 取得最小值,即公园造价最低,所以∠ADC =2π3,口袋公园的造价最低. 21.(12分)设S n 为数列{a n }的前n 项和,s n =3n+1−32. (1)求{a n }的通项公式;(2)若数列{S 2n +15a n }的最小项为第m 项,求m ; (3)设b n =2a n (a n −2)2,数列{b n }的前n 项和为T n ,证明:T n <132. (1)解:当n =1时,a 1=S 1=32−32=3; 当n ≥2时,a n =S n ﹣S n ﹣1=3n+1−32−3n−32=3n , 因为a 1=3满足上式,所以a n =3n .(2)解:S 2n +15a n =32n+1−32+153n =32n+1+272⋅3n =32•(3n +93n )≥32•2√3n ⋅93n =9, 当且仅当3n =93n ,即n =1时,等号成立, 所以m =1. (3)证明:b n =2a n (a n −2)2=2⋅3n(3n −2)2, 当n =1时,b 1=2⋅31(31−2)2=6; 当n ≥2时,b n =2⋅3n 32n −4⋅3n +4<2⋅3n 32n −4⋅3n +3=2⋅3n (3n −1)(3n −3)=3n 3n −3−3n 3n −1=11−3−n+1−11−3−n , 所以T n =b 1+b 2+b 3+…+b n <6+(11−3−1−11−3−2)+(11−3−2−11−3−3)+…+(11−3−n+1−11−3−n )=6+11−3−1−11−3−n =152−11−3−n <152−1=132,命题得证. 22.(12分)已知函数f (x )=e x +aln (x +1)(a ∈R ).(1)当a =﹣2时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若f (x )在定义域上存在极值,求a 的取值范围;(3)若f (x )≥1﹣sin x 恒成立,求a .解:(1)当a =﹣2时,f (x )=e x ﹣2ln (x +1),可得f ′(x)=e x −2x+1,此时f′(0)=e0−21=−1,又f(0)=e0﹣2ln1=1,曲线y=f(x)在点(0,f(0))处的切线方程为y﹣1=﹣(x﹣0),即x+y﹣1=0;(2)易知f′(x)=e x+ax+1(x>−1),当a≥0时,f′(x)≥0恒成立,此时函数f(x)在(﹣1,+∞)上单调递增,不符合题意;当a<0时,f′(x)=e x−a(x+1)2>0,所以当a<0时,f′(x)在定义域上单调递增,又f′(a2)=e a2+aa2+1,因为aa2+1≥−12,e a2>1,所以f′(a2)>0;当a<﹣1时,易知f′(0)=1+a<0,所以函数f(x)在(0,a2)上存在极值点;当a=﹣1时,f′(x)=e x−1x+1,易知f′(0)=0,所以x=0为f(x)的极值点;当﹣1<a<0时,f′(a2−1)=e a2−1+1 a ,因为e a2−1<1,1a<−1,所以f′(a2﹣1)<0,则函数f(x)在(a2﹣1,a2)上存在极值点,综上所述,满足条件的a的取值范围为(﹣∞,0);(3)若f(x)≥1﹣sin x恒成立,即sin x+e x+aln(x+1)≥1恒成立,不妨设g(x)=sin x+e x+aln(x+1),函数定义域为(﹣1,+∞),可得g′(x)=cosx+e x+ax+1,不妨设h(x)=cos x+e x+ax+1,函数定义域为(﹣1,+∞),可得h′(x)=﹣sin x+e x−a(x+1)2,若a=﹣2,当x∈(﹣1,0]时,cosx+e x≤2,−2x+1≤−2,所以g'(x)≤0,当x∈[0,+∞)时,e x≥1,h′(x)≥0,所以g′(x)≥g′(0)=cos0+e0﹣2=0,则x=0时,函数g(x)在x∈(﹣1,+∞)上取得唯一极小值点,此时g(x)≥g(0)=1,所以a=﹣2时,f(x)≥1﹣sin x恒成立;若a<﹣2,易知e x﹣sin x>0,−a(x+1)2>0,所以h′(x)>0,即函数g'(x)单调递增,又g′(−a)=e−a+cos(−a)+a−a+1>e2−1−1>0,因为g'(0)=2+a<0,所以存在x1∈(0,﹣a),使得g'(x1)=0,当0<x<x1时,g′(x1)<0,g(x)单调递减,所以g(x1)<g(0)=1,不符合题意;若﹣2<a<0,由(2)知g′(x)单调递增,当﹣1<x<﹣1−a2<0时,ax+1<−2,g′(x)<1+1+ax+1<0,又g′(0)=2+a>0,所以存在x2∈(﹣1,0),使得g′(x2)=0,当x2<x<0 时,g′(x)>0,g(x)单调递增,所以g(x2)<g(0)=1,不符合题意;若a≥0,易知cos x+e x>0,ax+1≥0,所以g′(x)>0,g(x)单调递增,又g(0)=1,所以当﹣1<x<0时,g(x)<g(0)=1,不符合题意,综上所述,满足条件的a的值为﹣2.。

山东省青岛2024-2025学年高三上学期期中考试数学试卷(含解析)

