平抛运动 三个重要的推论
高中物理:平抛运动知识点总结与解题技巧

一. 主要知识点:知识点1 平抛运动的特点1. 平抛运动的概念水平抛出的物体只在重力(不考虑空气阻力)作用下所做的运动。
2. 平抛运动的特点由于做平抛运动的物体只受重力的作用,由牛顿第二定律可知,其加速度恒为g,所以平抛运动是匀变速运动;又因为重力与速度不在一条直线上,故物体做曲线运动。
所以,平抛运动是匀变速曲线运动,其轨迹是抛物线。
3. 平抛运动的研究方法(1)运动的独立性原理:物体的各个分运动都是相互独立、互不干扰的。
(2)研究的方法:利用运动的合成与分解。
做平抛运动的物体在水平方向上不受力的作用,做匀速直线运动,在竖直方向上初速为零,只受重力,做自由落体运动。
所以平抛运动是水平方向上的匀速直线运动和竖直方向上的自由落体运动的合运动。
知识点2 平抛运动的规律以抛出点为坐标原点,水平抛出的方向为x轴的正方向,竖直向下的方向为y轴正方向,建立一个直角坐标系xOy。
1. 平抛运动物体的运动轨迹如图所示。
①水平方向上:物体不受力,所以水平方向上做匀速直线运动,有;②竖直方向上:物体只受重力作用,加速度恒为g,而初速度为零,所以做自由落体运动,有;③运动轨迹:。
所以平抛运动的轨迹为抛物线(一半)2. 平抛运动物体的位移如图所示。
①位移的大小:l=;②位移的方向:。
思考:能否用l求P点的位移?3. 平抛运动物体的速度如图所示速度的方向和大小:思考:①能否用求P点的速度?②由以上分析得:,是否有?二. 重难点分析:1、平抛运动的速度变化水平方向分速度保持,竖直方向,加速度恒为g,速度,从抛出点起,每隔△t时间的速度的矢量关系如图所示,这一矢量关系有两个特点:(1)任意时刻的速度水平分量均等于初速度;(2)任意相等时间间隔△t内的速度改变量均竖直向下,且△v=△=。
做平抛运动的物体,在任一时刻的速度都可以分解为一个大小和方向不变的水平速度分量和一个竖直方向随时间正比例变化的分量和构成速度直角三角形如图所示,通过几何知识容易建立起以及之间的关系,许多问题可以从这里入手解决。
平抛运动 一轮复习讲义

平抛物体的运动要点提示:一、平抛运动特点分析:受力特点:只受重力mg ;初速度特点:水平方向初速度0V运动规律:1、水平方向:匀速直线运动;2、竖直方向:自由落体运动;注意以下物理量:瞬时速度、水平分速度、竖直分速度、水平位移、竖直位移、合位移、水平速度与竖直推论 1 速度偏向角的函数值规律:平抛运动任意时刻的速度偏向角的三种函数值分别为:vv y =ϕs in vv v v x 0cos ==ϕ 2/tan x y v v x y ==ϕ 推论2 速度偏向角与位移偏向角的关系:平抛运动速度偏向角的正切函数ϕtan ,等于位移偏向角θ的正切的2倍,即θϕtan 2tan =推论3 速度方向反向延长线规律:平抛运动任意时刻的瞬时速度方向的三、平抛运动扩展:类似平抛运动:带电粒子垂直射入匀强电场,作类似平抛运动。
斜抛运动:初速度方向与水平方向有一定夹角,注意此部分内容也要引起重视,具体分析有例题。
例1、(基本问题分析)如图所示,由A 点以水平速度V 0抛出小球,落在倾角为θ的斜面上的B 点时,速度方向与斜面垂直,不计空气阻力,则此时速度大小V B = 飞行时间t=例2、如图所示,小球自A 点以某一初速做平抛运动,飞行一段时间后垂直打在斜面上的B 点,已知A 、B 两点水平距离为8米,θ=300,求A 、B 间的高度差。
例3、(2012上海)如图,斜面上a 、b 、c 三点等距,小球从a 点正上方O 点抛出,做初速为v 0的平抛运动,恰落在b 点。
