扫描电镜的原理及应用 ppt课件
合集下载
扫描电镜原理及应用精品PPT课件

扫描电镜结构、原理及应用
人眼分辨率
A
0.2 mm
B
250 mm
2
眼睛
光学显微镜的局限
• 分辨率主要取决于照明源的波长
r
2
• 可见光的波长在400-700 nm之间,所以光镜的分 辨率>200 nm
• 电子束波长约为可见光波长的十万分之一,因此 采用电子束作为照明源可以大幅提高显微镜分辨 率。
Cr
12.71
Mn
0.30
Fe
86.99
元素面分布图
球 粒 成 分 均 为 钢 料
结论
在陶瓷成分中添加大量金属球粒, 球粒尺寸:50μm~ 150 μm, 球粒分布不均匀。 球粒成分Cr含量~12%,属于不锈钢, 符合国产牌号:x Cr12 。
样品 塑料
应用实例二
样品名称 :柴油机轴瓦 半圆形金属件
15
场发射式电子枪
2. 肖特基热场发射式 优点: - 钨(100)单晶上镀ZrO(氧化鋯)降低功函数 - 使用寿命与冷场相似 (> 1000 hrs). - 使用前不需要加热针尖. - 电子源尺寸小/亮度与冷场相似 . - 真空度要求比冷场低10倍 (10-9 torr). - 适用WDS, CL, EBIC, 等探测.
缺点: - 分辨率比冷场稍差. - 价格昂贵
扫描电镜成像原理
电子束与样品的相互作用
俄歇电子 二次电子 背散射电子
特征 X 光线 连续 X 光线 荧光 X 光线
阴极荧光
不同信号的用途
图像
信号
探测器
用途
SE(二次电子像) BSE(背散射电子像)
EDS(能谱)
二次电子
背散射电子
ETSE,VPSE, EPSE BSD
人眼分辨率
A
0.2 mm
B
250 mm
2
眼睛
光学显微镜的局限
• 分辨率主要取决于照明源的波长
r
2
• 可见光的波长在400-700 nm之间,所以光镜的分 辨率>200 nm
• 电子束波长约为可见光波长的十万分之一,因此 采用电子束作为照明源可以大幅提高显微镜分辨 率。
Cr
12.71
Mn
0.30
Fe
86.99
元素面分布图
球 粒 成 分 均 为 钢 料
结论
在陶瓷成分中添加大量金属球粒, 球粒尺寸:50μm~ 150 μm, 球粒分布不均匀。 球粒成分Cr含量~12%,属于不锈钢, 符合国产牌号:x Cr12 。
样品 塑料
应用实例二
样品名称 :柴油机轴瓦 半圆形金属件
15
场发射式电子枪
2. 肖特基热场发射式 优点: - 钨(100)单晶上镀ZrO(氧化鋯)降低功函数 - 使用寿命与冷场相似 (> 1000 hrs). - 使用前不需要加热针尖. - 电子源尺寸小/亮度与冷场相似 . - 真空度要求比冷场低10倍 (10-9 torr). - 适用WDS, CL, EBIC, 等探测.