山东省青岛2024-2025学年高三上学期期中考试数学试卷(含解析)

2024-2025学年度第一学期期中考试解析-高三上数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知,i 为虚数单位,为z 的共轭复数,则( )A.B. 4C.D.2. 已知集合,,则( )A. B.C. D. 3. ( )A.B.D.24.已知向量,,其中,若,则( )A. 40B. 48C.D. 625. 已知的内角A ,B ,C 的对边a ,b ,c 成等比数列,则的最大值为( )A.B.C.D.6. 若定义在上的偶函数在上单调递增,则,,的大小关系为()A. B.C. D.7. 已知a ,且,,,则( )A.B. C.D. 8. 已知当时,恒成立,则实数a 的取值范围为( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.44i z =+z z i -=5(){}2024log 20250M x y x ==-<{}2026x N y y ==M N = (2024,2025)(,2025)-∞(0,)+∞(2025,)+∞4log 50.5=1215-()1,54a λ=+ ()2,8b λ=+ 0λ≥a b ∥ ()b a b ⋅-=34-ABC △B 6π3π2π23πR ()f x [)0,+∞1πf ⎛⎫- ⎪⎝⎭31f ⎛⎫- ⎪⎝⎭127f -⎛⎫⎪⎝⎭12117π3f f f -⎛⎫⎛⎫⎛⎫->>- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1211π73f f f -⎛⎫⎛⎫⎛⎫>->- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1211π73f f f -⎛⎫⎛⎫⎛⎫->-> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭121173πf f f -⎛⎫⎛⎫⎛⎫->>- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭b ∈R 0b ≠1a b ≠-1sin 21a b a bα-=+ab =1cos 1cos αα-+πtan 4α⎛⎫+⎪⎝⎭1sin 1sin αα-+2πtan 4α⎛⎫+ ⎪⎝⎭0x >ln e ln x x ex x a -≥(],0-∞(20,e ⎤⎦(],1-∞[)e,+∞9. 已知且,则( )A. B. C.2D.10. 已知幂函数的图象经过点,下列结论正确的有( )A. B.是偶函数C. D.若,则11. 已知函数,则下列说法正确的有( )A. 的定义域为B. 有解C. 不存在极值点D. 三、填空题:本题共3小题,每小题5分,共15分.12. 曲线在点处的切线方程为______.13. 数列共有5项,前三项成等比数列,公比为q . 后三项成等差数列,公差为d ,且若第5项为1,第2项与第4项的和为18,第1项与第3项的和为35,则____________.14. 在中,若,,三点分别在边,,上(均不在端点上),则,,的外接圆交于一点O ,称为密克点.在梯形ABCD 中,,,M 为CD 的中点,动点P 在BC 边上(不包含端点),与的外接圆交于点Q (异于点P ),则BQ 的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知单位向量,满足.(1)求;(2)求在上的投影向量(用表示).16.(15分)0xy >21x y +=0y <102x <<42xy+≥22log log 0x y +<()f x 14,16⎛⎫⎪⎝⎭()00f =()f x ()12f '-=()()321f x f x ->+233,,4322x ⎛⎫⎛⎫∈⎪ ⎪⎝⎭⎝⎭()(1)log x f x x +=()f x ()0,+∞()2f x =()f x ()()()11f x f x x <+>21e x y x x -=-()1,0{}n a dq +=111A B C △1M 1N 1P 11A B 11B C 11C A 111A M P △111B M N △111C N P △60B C ∠=∠=︒22AB AD ==ABP △CMP △1e 2e121()23e e e ⋅+= 1232e e -125e e - 1e1e定义三阶行列式运算:,其中(i ,).关于x 的不等式的解集为M .(1)求M ;(2)已知函数在实数集单调递增,求a 的取值范围.17.(15分)函数(,,)的部分图象如图,和均在函数的图象上,且Q 是图象上的最低点.(1)求函数的单调递增区间;(2)若,,求的值.18. (15分)已知数列是首项为2,公比为4的等比数列,数列满足.(1)求数列和的通项公式;(2)求数列的前n 项和.19.