若小球初速变为v ,其落点位于c ,则( ) A v 0<v <2v 0 (B )v =2v 0 (C )2v 0<v <3v 0 (D )v >3v 0例4、(平抛性质与斜面的结合,较难)在倾角为θ的斜面上以初速度v 0水平抛出一物体,经多长时间物AABAB体离斜面最远?离斜面的最大距离是多少?例5、物体做平抛运动时,它的速度的方向和水平方向间的夹角α的正切tg α随时间t 变化的图像是图1中的:( )例6.安徽省两地10届高三第一次联考水平抛出的小球,t 秒末的速度方向与水平方向的夹角为θ1,t +t 0秒末速度方向与水平方向的夹角为θ2,忽略空气阻力,则小球初速度的大小为( D ) A .gt 0(cos θ1-cos θ2) B .210cos cos θθ-gtC .gt 0(tan θ1-tan θ2)D .120tan tan θθ-gt例7、两同高度斜面,倾角分别为α、β小球1、2分别由斜面顶端以相同水平速度V 0抛出(如图),假设两球能落在斜面上,求两球的飞行时间之比。
平抛运动的推论及与斜面结合问题(课件)-高中物理(人教版2019必修第二册)

到斜面上
速度方向
vy=gt
θ 与 v0、t 的关系:
vx v0
tan θ= =
vy gt
分解位移,构建位移三角形
θ 与 v0、t 的关系:
运动情形
题干信息
vx v0
tan θ= =
vy 分析方法
gt
分解速度,构建速度三角形
分解位移,构建位移三角形
从空中水平抛出垂直落
从斜面水平抛出又落到
到斜面上
斜面上
这些极值点也往往是临界点。
2.求解平抛运动临界问题的一般思路
(1)找出临界状态对应的临界条件。
(2)分解速度或位移。
(3)若有必要,画出临界轨迹。
37°= ,
03
平抛运动的临界问题
1.临界点的确定
(1)若题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程中存在着临界点。
(2)若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程中存在着
“起止点”,而这些“起止点”往往就是临界点。
(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程中存在着极值,
C. a 的水平速度比 b 的小
D. b 的初速度比 c 的大
4.做平抛(或类平抛)运动的物体,设其位移偏向角为α,速度偏向角
为θ,则在任意时刻、任意位置有tanθ=2tanα。
证明:
v x v0
v y gt
x v0 t
1
y
gt 2
2
O
vy
gt
tan
vx
v0
1 2
gt
y 2
第五章 抛体运动
5.4.2平抛运动的推论
7平抛运动的两个推论

平抛运动的两个重要推论考点规律分析(1)推论一:做平抛运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点。
(2)推论二:做平抛运动的物体在任一时刻任一位置处,设其速度、位移与水平方向的夹角分别为θ、α,则tan θ=2tan α。
例题讲解如图所示,从倾角为θ的斜面上某点先后将同一小球以不同的初速度水平抛出,小球均落在斜面上,当抛出的速度为v 1时,小球到达斜面时速度方向与斜面的夹角为α1;当抛出速度为v 2时,小球到达斜面时速度方向与斜面的夹角为α2,则(不计空气阻力)( )A .当v 1>v 2时,α1>α2B .当v 1>v 2时,α1<α2C .无论v 1、v 2关系如何,均有α1=α2D .α1、α2的关系与斜面倾角θ有关[规范解答] 小球从斜面某点水平抛出后落到斜面上,小球的位移与水平方向的夹角等于斜面倾角θ,即tan θ=y x =12gt 2v 0t =gt 2v 0,小球落到斜面上时速度方向与水平方向的夹角为θ+α,则tan(θ+α)=v y v x =gt v 0,故可得tan(θ+α)=2tan θ,只要小球落到斜面上,位移方向与水平方向夹角就总是θ,则小球的速度方向与水平方向的夹角也总是θ+α,故速度方向与斜面的夹角就总是相等,与v 0的大小无关,C 项正确。
