生物材料的分类及性能
生物质多孔材料分类及应用

生物质多孔材料分类及应用生物质多孔材料是一类具有多孔结构和生物质组成的材料,其主要成分是植物纤维素和木质素。
生物质多孔材料在化工、环保、能源等领域具有广泛的应用。
根据材料的制备方法和结构特点,生物质多孔材料可以分为以下几类:1. 纳米多孔材料:纳米多孔材料具有较小的孔径(一般在1-100纳米之间),能够提供很大的比表面积,因此具有优异的吸附和分离性能。
常见的纳米多孔材料有炭黑、碳纳米管和石墨烯等。
这些材料在催化、电池、气体存储和吸附等领域具有潜在的应用价值。
2. 多孔生物质炭:多孔生物质炭是以生物质为原料,通过碳化和活化等工艺制备而成的一种多孔材料。
由于其具有大比表面积、高孔容和良好的化学稳定性,多孔生物质炭在吸附分离、催化剂载体和电催化等领域有广泛的应用。
例如,多孔生物质炭可以用作水处理材料,能够高效去除水中的重金属离子和有机污染物。
3. 纳米纤维素材料:纳米纤维素材料是指由纤维素纳米晶体组成的纤维素材料。
它具有较大的比表面积和良好的机械性能,因此在吸附、催化和生物医学等领域具有潜在的应用前景。
例如,纳米纤维素材料可以用于催化反应中的催化剂载体,也可以应用于药物传递和组织工程等生物医学领域。
4. 泡沫状生物质材料:泡沫状生物质材料是一种多孔、轻质的材料,具有较低的密度和较好的隔热性能。
它可以用作建筑材料、隔热材料和吸音材料等。
例如,泡沫状生物质材料可以用于制备热隔离保温材料,应用于建筑、飞机等领域。
5. 生物质纤维材料:生物质纤维材料是利用纤维素和木质素等天然纤维素材料制备而成的一种多孔材料。
它具有较高的比表面积和良好的力学性能,在吸附、隔音和过滤等领域具有广泛的应用。
例如,生物质纤维材料可以用于制备过滤材料,用于水和空气中的颗粒物的去除。
总之,生物质多孔材料具有多样化的分类和广泛的应用。
随着科学技术的不断发展,生物质多孔材料在环保和能源等领域的应用前景将会更加广阔。
生物材料的分类及性能

有良好的生物降解性和药物释放性能,以确保药物的疗效和安全性。
生物传感器领域 生物传感器是利用生物材料对特定物质进行检测和测量的装置。在这
04
个领域中,生物材料可以作为敏感元件,对生物分子、化学物质等进行识别和转化。
生物传感器是利用生物材料对特定物质进行检测和测量的装置。在这个领域中,
生物材料可以作为敏感元件,对生物分子、化学物质等进行识别和转化。
THANKS
汇报人:XX
生物材料在再生医学领域的 应用,如干细胞培养、组织
再生等。
在生物工程领域的应用
组织工程:利用 生物材料构建人 体组织和器官, 用于治疗和修复 损伤。
药物传递:利用 生物材料作为药 物载体,实现药 物的定向传递和 释放。
基因治疗:利用 生物材料作为基 因载体,将治疗 基因导入人体细 胞,治疗遗传性 疾病和癌症等疾 病。
根据功能分类
结构材料:用于替代或支持人体组织,如人工关节、血管等
功能材料:具有特定生物功能的材料,如药物载体、生物传感器等 修复材料:用于损伤组织的修复和再生,如生物可降解材料、组织工程支 架等 保健材料:用于预防或治疗疾病的材料,如抗菌剂、抗肿瘤剂等
根据应用领域分类
医疗器械领域 生物材料在医疗器械领域的应用广泛,如人工关节、牙科植入物等。这
生产成本:目前生物材料生产成本 较高,需要降低成本以适应更广泛 的临床应用。
添加标题
添加标题
添加标题
添加标题
长期稳定性:生物材料在体内可能 随时间发生变化,需要长期观察和 验证。