(17分)已知函数(1)求的值;111213212223112233122331132132132231122133112332313233a a a a a a a a a a a a a a a a a a a a a a a a a a a =++---ij a ∈R {}1,2,3j ∈10100001x x x->()()241,,e 22,x x a x x Mf x a x M⎧-+∈=⎨--∈⎩R ðR ()()sin f x A x ωϕ=+0A >0ω>π2ϕ<()1,0P ()4,2Q -()f x ()f x ()056f x =058,33x ⎡⎤∈⎢⎥⎣⎦0cos x π{}2na {}nb 321212222n n b b b b n -++++= {}n a {}n b n n a b ⎧⎫⎨⎬⎩⎭n S ()3f x x x =-()0f(2)设,当时,记在区间上的最大值为M ,最小值为m ,求的取值范围.高三期中考试题 数学参考答案1. D 【解析】由,可得.故选D.2. C 【解析】由可得,则;,故,则.故选C.3. C 【解析】由题意得.故选C 项.4. D 【解析】因为,,且,故,解得或(舍去),经检验当时,,故.故选D.5. B 【解析】由题意可得,由余弦定理可得,,,.故选B.6. .B 【解析】因为是定义在上的偶函数,所以,,又()()()ln 0g x a x x f f x =-+-(]1,3a ∈-()g x []1,e Mm -44i z =+45i z i -==-=()2024log 20250x -<020241x <-<()2024,2025M =20260x y =>()0,N =+∞()2024,2025M N = 444222log 5111log loglog log 5log 552510.522222-⎛⎫======⎪⎝⎭()1,54a λ=+ ()2,8b λ=+ a b ∥ ()()54218λλ++=⨯0λ=145-0λ=a b ∥ ()()()2,81,4124834b a b ⋅-=⋅--=-⨯-⨯=-2b ac =2222221cos 2222a cb ac b ac ac B ac ac ac +---=≥==0B π<< 03B π∴<≤()f x R 3113f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭11ππf f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭127-=,在上单调递增,所以.故选B 项.7. D 【解析】由题意可得,解得.故选D.8. A 【解析】由对恒成立,令,则,令,得,当时,,当时,,所以在上单调递减,在上单调递增,所以,即.令,,,当时,;当时,,所以在上单调递减,在上单调递增,所以,所以.故选A.9. BCD 【解析】由且,得,解得,同理得,故A 项错误,B 项正确;对于C 项,,当且仅当时,取等,故C项正确;对于D项,,故D 项正确.故选BCD 113π>>()f x [)0,+∞1211π73f f f -⎛⎫⎛⎫⎛⎫>->- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1sin 21a b a bα-=+22221sin 2sin cos 2sin cos 1sin 2sin cos 2sin cos a b αααααααααα+++==-+-()()()()22222sin cos 1tan πtan 4sin cos 1tan ααααααα++⎛⎫==+ ⎝--=⎪⎭ln e ln x x x x a -≥0x >()ln f x x x =()ln 1f x x ='+()0f x '=1ex =10e x <<()0f x '<1e x >()0f x '>()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭()11e ef x f ⎛⎫≥=- ⎪⎝⎭1ln ex x ≥-ln tx x =()1e et g t et t ⎛⎫=-≥- ⎪⎝⎭()e t g t e '=-11e t -≤<()0g t '<1t >()0g t '>()g t 1,1e ⎡⎫-⎪⎢⎣⎭()1,+∞()()min 01g t g ==0a ≤0xy >210x y +=>(12)0x x ->102x <<01y <<422x y +==>…14x =12y =()22222222121log log log log log log 302822x y x y x y xy ⎡⎤⋅+⎛⎫+====-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦…项.10. BCD 【解析】设幂函数,由,得,所以,所以无意义,故A 项错误;,所以是偶函数,故B 项正确;由,得,故C 项正确;因为是偶函数,且在上单调递减,所以由,得,即且解得且,故D 项正确.