[完美答案] C运用推论二的关键是找准位移偏向角与速度偏向角,再分析判断问题。
举一反三作业1.如图所示,墙壁上落着两只飞镖,它们是从同一位置水平射出的,飞镖A与竖直墙壁成53°,飞镖B与竖直墙壁成37°,两者相距为d。
假设飞镖的运动是平抛运动,求射出点离墙壁的水平距离。
(sin37°=0.6,cos37°=0.8)答案24 7d解析飞镖与墙壁的夹角为平抛运动物体速度与墙壁所成的角,由于水平位移相同,故速度反向延长线必交于水平位移上的同一点。
平抛运动的五个推论

平抛运动的五个推论平抛运动是物理学中最基本的运动之一,常见于我们日常生活中的许多场合。
它是指当物体在水平平面上沿着一定初速度的轨迹飞行时,只受重力的垂直作用而不受其它外力作用的运动。
下面我们就通过五个推论来进一步了解平抛运动。
第一个推论是,平抛运动中,垂直方向受到的加速度是一定的。
这是因为重力始终垂直于运动轨迹,而加速度是与受力有关的,因此在平抛运动中,受到重力作用的物体的垂直方向加速度是不变的。
第二个推论是,平抛运动中,水平方向受到的加速度为0。
这是因为,在平抛运动中,物体在水平方向没有受到任何外力的作用,因此水平方向的运动速度是恒定的,加速度为0。
第三个推论是,平抛运动中,物体的轨迹为一个抛物线。
这是因为,物体在垂直方向上受到的加速度是不变的,而在水平方向上没有加速度。
因此,物体在运动中的路径就是一个抛物线。
第四个推论是,平抛运动中,物体的水平速度不断减小。
这是因为,物体在水平方向上没有受到任何作用力,而由于重力作用,在垂直方向上速度不断增加,导致物体所处的位置越来越高,同时也越来越远离出发点。
第五个推论是,平抛运动中,当物体飞行到最高点时,其垂直方向的速度为0。
这是因为,在到达最高点时,物体所处的高度达到峰值,重力作用向下,垂直速度开始减小,直到为0,然后又开始增加,但方向朝相反方向,导致物体向下运动。
同时,物体的总能量也达到最大值。
通过以上五个推论,我们可以进一步理解平抛运动的特点和规律。
在实际应用中,我们可以通过这些推论来预测物体的运动轨迹和速度等参数,也可以更好地掌握运动的规律,帮助我们更好地应对各种场景。
平抛物体的运动规律及其应用

3. 类平抛运动的求解方法
(1) 常规分解法:将类平抛运动分解为沿初速度方向 的匀速直线运动和垂直于初速度方向 ( 即沿合力的方 向)的匀加速直线运动,两分运动彼此独立、互不影 响、且与合运动具有等时性. (2) 特殊分解法:对于有些问题,可以过抛出点建立 适当的直角坐标系,将加速度分解为ax、ay,初速度 v0分解为vx、vy,然后分别在x、y方向列方程求解.
转台边缘的小物块随转台加速转动,
当转速达到某一数值时,物块恰好滑
离转台开始做平抛运动.现测得转台半径R=0.5 m,离 水平地面的高度H=0.8 m,物块平抛落地过程水平位移 的大小s=0.4 m.设物块所受的最大静摩擦力等于滑动 摩擦力,取重力加速度g=10 m/s2 求: (1)物块做平抛运动的初速度大小v0;
g 轨迹方程:y= 2·x2 2v0
三、平抛运动中的几个推论 1.水平射程和飞行时间 2h (1)飞行时间:t= ,只与 h、g 有关,与 v0 无关. g 2h (2)水平射程:x=v0t=v0 ,由 v0、h、g 共同决定. g 2.做平抛(或类平抛)运动的物体在任一时刻任一位置 处,设其末速度方向与水平方向的夹角为 α,位移与水平 方面的夹角为 θ,则 tan α=2tan θ.