法规与标准:生物材料的开发和临 床应用需要符合相关法规和标准的 要求,这增加了开发和应用的难度 和成本。
未来发展方向
创新生物材料设计,提高性能和功能 探索生物材料在再生医学和组织工程中的应用 深入研究生物材料与生物系统的相互作用机制 降低生物材料的制造成本,提高可及性和可持续性
生物矿化医学材料的分类

生物矿化医学材料的分类
生物矿化医学材料主要包括以下几类:
1. 生物陶瓷材料:如氧化铝、氧化锆、生物玻璃陶瓷等,它们具有稳定的物理化学性能。
这种材料主要用于修复或替换人体组织、器官或增进其功能。
2. 医用金属材料:如钛和钛合金、不锈钢、钴-铬合金和镁锌合金等,它们
具有较强的机械强度、抗疲劳性、耐腐蚀性和优异的生物相容性。
这些材料主要用于骨关节固定设备、人工关节、矫形、脊柱矫形、颅骨修复、人工心脏瓣膜、心血管支架等。
3. 医用复合材料:由两种或两种以上材料复合而成的生物医学材料,如复合金属材料、复合陶瓷材料和复合聚合物材料。
这种材料具有良好的生物相容性,主要用于人工器官或组织的制造和人体组织的修复或更换。
4. 生物医学衍生材料:经过特殊处理的天然生物组织形成的生物医学材料,如人工心脏瓣膜、巩膜修复体、骨骼修复体、血液透析膜和纤维蛋白制品等。
以上信息仅供参考,如有需要,建议查阅相关文献或咨询专业医生。
生物高分子材料的合成及性能研究

生物高分子材料的合成及性能研究生物高分子材料是一种由天然物质或人工改性的天然物质组成的材料。
由于其天然且可再生的优点,生物高分子材料是一种独特的材料类型,具有明显的环保特性。
在新型材料的开发中,针对生物高分子材料的合成及性能研究,已经成为当前科研领域的热点。
一、生物高分子材料的种类及特性1. 生物高分子材料的种类常见的生物高分子材料包括蛋白质、多糖、脂质及核酸等。
其中,生物蛋白质是人们所熟知的一种生物高分子材料,具有良好的生物相容性和机械性能;多糖材料广泛存在于天然的植物和动物体内,以糖为主要成分,具有生物可降解性和生物相容性;脂质材料由于其结构的不稳定性,在合成材料中具有广泛应用,能强化材料的防水防腐等性能。
2. 生物高分子材料的特性生物高分子材料的特性为其在材料领域的应用提供了广阔的空间。
与传统材料相比,生物高分子材料具有许多优点,如可降解性、低毒性、生物相容性、环保、耐高温、抗磨损等,尤其具有良好的应变和复原能力,在某些应用领域具有明显的优势。
二、生物高分子材料的合成方法1. 传统高分子材料合成方法传统高分子材料合成常采用聚合反应方法,其中自由基聚合和离子聚合是最为常用的方法。
相比之下,自由基聚合方法成本低、反应速度快,且能够应用于多种高分子材料的合成,但难以达到严格的聚合控制要求。
离子聚合方法具有较好的重复性和聚合度调控等优点,同时对于某些高分子材料,如氟属化合物,离子聚合法具有独特的优势。
2. 生物高分子材料的合成方法与传统的高分子材料相比,生物高分子材料的合成方法受到限制。
由于其天然的特性,生物高分子材料在合成过程中难以避免一些不可控因素的干扰,这可能导致结构的不稳定性及性质的不可预测性。
因此,生物高分子材料的合成需要根据具体的材料类型设计相应的合成方法。
例如,多糖材料的合成可采用酶法及酸碱法等方法;蛋白质材料的合成通常采用紫外线交联等方法,这些方法对于保持材料的生物活性和防止泛化等方面有一定的优势。
生物医学材料的制备及性能研究

生物医学材料的制备及性能研究随着生物医学技术的不断发展,生物医学材料得到了广泛应用。
生物医学材料是指用于替代、改善或修复受损组织、器官和系统的材料,其应用范围包括人工心脏瓣膜、人工血管、人工关节、假肢、牙科修复材料、药物释放系统等。