缺点: - 分辨率比冷场稍差. - 价格昂贵
扫描电镜成像原理
电子束与样品的相互作用
俄歇电子 二次电子 背散射电子
特征 X 光线 连续 X 光线 荧光 X 光线
阴极荧光
不同信号的用途
图像
信号
探测器
用途
SE(二次电子像) BSE(背散射电子像)
EDS(能谱)
二次电子
背散射电子
ETSE,VPSE, EPSE BSD
扫描电镜分析简介ppt

• 扫描电镜的景深为比一般光学显微镜景深大100-500倍,比 透射电镜的景深大10 倍。
• 景深取决于分辨本领和电子束入射半角ac。由右下图可知, 扫描电镜的景深F为:
d0临界分辨本领, ac电子束的入射半角
扫描电镜应用实例
断口形貌分析 纳米材料形貌分析 在微电子工业方面的应用
断口形貌分析
扫描电镜显微分析简介
扫描电子显微镜
扫描电子显微镜
扫描电镜显微分析简介
概况 扫描电镜的优点 扫描电镜成像的物理信号 扫描电镜的工作原理 扫描电镜的构造 扫描电镜的主要性能 应用举例
概况
扫描电子显微镜简称扫描电镜,英 文缩写:SEM。为适应不同要求,在扫描电 镜上安装上多种专用附件,实现一机多用, 使扫描电镜成为同时具有透射电子显微镜 (TEM)、电子探针X射线显微分析仪 (EPMA)、电子衍射仪(ED)等多种功能 的一种直观、快速、综合的表面分析仪器。
电源系统由稳压,稳流及相应的安全保护电路 所组成,其作用是提供扫描电镜各部分所需的电 源。
扫描电镜的主要性能
放大倍数 分辨率 景深
扫描电镜的主要性能
放大倍数
M=AC/AS 式中AC是荧光屏上图像的边长, AS是电子束在样品上
的扫描振幅。 目前大多数商品扫描电镜放大倍数为20-20000倍,介
背散射电子:入射电子在样品中经散射后再从上表 面射出来的电子。反映样品表面不同取向、不同平 均原子量的区域差别。
二次电子:由样品中原子外壳层释放出来,在扫描 电子显微术中反映样品上表面的形貌特征。
X射线:入射电子在样品原子激发内层电子后外层电 子跃迁至内层时发出的光子。
其他信号
俄歇电子:入射电子在样品原子激发内层电 子后外层电子跃迁至内层时,多余能量转移 给外层电子,使外层电子挣脱原子核的束缚, 成为俄歇电子。
• 景深取决于分辨本领和电子束入射半角ac。由右下图可知, 扫描电镜的景深F为:
d0临界分辨本领, ac电子束的入射半角
扫描电镜应用实例
断口形貌分析 纳米材料形貌分析 在微电子工业方面的应用
断口形貌分析
扫描电镜显微分析简介
扫描电子显微镜
扫描电子显微镜
扫描电镜显微分析简介
概况 扫描电镜的优点 扫描电镜成像的物理信号 扫描电镜的工作原理 扫描电镜的构造 扫描电镜的主要性能 应用举例
概况
扫描电子显微镜简称扫描电镜,英 文缩写:SEM。为适应不同要求,在扫描电 镜上安装上多种专用附件,实现一机多用, 使扫描电镜成为同时具有透射电子显微镜 (TEM)、电子探针X射线显微分析仪 (EPMA)、电子衍射仪(ED)等多种功能 的一种直观、快速、综合的表面分析仪器。
电源系统由稳压,稳流及相应的安全保护电路 所组成,其作用是提供扫描电镜各部分所需的电 源。
扫描电镜的主要性能
放大倍数 分辨率 景深
扫描电镜的主要性能
放大倍数
M=AC/AS 式中AC是荧光屏上图像的边长, AS是电子束在样品上
的扫描振幅。 目前大多数商品扫描电镜放大倍数为20-20000倍,介
背散射电子:入射电子在样品中经散射后再从上表 面射出来的电子。反映样品表面不同取向、不同平 均原子量的区域差别。
二次电子:由样品中原子外壳层释放出来,在扫描 电子显微术中反映样品上表面的形貌特征。
X射线:入射电子在样品原子激发内层电子后外层电 子跃迁至内层时发出的光子。
其他信号
俄歇电子:入射电子在样品原子激发内层电 子后外层电子跃迁至内层时,多余能量转移 给外层电子,使外层电子挣脱原子核的束缚, 成为俄歇电子。