故选BCD 项.11. ACD 【解析】对于A 选项,由函数的定义知的定义域为,故A 正确.对于B 选项,令,则,即,判别式,无实数解,故B 错误.对于C 选项,,可知,设函数,可知,令,解得,则在上单调递减,在上单调递增,且在上,则的图象为的图象向左平移一个单位长度,易得两者无交点,则无零点,即不存在极值点,故C 正确.对于D 选项,方法一:由的单调性可知,D 正确.方法二:作差有,且,故,D 正确.故选ACD.12. 【解析】,故时,,故曲线在点处()a f x x =()14416af ==2α=-()2f x x -==()0f ()()f x f x -=()f x ()32f x x -=-'()12f '-=()f x ()0,+∞()()321f x f x ->+321x x -<+22(32)(1)x x -<+320,10,x x -≠⎧⎨+≠⎩243x <<32x ≠()f x ()0,+∞(1)log 2x x +=2(1)x x +=2403x x +=+70∆=-<()(1)ln log ln(1)x x xf x x +==+()2211ln(1)ln (1)ln(1)ln 1ln 1)(1)ln )((1x xx x x x x x f x x x x x +-++-+==+++'()ln g x x x =()ln 1g x x ='+()0g x '=1e x =()g x 10,e ⎛⎫⎪⎝⎭1,e⎛⎫+∞ ⎪⎝⎭()0,1()0g x <()()1ln 1y x x =++()g x ()f x '()f x ()f x ()()()(1)21lo (1)g log x x x f x x f x ++-+=+-()()()2ln ln 2ln 1ln(2)ln 1x x x x x ⋅+-++⋅+=()()()()222ln ln 22ln 1ln ln 2ln 122x x x x x x ⎡⎤⎡⎤+++⋅+<<=+⎢⎥⎢⎥⎣⎦⎣⎦()()()11f x f x x <+>22y x =-()212e 1x y x x -'+-=1x =2y '=21e x y x x -=-()1,0的切线方程为.13. 5【解析】由题意得该数列的项可设为,,,,1,又即从而,即,即,解得所以.14.【解析】如图,延长BA ,CD 交于点E ,则为正三角形.由题设结论,,,的外接圆有唯一公共点,该公共点即为题中的点Q ,故点Q 在的外接圆上.由题意得,,则是直角三角形,故其外接圆半径.在中,由余弦定理可知,,当Q 在线段BD 上,且时,BQ 取得最小值.15. 解:(1).……6分(2)在上的投影向量为.……13分16.(15分)解:(1),(3分)所以,所以原不等式的解集.(6分)(2)由(1)知,所以(7分)22y x =-()212d q +()12d q +12d +1d +()()211218,121235,d d q d d q ⎧+++=⎪⎨+++=⎪⎩()()221217,2234,q d q q d q ⎧+=-⎪⎨+=-⎪⎩()()()()2212341722q q q q +-=-+232334682343422q q q q q q -+-=+--235700q q -=2,3,q d =⎧⎨=⎩5q d +=1-EBC △ABP △CMP △AME △AME △120BAD ∠=︒90BAM ∠=︒AME △1R AD ==ABD △BD ==1QD =11232e e -==125e e -1e ()121111352e e e e e e -⋅⋅=-()()1010110001x x x x x xx x x=-=->-1x >{|1}M x x =>{|1}M x x =>()()241,1e 22,1xx a x x f x a x ⎧-+>=⎨--⎩…在实数集上单调递增,,又因为当时,是单调增函数,所以当时,,解得(10分)综上,a 的取值范围是.17. 解:(1)由题得,,故,.由,得,,故,,,故,故.,即单调递增区间为,.……9分(2)由,即,又,则,故,.……15分18.解:(1)由题意得,(2分)所以.(3分)由,得当时,,(5分)所以,即.(6分)又当时,也符合,()f x R 4112a +∴≤14a ∴≤1x ≤()f x 1x =224e a a --≤-12ea ≤-,1(]2e -∞-2A =334T =4T =π2ω=2113f ⎛⎫=- ⎪⎝⎭π113π2π232k ϕ⨯+=+k Z ∈π2π3k ϕ=-+k Z ∈π2ϕ<π3ϕ=-()ππ2sin 23f x x ⎛⎫=- ⎪⎝⎭ππππ152π2π44223233k x k k x k -+≤-≤+⇒-+≤≤+()f x 154,433k k ⎡⎤-++⎢⎥⎣⎦k Z ∈()056f x =0ππsin 2335x ⎛⎫-= ⎪⎝⎭058,33x ⎡⎤∈⎢⎥⎣⎦0πππ,π232x ⎛⎫⎛⎫-∈ ⎪ ⎪⎝⎭⎝⎭04ππcos 235x ⎛⎫-=- ⎪⎝⎭0000ππππππ1ππcos cos cos sin 223323223x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+=-⋅--= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()22000ππcos cos(2c )2)1os (2(122x x x π=-∴=⨯=⨯-=1212422na n n --=⨯=21n a n =-32122222n b b b b n ++++= 2n …()31212222122n n b b b b n --++++=- 122nn b -=2n n b =1n =12b =所以.(7分)(2)设,则,(8分)(9分)两式作差得,(10分)即,(12分)所以.19.(17分)已知函数(1)求的值;(2)设,当时,记在区间上的最大值为M ,最小值为m ,求的取值范围.解:(1)由,(2分)所以,所以,(4分)所以.(5分)(2)由(1)可得,(6分)2nn b =()1212nn n n a c n b ⎛⎫==- ⎪⎝⎭()21221111()32221nn n S c c c n ⎛⎫⎛⎫=+++=⨯+⨯++- ⎪ ⎪⎝⎭⎝⎭ ()231111132112222n n S n +⎛⎫⎛⎫⎛⎫=⨯+⨯++-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()231111112211222222221nn n S n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()1121722222212111272111n n n n n S n ++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎛⎫⎣⎦=-+--=- ⎪⎝⎭-2277n nn S +=-()3f x x x =-+()0f ()()()ln 0g x a x x f f x =-++-(]1,3a ∈-()g x []1,e Mm -()3f x x x =-+()()332223031()2e f f x x e x -'-'=-+()()30012f f =-+''()02f '=()3f x x x =-()206f e =()32ln 6g x x a x e =-++,(7分)①当时,,, 在区间上单调递减, (8分)所以的最小值.(9分)的最大值,(10分),(11分)这时的取值范围为.(12分)②当时,,,在区间上,, 在区间上单调递减,(13分)所以的最小值.(14分)的最大值,(15分),这时的取值范围为.(16分)综上所述,当时,取值范围为;当时,取值范围为.(17分)变式:已知函数.(1)求曲线在处的切线方程;(2)设,当时,记在区间上的最大值为M ,最小值为m ,求的取值范围.()32333x a x a g x x x '⎛⎫- ⎪=-+=- ⎪ ⎪⎝⎭10a -<≤03a ->()0g x '≤()g x [1,]e ()g x ()326m g e a e e ==-++()g x ()2161M g e ==-()232333(1)6161(1,]M m g g e e a e e a e e e -=-=-+--=--∈-Mm -33(1,]e e -03a <≤013a<≤01<≤[1,]e ()0g x '≤()g x [1,]e ()g x ()326m g e a e e ==-++()g x ()2161M g e ==-()232333(1)6161[4,1)M m g g e e a e e a e e e -=-=-+--=--∈--Mm -33[4,1)e e --10a -<≤M m -33(1,]e e -03a <≤Mm -33[4,1)e e --()3f x x x =-+()y f x =0x =()()()20g x ax x f f x =+--10a -<<()g x []1,0-M m -解:(1)由,(2分)所以,所以,(4分)所以,所以.(5分)所以在处的切线方程为(6分)化为.(7分)(2)由(1)可得,(8分)所以,,两零点为 (9分)-+单调递减单调递增(11分)因为,(12分)所以时,,(13分)()3f x x x =-+()()3223031(1)2f f x x x -'-'=-+()()30012f f =-+''()02f '=()3f x x x =-+()06f =()y f x =0x =()620y x -=-260x y -+=()()()()22332006g x ax x f f x ax x f x x x ax =-++-⎛=-+--+ ⎝=-++()22323()3a g x x ax x x =-+=--'10a -<<1222,0,033a x x ⎛⎫=∈-= ⎪⎝⎭x 21,3a ⎡⎤-⎢⎥⎣⎦2,03a ⎡⎤⎢⎥⎣⎦()g x '()g x ()60g =()()7106g a g =+>=-[]1,0x ∈-()()max 17M g x g a==-=+(14分)所以设,(15分)(16分)所以在上单调递增,因为,所以的取值范围为.