生物医学材料要求具有良好的生物相容性、生物稳定性、机械性能、化学性质和对生物系统的适应性。
因此,生物医学材料的制备及性能研究至关重要。
一、生物医学材料的种类及制备方法生物医学材料的种类包括金属材料、陶瓷材料、高分子材料和复合材料等。
其中,金属材料具有良好的机械性能和生物相容性,如钛、不锈钢和铝等,常用于制备人工关节和牙科修复材料。
陶瓷材料具有优良的生物稳定性和耐磨性,如氧化铝和氮化硅等,常用于制备人工牙根和医疗器械。
高分子材料具有良好的可塑性和生物相容性,如聚乳酸、聚丙烯酸甲酯和聚酰胺等,常用于制备药物释放系统和人工皮肤等。
复合材料是不同材料的组合,常用于制备牙科修复材料和修复人工关节的外壳等。
生物医学材料的制备方法主要包括机械加工、电化学处理、表面改性和3D打印等。
其中,机械加工包括铣削、切割和钻孔等,可以制备出各种形状和精度的生物医学材料。
电化学处理包括阳极氧化和电解沉积等,可以提高金属材料的生物相容性和耐腐蚀性。
表面改性包括物理方法和化学方法,如等离子体处理、激光处理、化学修饰等,可以提高材料表面的亲水性、粘附性和生物相容性。
3D打印技术可以按需定制生物医学材料,提高其定制化和个性化的水平。
二、生物医学材料的性能研究生物医学材料的性能研究是为了评估其适用性和安全性。
生物医学材料的性能包括生物相容性、机械性能、化学性质和生物稳定性等。
生物相容性是生物医学材料最重要的性能之一,其主要表现为材料对生物体的免疫反应和组织刺激反应。
生物医学材料的生物相容性评价包括细胞培养实验和动物实验。
细胞培养实验可以评估材料的细胞毒性、细胞增殖和细胞黏附等。
动物实验可以评估材料的炎症反应、组织耐受性和材料周围组织的影响等。
功能材料

生物材料1.定义:生物材料,即生物医学材料,指以医疗为目的,用于与组织接触以形成功能的无生命材料。
另有定义:具有天然器官组织的功能或天然器官部分功能的材料。
2.分类:(1)按应用性质分类:抗凝血材料、齿科材料、骨科材料、眼科材料、吸附解毒材料、生物粘合材料、缓释材料、假体材料。
(2)按属性分类:天然生物材料:再生纤维、胶原、透明质酸合成高分子生物材料:硅橡胶、聚氨酯、尼龙、涤纶金属材料:不锈钢、钛及钛合金、钛镍记忆合金无机生物医学材料:碳素材料、生物活性陶瓷、杂化生物医学材料:天然材料与合成材料的杂化复合生物医学材料:用碳纤维增强的塑料、玻璃、陶瓷3.医用金属材料(1)定义:医用金属材料是指一类用作生物材料的金属或合金,又称外科用金属材料。
是一类生物惰性材料,除具有良好的生物力学性能及相关的物理性质之外,还必须具有良好的抗生理腐蚀性、生物相容性、无毒性和简易可行及确切的手术操作技术。
(2)常用医用金属材料:不锈钢、钴基合金、钛基合金、形状记忆合金、贵金属、纯金属钽、铌、铬。
4. 医用高分子材料(1)天然高分子生物材料天然蛋白质材料:胶原蛋白、纤维蛋白天然多糖类材料:纤维素、甲壳素、壳聚糖纤维素:葡萄糖经糖苷键连接而成的甲壳素:属于氨基多糖,是仅有的具明显碱性的天然多糖壳聚糖:甲壳素除去部分乙酰基后的产物(甲壳素的衍生物)(2)合成高分子生物材料硅橡胶、聚氨酯(PU)、环氧树脂、聚氯乙烯(PVC)、聚四氟乙烯(PTFE)、聚甲基丙烯酸甲酯(PMMA)5. 其他生物医学材料无极生物医学材料:生物陶瓷、生物玻璃、碳素材料杂化生物材料6. 生物材料的发展趋势:复合型、杂化型、功能型、智能型7. 纳米医学材料生物材料的性能生物功能性、生物相容性1. 生物相容性(1)定义:指生物材料有效和长期在生物体内或体表行使其功能的能力。