扫描电镜工作原理科普PPT课件

第20页/共49页
电 子 在 铜 中 的 透 射 、第吸21页收/共和49页背 散 射 系 数 的 关 系
由图知,样品质量厚度越大,则 透射系数越小,而吸收系数越大; 样品背散射系数和二次电子发射系 数的和也越大,但达一定值时保持 定值。
第22页/共49页
样品本身要保持电平衡,这些电子信 号必须满足以下关系:
子束轰击固体样品而激发产生的。具 有一定能量的电子,当其入射固体样 品时,将与样品内原子核和核外电子 发生弹性和非弹性散射过程,激发固 体样品产生多种物理信号。
第14页/共49页
特征X射线
第15页/共49页
背散射电子
它是被固体样品中原子反射回来的一部 分入射电子。又分弹性背散射电子和非弹 性背散射电子,前者是指只受到原子核单 次或很少几次大角度弹性散射后即被反射 回来的入射电子,能量没有发生变化;后 者主要是指受样品原子核外电子多次非弹
第30页/共49页
(2) 扫描系统 扫描系统是扫描电镜的特殊部件,
它由扫描发生器和扫描线圈组成。它 的作用是:1) 使入射电子束在样品表 面扫描,并使阴极射线显像管电子束 在荧光屏上作同步扫描;2) 改变入射 束在样品表面的扫描振幅,从而改变 扫描像的放大倍数。
第31页/共49页
(3) 信号收集系统 扫描电镜应用的物理信号可分为:
材料断口和显微组织三维形态
第6页/共49页
扫描电镜能完成: • 表(界)面形貌分析; • 配置各种附件,做表面 成分分析及表层晶体学位 向分析等。
第7页/共49页
扫描电镜的成像原理,和透 射电镜大不相同,它不用什么 透镜来进行放大成像,而是象 闭路电视系统那样,逐点逐行 扫描成像。
第8页/共49页
第1页/共49页
电 子 在 铜 中 的 透 射 、第吸21页收/共和49页背 散 射 系 数 的 关 系
由图知,样品质量厚度越大,则 透射系数越小,而吸收系数越大; 样品背散射系数和二次电子发射系 数的和也越大,但达一定值时保持 定值。
第22页/共49页
样品本身要保持电平衡,这些电子信 号必须满足以下关系:
子束轰击固体样品而激发产生的。具 有一定能量的电子,当其入射固体样 品时,将与样品内原子核和核外电子 发生弹性和非弹性散射过程,激发固 体样品产生多种物理信号。
第14页/共49页
特征X射线
第15页/共49页
背散射电子
它是被固体样品中原子反射回来的一部 分入射电子。又分弹性背散射电子和非弹 性背散射电子,前者是指只受到原子核单 次或很少几次大角度弹性散射后即被反射 回来的入射电子,能量没有发生变化;后 者主要是指受样品原子核外电子多次非弹
第30页/共49页
(2) 扫描系统 扫描系统是扫描电镜的特殊部件,
它由扫描发生器和扫描线圈组成。它 的作用是:1) 使入射电子束在样品表 面扫描,并使阴极射线显像管电子束 在荧光屏上作同步扫描;2) 改变入射 束在样品表面的扫描振幅,从而改变 扫描像的放大倍数。
第31页/共49页
(3) 信号收集系统 扫描电镜应用的物理信号可分为:
材料断口和显微组织三维形态
第6页/共49页
扫描电镜能完成: • 表(界)面形貌分析; • 配置各种附件,做表面 成分分析及表层晶体学位 向分析等。
第7页/共49页
扫描电镜的成像原理,和透 射电镜大不相同,它不用什么 透镜来进行放大成像,而是象 闭路电视系统那样,逐点逐行 扫描成像。
第8页/共49页
第1页/共49页
扫描电镜原理及提高图像质量的方法ppt课件

在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
(2)扫描系统
扫描系统是扫描电镜的特殊部件,它由扫 描发生器和扫描线圈组成。它的作用是:1)使入 射电子束在样品表面扫描,并使阴极射线显像管 电子束在荧光屏上作同步扫描;2)改变入射束在 样品表面的扫描振幅,从而改变扫描像的放大倍 数。