(17分)()n 33mi 3238462742769a m g x g a a a ⎛⎫== ⎪⎝=-++=+⎭()33472741276h a M m a a a a -=-==+--++10a -<<()22449433'1()()()0994922h a a a a a =-+=--=-+->()h a 10a -<<()4127h -=()01h =M m -4,127⎛⎫⎪⎝⎭。

山东省临沂市2024-2025学年高三上学期期中教学质量检测数学试题

山东省临沂市2024-2025学年高三上学期期中教学质量检测数学试题

临沂市高三教学质量检测考试数学2024.11本试卷共4页,19题,全卷满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,,则( )A .B .C .D .2.已知非零实数a ,b 满足,则( )A .B .C .D .3.在平行四边形ABCD 中,点E 为线段CD 的中点,记,,则( )A .B .C .D .4.已知函数,则不等式的解集是( )A .B .C .D .5.已知,,则( )ABCD .16.“”是“不等式在上恒成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知函数()与函数的图象在区间内交点的坐标分别为{}26A x x x =-<{}3,2,1,1,2,3B =---A B = {}2,1,1,2,3--{}2,1,1,2--{}1,1,2,3-{}1,1,2-a b >11a b<22a b>33a b>22ac bc>AB m = AD n =AE = 12m n - 12m n- 12m n + 12m n+ ()341xf x x =--()0f x >()0,2()(),02,-∞+∞ ()1,0-()(),10,-∞-+∞ ()1sin 3αβ-=tan 2tan αβ=()sin αβ+=3a <220x ax -+≥()0,+∞sin 1y x ω=+0ω>1221x x y +=+()2π,2π-,,…,,则的值可能是( )A .2B .4C .5D .88已知数列的前n 项和为,,,,(),则( )A .341B .340C .61D .60二、选择题:本题共3小题,每小题6分,共18分。

2024-2025北京海淀高三(上)期中数学试卷及答案

2024-2025北京海淀高三(上)期中数学试卷及答案

2024北京海淀高三(上)期中数 学2024.11本试卷共6页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合{|01}A x x x =≤>或,{2,0,1,2}B =−,则A B =(A ){2,2}−(B ){2,1,2}− (C ){2,0,2}−(D ){2,0,1,2}−(2)若复数z 满足i 1i z ⋅=−,则z =(A )1i −− (B )1i −+ (C )1i −(D )1i +(3)若0a b <<,则下列不等式成立的是(A )22a b < (B )2a ab < (C )b aa b> (D )2b a a b +>(4)已知sin ()cos xf x x=,则π()4f '(A )1 (B )2 (C )1−(D )2−(5)下列不等式成立的是(A )0.3log 0.21< (B )0.20.31< (C )0.2log 0.30<(D )0.30.21>(6)若2,,()23,x x a f x x x a ⎧≥⎪=⎨+<⎪⎩为增函数,则a 的取值范围是(A )[1,)+∞(B )[3,)+∞(C )[1,3]−(D )(,1][3,)−∞−+∞(7)若向量(,1)x =a ,(1,)y =−b ,则下列等式中,有且仅有一组实数,x y 使其成立的是(A )0⋅=a b (B )||||2+=a b (C )||||=a b (D )||2+=a b(8)大面积绿化增加了地表的绿植覆盖,可以调节小环境气温,好的绿化有助于降低气温日较差(一天气温的最高值与最低值之差).下图是甲、乙两地某一天的气温曲线图. 假设除绿化外,其它可能影响甲、乙两地温度的因素均一致,则下列结论中错误..的是(A )由上图推测,甲地的绿化好于乙地(B )当日6时到12时,甲地气温的平均变化率小于乙地气温的平均变化率 (C )当日12时到18时,甲地气温的平均变化率小于乙地气温的平均变化率 (D )当日比存在一个时刻,甲、乙两地气温的瞬时变化率相等(9)设无穷等差数列的前项积为n T . 若10a <,则“n T 有最大值”是“公差0d ≥”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(10)已知数列{}n a 满足1(1)n n n a ra a +=−(1,2,3,n =),1(0,1)a ∈,则(A )当2r =时,存在n 使得1n a ≥ (B )当3r =时,存在n 使得0n a <(C )当3r =时,存在正整数N ,当n N >时,1n n a a +> (D )当2r =时,存在正整数,当n N >时,112024n n a a +−<第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三上学期期中数学试卷