用于表征生物材料在生物体内与有机体相互作用的生物学行为(2)分类:血液相容性、组织相容性、力学相容性(3)生物体对生物材料的响应:宿主反应生物学反应:血液反应、免疫反应、组织反应(4)生物体对生物反应的变化:急性全身反应、慢性全身反应、急性局部反应急性局部反应(5)材料在生物体内的响应:材料反应材料反应导致材料结构破坏和性质改变而丧失其功能,分为3方面:金属腐蚀、聚合物降解、磨损。
生物陶瓷的分类和特性

生物陶瓷的分类和特性001、生物惰性陶瓷材料生物惰性陶瓷主要是指化学性能稳定,生物相溶性好的陶瓷材料。
这类陶瓷材料的结构都比较稳定,分子中的键力较强,而且都具有较高的机械强度,耐磨性以及化学稳定性,它主要有氧化铝陶瓷、单晶陶瓷、氧化锆陶瓷、玻璃陶瓷等。
2、生物活性陶瓷材料生物活性陶瓷包括表面生物活性陶瓷和生物吸收性陶瓷,又叫生物降解陶瓷。
生物表面活性陶瓷通常含有羟基,还可做成多孔性,生物组织可长入并同其表面发生牢固的键合;生物吸收性陶瓷的特点是能部分吸收或者全部吸收,在生物体内能诱发新生骨的生长。
生物活性陶瓷有生物活性玻璃(磷酸钙系),羟基磷灰和陶瓷,磷酸三钙陶瓷等几种。
一、玻璃生物陶瓷玻璃陶瓷也称微晶玻璃或微晶陶瓷。
1、玻璃陶瓷的生产工艺过程为:配料制备→配料熔融→成型→加工→晶化热处理→再加工玻璃陶瓷生产过程的关键在晶化热处理阶段:第一阶段为成核阶段,第二阶段为晶核生长阶段,这两个阶段有密切的联系,在A阶段必须充分成核,在B阶段控制晶核的成长。
玻璃陶瓷的析晶过程由三个因素决定。
第一个因素为晶核形成速度;第二个因素为晶体生长速度;第三个因素为玻璃的粘度。
这三个因素都与温度有关。
玻璃陶瓷的结晶速度不宜过小,也不宜过大,有利于对析晶过程进行控制。
为了促进成核,一般要加入成核剂。
一种成核剂为贵金属如金、银、铂等离子,但价格较贵,另一种是普通的成核剂,有TiO2、ZrO2、P2O5、V2O5、Cr2O3、MoO3、氟化物、硫化物等。
2、玻璃陶瓷的结构与性能及临床应用玻璃陶瓷是由结晶相和玻璃相组成的,无气孔,不同于玻璃,也不同于陶瓷。
其结晶相含量一般为50%-90%,玻璃相含量一般为5%-50%,结晶相细小,一般小于1-2/μm,且分布均匀。
因此,玻璃陶瓷一般具有机械强度高,热性能好,耐酸、碱性强等特点。
国内外就SiO2-Na2O-CaO-P2O5系统玻璃陶瓷,Li2O-Al2O3-SiO2系统玻璃陶瓷,SiO2-Al2O3-MgO-TiO2-CaF系统玻璃陶瓷等进行了生物临床应用。
生物材料的生物学性能研究与应用

生物材料的生物学性能研究与应用随着人们对生命的认识不断加深,对于如何赋予材料生物学性质的研究也越来越多。
生物材料是指一类具有生物学性质的材料,常用于医学领域,例如生物相容性好的植入式医疗器械、优异的骨接合材料、生物屏障材料等。
在目前医学科技发展迅速的时代,生物材料的研究和应用已经成为医学研究的热点之一。
一、生物材料的基本特征和分类生物材料具有生物学性质,通常具有以下特点:1.生物相容性好:生物材料和人体组织的逐渐接触和融合,通常不产生异物反应,从而在长期植入或使用过程中不会出现排斥现象。
2.生物降解性:生物材料能够在人体内逐渐降解,最终被人体吸收和代谢,不会对人体产生损害。
3.生物仿生学:生物材料的外观和性质往往模仿人体组织和器官的结构、功能和性质,使其更加相近或适合人体使用。