(1) 背散射电子像衬度
背散射系数η随原子序数Z的变化如图所示 (δ为二次电子产率)。可见,背散射电子信号 强度随原子序数Z增大而增大,样品表面上平均 原子序数较高的区域,产生较强的信号,在背 散射电子像上显示较亮的衬度。因此,可以根 据背散射电子像衬度来判断相应区域原子序数 的相对高低。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
(3)信号收集系统
扫描电镜应用的物理信号可分为: 1)电子信号,包括二次电子、背散射电子、 透射电子和吸收电子。吸收电子可直接用电流表 测,其他电子信号用电子收集器; 2)特征X射线信号,用X射线谱仪检测; 3)可见光讯号(阴极荧光),用可见光收 集器。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
电子能谱图
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
特征X射线
扫描电镜精品PPT课件

扫描电镜
SEM构造及原理:
构造:电子光学系统 信号收集处理系统 真空系统 供电系统
电子光学系统: 包括电子枪、电磁透镜、扫描线圈和样品室。
电子枪 SEM 中的电子枪与TEM 中的相似,但加速电压更低。 热阴极电子枪 ,束斑可达6nm 。六硼化镧和场发射 电子枪,束斑更小。
电磁透镜(3个) 功 能: 聚焦电子枪束斑,50mm→nm级斑点。 前二者:强透镜,缩小电子束光斑 第三个:弱透镜,习惯称物镜,有较长的焦距, 使样品和透镜之间留有一定空间以装入 各种信号探测器。 SEM中束斑越小,成像单元越小,分辨率就愈高。
2) 选区电子通道花样: 微区范围 10 -15 um 产生花样的区域1-3mm
电子通道花样的标定
L—末级透镜至晶体表面的距离 M—花样放大倍数 W—荧光屏上某衬度带的宽度
EBSD技术
EBSD技术
EBSD技术相关原理 EBSD应用及数据处理
电子背散射衍射分析技术
基于扫描电镜(SEM)中电子束在倾斜 样品表面激发出并形成的衍射菊池带的 分析从而确定晶体结构、取向及相关信 息的方法。
信号收集处理系统
二次电子,背散射电子,透镜电子等信号都可用闪 烁计数器检测。
信号电子进入闪烁体即引起电离,当离子和自由电子 复合后产生可见光。可见光信号通过光导管送入光电 倍增器,光信号放大,又转化成电流信号输出,电流 信号经视频放大后成为调制信号。
真空系统
为保证电子光学系统的正常工作,对真空度有一定要 求。 真空度 > 1.33×10-2~1.33×10-3Pa 冷场发射真空度一般要达到:10-7 Pa
这些信号被相应的接收器接收,经放大后送到显像 管的栅极上,调制显像管的亮度。由于经过扫描线 圈上的电流是与显像管相应的亮度一一对应,电子 束打到样品上一点时,在显像管荧光屏上就出现一 个亮点。扫描电镜采用逐点成像的方法,把样品表 面不同的特征,按顺序,成比例地转换为视频信号, 完成一帧图像,从而在荧光屏上观察到样品表面的 各种特征图像。
SEM构造及原理:
构造:电子光学系统 信号收集处理系统 真空系统 供电系统
电子光学系统: 包括电子枪、电磁透镜、扫描线圈和样品室。
电子枪 SEM 中的电子枪与TEM 中的相似,但加速电压更低。 热阴极电子枪 ,束斑可达6nm 。六硼化镧和场发射 电子枪,束斑更小。
电磁透镜(3个) 功 能: 聚焦电子枪束斑,50mm→nm级斑点。 前二者:强透镜,缩小电子束光斑 第三个:弱透镜,习惯称物镜,有较长的焦距, 使样品和透镜之间留有一定空间以装入 各种信号探测器。 SEM中束斑越小,成像单元越小,分辨率就愈高。
2) 选区电子通道花样: 微区范围 10 -15 um 产生花样的区域1-3mm
电子通道花样的标定