【解析】(1)质点在 x 轴正方向上无外力作用做匀速 直线运动, y 轴正方向受恒力 F 作用做匀加速直线运动. F 15 由牛顿第二定律得:a= = m/s2=15 m/s2. m 1 设质点从 O 点到 P 点经历的时间为 t,P 点坐标为 1 2 (xP,yP),则 xP=v0t,yP= at , 2 yP 又 tan α= ,联立解得:t=1 s,xP=10 m,yP xP =7.5 m. (2)质点经过 P 点时沿 y 方向的速度 vy=at=15 m/s
完整版平抛运动知识点总结及解题方法归类总结

方向直线
合运动大小抛物线
与
方向
ɑ
的夹角
4.平抛运动的结论:
2h,由h,g决定,与v0没关。
V0
△V
①运行时间:t
V1
g
V2
△V
②水平射程:x v0
2h
,由h,g,v0
共同决定。
V3
△V
g
③任何相等的时间
t内,速度改变量
v =g t相等,且v
g t,方向竖直向下。
④以不同样的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速
三、平抛运动及其推论
一、 知 点牢固:
1.定 :①物体以必然的初速度沿 水平方向 抛出,②物体 在重力 作用下、加速度 重力加速度g, 的运 叫做平抛运 。
2.特点:①受力特点:只碰到重力作用。
②运 特点:初速度沿水平方向,加速度方向 直向下,大小g, 迹 抛物 。③运 性 :是加速度g的匀 速曲 运 。
知物体完成这段翱翔的时间是〔〕
A.B.C.
D.
解析:先将物体的末速度分解为水均分速度和竖直分速度〔如图乙所示〕。依照
平抛运动的分解可知物体水平方向的初速度是向来不变的,因此;又由于与斜面垂
直、与水平面垂直,因此与间的夹角等于斜面的倾角。再依照平抛运动的分解可知
物体在竖直方向做自由落体运动,那么我们
依照即可以求出时间
推论1:任意时辰的两个分速度与合速度构成一个矢量直角三角形。
[例1]从空中同一点沿水平方向同时抛出两个小球,它们的初速度大小分别为 和 ,初速度方向相反, 求经过多长时间两小球速度之间的
夹角为?
解析:设两小球抛出后经过时间,它
们速度之间的夹角为,与竖直方向的
抛体运动的规律——平抛运动的重要推论+讲义-2024学年高一下学期物理人教版(2019)必修第二册

第五单元第4节平抛运动的重要推论平抛运动物体的轨迹x=v0ty=gt2/2消去t可得y=g2v02x2令a=g2v02,则y=ax2(3)平抛运动的轨迹是抛物线说明: 二次函数的图象叫抛物线推论一:1.任意相等的时间内,速度变化量相同Δv=gt(大小、方向)2.速度偏转角正切值是位移偏转角正切值二倍tanθ=2tanα3.速度方向的反向延长线与x轴的交点为水平位移的中点推论二:1.运动时间t=√2ℎg即飞行时间仅取决于下落高度h,与v0无关2.落地的水平距离x=v0√2ℎg即水平距离只与h、v0有关3.落地速度v t=√v02+2gℎ即落地速度只与h、v0有关4.落地方向tanθ=v yv x=gtv0即落地方向只与h、v0有关【例1】质点从同一高度水平抛出,不计空气阻力,下列说法正确的是()A.质量越大,水平位移越大B.初速度越大,落地时竖直方向速度越大C.初速度越大,空中运动时间越长D.初速度越大,落地速度越大【练1】用m、v0、h分别表示平抛运动物体的质量、初速度和抛出点离水平地面的高度.在这三个物理量中,(1)物体在空中运动的时间是由________决定的;(2)在空中运动的水平位移是由________决定的;(3)落地时的瞬时速度的大小是由________决定的;(4)落地时瞬时速度的方向是由________决定的【例2】如图所示,在高为h=5m的平台边缘水平抛出小球A,同时在水平地面上距台面边缘水平距离为s=10m处竖直上抛小球B,两球运动轨迹在同一竖直平面内,不计空气阻力,重力加速度g=10m/s2。