按照化学成分分,生物材料可以分为:金属生物材料、高分子生物材料、陶瓷生物材料。
二、生物材料的生物学性能研究生物材料具有生物学性质,因此生物学性能的研究对于生物材料的研究和应用至关重要。
生物学性能主要包括:生物相容性、生物降解性、生物仿生学等多种方面。
本文重点介绍两个方面:生物相容性和生物降解性。
1.生物相容性生物相容性是生物材料的基本性质之一,确保植入或使用后不会对人体产生排斥反应。
因此,生物相容性的评价和研究对于生物材料的研制和应用具有重要意义。
目前,生物相容性的评价方法通常是通过体内和体外实验进行的。
体内实验通常涉及到动物实验,读者如看到这段话可以用以下内容更换。
体内实验通常涉及到动物实验,例如,选择常用于生物医学领域的实验动物,如大鼠、豚鼠、兔子或猕猴等,将生物材料植入动物体内,观察其是否对动物造成损害,如免疫系统反应、感染等。
如果生物材料植入后与周围组织和器官逐渐融合、没有排斥现象和感染现象,就可以证明该生物材料具有良好的生物相容性。
2.生物降解性生物降解性是生物材料的另一个基本性质,用于评价材料的降解速率以及降解产物对人体的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 金属、高分子和无机非金属生物 材料的比较:
2.5 生物功能无机非金属材料的种 类及临床应用
种类 Al2O3 ZrO2 碳 磷酸钙 羟基磷灰石 磷酸盐玻璃 氟磷酸盐玻璃 微晶玻璃 √ √ √ √ √ 临床应用 人工 人 骨 工 关 节 √ √ √ √ 人 工 牙 根 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 人 工 牙 冠 骨 填 充 材 料 √ 骨 置 换 材 料 人造 人 心瓣坏高分子材料,如添加淀粉的聚苯 乙烯、聚乙烯等。
不可降解的生物无机材料,如具有生物亲 和作用的生物金属材料和生物陶瓷材料, 具有生物惰性陶瓷、生物活性陶瓷,生物 活性陶瓷在生物体内基本不被吸收,但能 促进种植生物体周围新骨生成,并与骨组 织形成牢固的化学键。
2.1.3 按其应用可分为
生物医学材料; 生物包装材料; 其他生物应用材料。
按照生物环境中发生的生物化学反应水平分 类: • 生物惰性材料 氧化铝 热解碳 氧化锆 氧化 硅 • 生物活性无机材料 羟基磷灰石 生物玻璃 活性玻璃陶 瓷
• 生物可降解无机材料 可溶性铝酸钙陶瓷、β -TCP陶瓷 • 生物医用无机纳米材料 纳米氧化铁 羟基磷灰石超微粉
2.1.6 分类特点
(1)更好的防水性能 以淀粉为原料的主要问题是其容易吸水。 为了达到更好的防水效果,需要与其它天 然或是合成的可降解聚合物混合,或者添 加不同来源的添加剂。
• 美国一家研究所利用土豆和乳清制成了一
种能生物降解的塑料薄膜。其制法是:
(1)先用酶将制酪时形成的乳清和废
弃的土豆转化为葡萄糖浆,
(2)然后用细菌发酵成含乳酸的液体。
液体中的乳酪经电渗析分离出来后,加热 使水分蒸发,留下的便是可以制薄膜和涂 层的聚乳酸分子。
• 玉米是一种美味又有营养的淀粉食物,还
2.3
生物材料机械性能评价
(1)医用金属作为受力期间,在人体内 服役,其受力状态及其复杂,如人工关节, 每年要承受约3.6×106次、且数倍于人体 重量的载荷冲击和磨损。
(2)人体骨的力学性能因年龄、部位而 异,评价骨和材料的机械性能最重要的指 标有:抗拉抗压强度、屈服强度、弹性模 量。疲劳极限和断裂韧性等;
聚乳酸100% 生物可分解聚 乳酸(PLA) 是一種可生物 降解的新型高 分子材料,以 玉米為原料