一、选择题
1. “x<﹣1”是“x2﹣1>0”的()
A . 充分而不必要条件
B . 必要而不充分条件
C . 充要条件
D . 既不充分也不必要条件
2. 已知U={y|y=log2x,x>1},P={y|y= ,x>2},则∁UP=()
A . [ ,+∞)
B . (0,)
C . (0,+∞)
D . (﹣∞,0)∪(,+∞)
3. 在等差数列{an}中,an>0,且a1+a2+…+a10=30,则a5+a6的值()
A . 3
B . 6
C . 9
D . 12
4. 若直线y=kx与圆(x﹣1)2+y2=1的两个交点关于直线x﹣y+b=0对称,则k,b的值分别为()
A . k=﹣1,b=1
B . k=﹣1,b=﹣1
C . k=1,b=1
D . k=1,b=﹣1
5. 已知函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是()
A . 最小正周期为π的奇函数
B . 最小正周期为的奇函数
C . 最小正周期为π的偶函数
D . 最小正周期为的偶函数
6. 若关于x的方程x|x﹣a|=a有三个不相同的实根,则实数a的取值范围为()
A . (0,4)
B . (﹣4,0)
C . (﹣∞,﹣4)∪(4,+∞)
D . (﹣4,0)∪(0,4)
7. 设函数f(x)= (a<0)的定义域为D,若所有点(s,f(t)(s,t∈D)构成一个正方形区域,则a的值为()
A . ﹣2
B . ﹣4
C . ﹣8
D . 不能确定
8. 已知双曲线=1(a>0,b>0),A1,A2是实轴顶点,F是右焦点,B(0,b)是虚轴端点,若在线段BF上(不含端点)存在不同的两点p1(i=1,2),使得△PiA1A2(i=1,2)构成以A1A2为斜边的直角三角形,则双曲线离心率e 的取值范围是()
A . (,+∞)
B . (,+∞)
C . (1,)
D . (,)
二、填空题
9. 已知sinα= ,α∈(0,),则cos(π﹣α)=________,cos2α=________.
10. 若(2x2+1)5=a0+a1x2+a2x4+…+a5x10,则a3的值为________.
11. 甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是________.
12. 已知函数f(x)= ,则f(f(﹣1))=________,|f(x)| 的解集为________.
13. 若实数x,y满足x2+x+y2+y=0,则x+y的范围是________.
14. 在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中点,那么(﹣
)• =________;若E是AB的中点,P是△ABC(包括边界)内任一点.则的取值范围是________
15. 圆锥的轴截面SAB是边长为2的等边三角形,O为底面中心,M为SO的中点,动点P在圆锥底面内(包括圆周).若AM⊥MP,则P点形成的轨迹的长度为________
三、解答题
16. 如图,在长方体ABCD﹣A1B1C1D1中,棱AD=DC=3,DD1=4,E是A1A 的中点.
(1)求证:A1C∥平面BED;
(2)求二面角E﹣BD﹣A的正切值.
17. △ABC中,已知角A,B,C所对的边分别为a,b,c,+
= ,b=4,且a>c.
(1)求ac的值;
(2)若△ABC的面积为2 ,求a,c的值.
18. 已知f(x)=x3+3ax2+bx+a2(a>1)在x=﹣1时有极值0.
(1)求常数a,b的值;
(2)方程f(x)=c在区间[﹣4,0]上有三个不同的实根时,求实数c的范围.
19. 如图,设椭圆C1:=1(a>b>0),长轴的右端点与抛物线C2:y2=8x的焦点F重合,且椭圆C1的离心率是.
(1)求椭圆C1的标准方程;
(2)过F作直线l交抛物线C2于A,B两点,过F且与直线l垂直的直线交椭圆C1于另一点C,求△ABC面积的最小值,以及取到最小值时直线l的方程.
20. 数列{an}满足a1=2,an+1=an2+6an+6(n∈N×)
(1)设Cn=log5(an+3),求证{Cn}是等比数列;
(2)求数列{an}的通项公式;
(3)设bn= ﹣,数列{bn}的前n项和为Tn,求证:﹣≤Tn<﹣.。

相关文档
最新文档