若两球能在空中相遇,则下列说法正确的是()A.A球的初速度可能是8m/sB.B球的初速度可能是4m/sC.A球和B球的初速度之比为1:2D.A球和B球的初速度之比为2:1【练2】如图所示,x轴在水平地面上,y轴沿竖直方向。
图中画出了从y轴上沿x轴正向抛出的三个小球a、b和c 的运动轨迹,其中b和c是从同一点抛出的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识导学(复习旧知,引导新知)
1.平抛运动的处理方法:
,
水平方向是:
,竖直方向是:
。
2平抛运动的位移:
。
平抛运动的速度:
。
平抛运动的时间:
。
平抛运动水平射程:
。(只写一种求法)
知识导学(复习旧知,引导新知)
•平抛运动的处理方法:运动的合成与分解水 平方向是:匀速直线运动
系
。
• 2末速度的反向延长线与水平位移的交点是水平位
移的
。
• 3初速度的平抛物体落到倾角上的斜面上的时
间
。
三个重要结论的证明
•1平抛运动速度偏向角与位移偏转角之间的关系 tan=2tan •2末速度的反向延
长线与水平位移的 交点是水平位移的 中点 •3初速度的平抛物 体落到倾角上的 斜面上的时间 t= (2v0 tanθ)/g
①ψ1 >ψ2, 。 ②ψ1 <ψ2, 。 ③ ψ1 =ψ2,。 ④ 无法确定。
•例4.如图所示,P是水平面上的圆弧凹槽.从高台 边B点以速度v0水平飞出的小球,恰能从固定在某 位置的凹槽的圆弧轨道的左端A沿圆弧切线方向进 入轨道.O是圆弧的圆心,θ1是OA与竖直方向的夹 角,θ2是BA与竖直方向的夹角则( ) B
竖直方向:自由落体运动
•平抛运动的位移: s x02y02 (v0t)2(1 2gt2)2 速度: vvx 2vy 2v0 2(g)2 t
时间:t
2h
g
射程: 2h x v0t v0 g
“思”———自主学习,练习深思
• 平抛运动的三个重要推论(结合资料 思考):
• 1平抛运动速度偏向角与位移偏转角之间的关
• 例1. 图2为一物体做平抛运动的x-y图象。物体 从O点抛出,x、y分别表示水平和竖直位移。物 体在运动过程中的任一点P(x,y)速度的反向 延长线交于x轴的一点,则这一点的横坐标为( )
• A. x B. 0.5x C. 0.3x D. 无法确定
例2.在运动的合成与分解的实验中,红蜡块在长1m 的玻璃管中竖直方向能做匀速直线运动,现在某同 学拿着玻璃管沿水平方向做匀加速直线运动,并每 隔一秒画出了蜡块运动所到达的位置如图所示,若 取轨迹上的C(x,y)点作该曲线的切线(图中虚线) 交y轴于A点,则A点的坐标为( )
检测
【2010全国理综1第18题】 一水平抛出的小球落到一倾角为θ的斜面上时 ,其速度方向与斜面垂直,运动轨迹如图中 虚线所示。小球在竖直方向下落的距离与在
水平方向通过的距离之比为( )C
A.1/ tanθ B.1/2tanθ • C.tanθ D.2tanθ
•A.(0,0.6 y)
•B.(0,0.5 y)
•C.(0,0.4 y)
•D.不能确定
•例1题03:如图3,从倾角为θ的足够长斜面的A点先后将同一
个小球以不同的初速度水平向右抛出,第一次初速度为V1 ,球落到斜面上时速度方向与斜面的夹角为ψ1,第二次初速 度为V2,球落到斜面上时速度方向与斜面的夹角为ψ2,若 V1 >V2, ,则: ( )
若增大平抛初速度,小球仍落在斜面上 ,试说明α如何变化,并证明你的结论
方法总结
• 推导公式应用必须灵活,题目当中给的量 我们应尽可能的与推论中的量进行联系 (观其本质),从而应用公式。
• 推导公式是用原来平抛运动的性质推出来 的,凡是能用推导公式解出的题目,那么 用一般方法(运动的分解)一定能解出来
A.cotθ1tanθ2=2 B.tanθ1tanθ2=2 C.cotθ1cotθ2=2 D.tanθ1cotθ2=2
•例5.将一小球从倾角为θ(图中未画出)的斜面顶 点以一定的初速度沿水落在斜面 上时速度V1的大小。
(2)小球落在斜面上的速度 V1方向与斜面成α角,