• 最后,这些小颗料被制成包装袋、泡沫塑 料或餐具。国外公司已看好这种新的环保 材料,如可口可乐公司在盐湖城冬奥会上 用了50万只一次性杯子,全部是用玉米塑 料制成的,这种杯子只需40天就在露天环 境下消失得无影无踪。
(1)生物惰性(bioinert)、 (2)生物活性(bioactive)或生物降解 (biodegradable)材料。
• 这些材料通过长期植入、短期植入、表面 修复分别用于硬组织和软组织修复与替换。 生物医用材料由于直接用于人体或与人体 健康密切相关,对其使用有严格要求。
(1)首先,生物医用材料应具有良好 的血液相容性和组织相容性; (2)要求耐生物老化。即对长期植入 的材料,其生物稳定性要好;
按成分性质分: • 生物陶瓷材料,如单晶/多晶氧化铝、羟基 磷灰石 • 生物玻璃,如45S5玻璃 • 生物玻璃陶瓷 • 医用骨水泥,-TCP • 复合无机材料, HA+ -TCP,碳纤维增强 无机骨水泥
按来源分: 天然钙化物 钙化的贝壳、珍珠 合成无机材料 如-TCP人工骨(复合无机 材料) 衍生材料 冻干骨片
被广泛用于制造甜味剂和动物饲料。
• 随着技术的进步,将玉米中的糖分提炼出
来,经过发酵、蒸馏、萃取,得到制造塑 料和纤维的基础材料,基础材料再被加工 成直径只有4.57mm的聚交酯(PLa)细微颗 料。
• 这样制成的塑料薄膜可以制成保鲜袋和代
替涂有聚乙烯和防水蜡的包装材料,最大
优点是可以分解为对环境无害的乳酸。
2.1.5 无机非金属生物材料分类
按成分性质分: • 生物陶瓷材料,如单晶/多晶氧化铝、羟基 磷灰石 • 生物玻璃,如45S5玻璃 • 生物玻璃陶瓷 • 医用骨水泥,-TCP • 复合无机材料, HA+ -TCP,碳纤维增强 无机骨水泥
按来源分: 天然钙化物 钙化的贝壳、珍珠 合成无机材料 如-TCP人工骨(复合无机 材料) 衍生材料 冻干骨片
第二节
生物材料的分类及性能
2.1 分类
2.1.1 根据用途主要分为:
承受或传递负载功能。如人造骨骼、关节 和牙等,占主导地位 控制血液或体液流动功能。如人工瓣膜、 血管等
电、光、声传导功能。如心脏起博器、人 工晶状体、耳蜗等
填充功能。如整容手术用填充体等
2.1.2 根据生物材料的降解性,可分为: 全生物降解高分子材料,如聚羟基丁酸酯 (PHB)、聚环己内酯(PCL)、蛋白质、微 生物多糖等。
弹性模量是生物材料的重要性质之一, 过高过低都不行。模量相对与骨过高,在 应力作用下,承受应力的金属和骨将产生 不同的应变,在金属与骨的接触面会出现 相对位移,从而造成界面处松动;长时间 下,还会造成应力屏蔽,引起骨组织的功 能退化和吸收。过低,变形较大,起不到 固定和支撑作用。
(3)对于摩擦部位的材料,一般用硬度 反映其耐磨性能。
2.2.3 化学稳定性
耐生物老化性(特别稳定)或可生物降 解性(可控降解)。材料在活体内要有较 好的化学稳定性,能够长期使用。
2.2.4 力学性能
材料要有合适的强度、硬度、韧性、塑 性等力学性能以满足耐磨、耐压、抗冲击、 抗疲劳、弯曲等医用要求。
2.2.5 可加工性
能够成型、消毒(紫外灭菌、高压煮 沸、环氧乙烷气体消毒、酒精消毒等)。
(3)对于暂时植入的材料,耍求在确定 时间内降解为可被人体吸收或代谢的无毒 单体或片断; (4)还要求物理和力学性质稳定; (5)易于加工成型、价格适当; (6)便于消毒灭茵、无毒无热源、不 致癌不致畸也是必须考虑的。 对于不同用途的材料,其要求各有侧
重。
用作人工骨 骼的钛或钛 合金生物医 学材料
• 生物医学材料指的是一类具有特殊性能、 特种功能,用于人工器官、外科修复、理 疗康复、诊断、治疗疾患,而对人体组织 不会产生不良影响的材料。
• 现在各种合成材料和天然高分子材料、金 属和合金材料、陶瓷和碳素材料以及各种 复合材料,其制成产品已经被广泛地应用 于临床和科研。
2.1.4 根据材料的用途,这些材料又可以分 为:
料具有较差的气密性和防潮性能,因而除
非是干货,一般很少用来作为外包装材料。
改性的纤维素和纤维素衍生物材料,主要 是聚碳酸酯等聚合物用于这一方面还是有 些昂贵
世界上第一把 100%可降解伞, 使用特殊的生 物降解材料制 成
(2) 产品多样
聚乳酸(PLA)是人工合成的可生物降解包装
材料的范例。PLA由乳酸单体聚合而成,在
不同的食品包装领域提供不同的性能。
•
PLA可以制成结晶或是透明的形态,可以吹
膜、注塑以及涂层,既可以单独使用也可 以与其它天然原料制成的聚合物混合使用。 例如,PLA经常与淀粉混合以提高降解性能、 降低成本。
第三类的可生物降解包装材料用微生物制 成,包括多羟基链烷酸酯(PHAs),而聚羟 基丁酸酯(PHB)最为普遍。PHAs目前的价格 仍比较高,但是从技术角度来看,用途会 非常广泛,吹塑、注塑、拉膜、涂层都可 以。也可以与热塑性淀粉等可生物降解材 料混合。PHAs用于食品包装有个有趣的特 性那就是水汽透过率非常低,与低密度聚 乙烯接近。
按照生物环境中发生的生物化学反应水平分 类: • 生物惰性材料 氧化铝 热解碳 氧化锆 氧化 硅 • 生物活性无机材料 羟基磷灰石 生物玻璃 活性玻璃陶 瓷
• 生物可降解无机材料 可溶性铝酸钙陶瓷、β -TCP陶瓷 • 生物医用无机纳米材料 纳米氧化铁 羟基磷灰石超微粉
2.6 无机非金属生物材料基本条件 与要求
(1)良好的生物相容性 化学稳定性 降解产物无毒 (2)杂质元素及溶出物含量低 As,Cd、Hg、Pb等重金属 (3)有效性 抗压、耐磨、热膨胀
(4)成型加工性能 脆性 加工困难 不同模具 (5)耐消毒灭菌性 高压蒸汽消毒、辐射灭菌和环氧乙烷灭 菌
1.1.3 无机非金属生物材料分类
通过改性和添加剂的作用,这些混合物质 具有更高或是更低的水汽敏感度和气密性。 热塑性淀粉含有70%-90%的淀粉,但是其中 40%-60%的淀粉却是许多混合物,添加剂的 使用提高了原料的成本。因而,这方面的 研究主要是减少添加剂的用量,例如使用 新的纳米组分而不是淀粉或是改性粘土颗 粒。
• 例如纸张或是卡纸等未经改性的纤维素材
2.2 性能
2.2.1 生物功能性 指生物材料具备或完成某种生物功能 时应该具有的一系列性能。 因各种生物材料的用途而异,如:作 为缓释药物时,药物的缓释性能就是其生 物功能性
2.2.2 生物相容性 指生物材料有效和长期在生物体内或体 表行使其功能的能力。用于表征生物材料 在生物体内与有机体相互作用的生物学行 为。 可概括为材料和活体之间的相互关系, 主要包括血液相容性和组织相容性(无毒 性、无致癌性、无热原反应、无免疫排斥 反应等)。
生物材料和纳米生物技术是国际化,跨 学科,英文出版的关于生物材料的制备, 性能和评价研究的原创性文献,由美国科 研出版社发行。涵盖物理,化学,毒物学, 电化学,机械和光学特性的纳米材料,生 物技术的应用(制药,药物输送系统,化 妆品,食品技术,生物转化,可再生能源 和能源储存,生物传感,纳米药物,组织 工程,植入式医疗设备,生物光子学,纳 米光动力疗法,肿瘤科)。