L—末级透镜至晶体表面的距离 M—花样放大倍数 W—荧光屏上某衬度带的宽度
EBSD技术
EBSD技术
EBSD技术相关原理 EBSD应用及数据处理
电子背散射衍射分析技术
基于扫描电镜(SEM)中电子束在倾斜 样品表面激发出并形成的衍射菊池带的 分析从而确定晶体结构、取向及相关信 息的方法。
信号收集处理系统
二次电子,背散射电子,透镜电子等信号都可用闪 烁计数器检测。
信号电子进入闪烁体即引起电离,当离子和自由电子 复合后产生可见光。可见光信号通过光导管送入光电 倍增器,光信号放大,又转化成电流信号输出,电流 信号经视频放大后成为调制信号。
真空系统
为保证电子光学系统的正常工作,对真空度有一定要 求。 真空度 > 1.33×10-2~1.33×10-3Pa 冷场发射真空度一般要达到:10-7 Pa
这些信号被相应的接收器接收,经放大后送到显像 管的栅极上,调制显像管的亮度。由于经过扫描线 圈上的电流是与显像管相应的亮度一一对应,电子 束打到样品上一点时,在显像管荧光屏上就出现一 个亮点。扫描电镜采用逐点成像的方法,把样品表 面不同的特征,按顺序,成比例地转换为视频信号, 完成一帧图像,从而在荧光屏上观察到样品表面的 各种特征图像。
《扫描电镜SE》课件

纳米颗粒
利用SE可以观察纳米颗粒的形 貌和分布情况,有助于纳米材 料的研究和应用。
材料表面特征
SE可以显示材料表面的粗糙度、 晶格形貌等特征,为材料科学 研究提供重要信息。
SE的基本操作步骤
1
样品准备
选择合适的样品,进行表面清洁和真空处理,确保获取高质量的图像。
2
电子束设置
根据样品特性和实验需求,调整电子束的加速电压、聚焦和光阑等参数。
3
扫描模式选择
根据实验目的选择适当的扫描模式,如逐行扫描或随机扫描。
4
图像获取
使用探测器捕捉次级电子,通过图像系统进行处理和显示,得到样品表面的高分辨率 图像。
SE的发展和展望
随着技术的进步,扫描电镜SE不断发展,分辨率不断提高,功能不断增强, 将为更多领域的研究和应用提供更好的工具和支持。
《扫描电镜SE》PPT课件
扫描电镜SE是一种高分辨率显微镜,通过聚焦电子束扫描样品表面并获取图 像,透视微观结构及其细节。
什么是扫描电镜SE
扫描电镜SE是一种显微镜,使用电子束代替光束,能够实现更高分辨率的图像获取,从而观察物质的 微观结构。
SE的工作原理
SE使用高能电子束扫描样品表面,样品会因电子束的相互作用而发射出次级电子,这些次级电子被探描电镜SE广泛应用于材料科学、生物学、纳米技术等领域,可用于研究纳 米级结构、微生物形态、材料表面特征等。
SE的优势和不足
扫描电镜SE具有高分辨率、大深度和强对比度等优势,但操作复杂、成本高, 且仅能观察表面形貌,不能获取物质的内部结构。
SE的图像效果示例
微生物细胞
通过SE能够观察微生物细胞的 形态和结构,揭示微生物的奥 秘。
sem扫描电镜ppt课件
II. 背散射电子成像:入射电子与样品接触时,其中一部分几乎 不损失能量地在样品表面被弹性散射回来,这部分电子被称 为背散射电子。背散射电子的产额随样品的原子序数的增大 而增加,因此成像可以反映样品 的元素分布,及不同相成分 区域的轮廓。
ppt课件
18
二次电子像的信号是二次电子,用于表面形貌分析;背散射电子 像的信号是背散射电子,用于成分分析。因此二次电子像对形貌 敏感,背散射电子像对成分敏感。
ppt课件
5
图2 JSM-6301F场发射扫描电镜的结构
ppt课件
6
电子光学系统
组成:电子枪、电磁透镜、扫描线圈和样品室等部 件。
作用:获得扫描电子束、作为产生物理信号的激发 源。
为了获得较高的信号强度和图像分辨率,扫描电子 束应具有较高的亮度和尽可能小的束斑直径。
ppt课件
7
电子枪
✓ 利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大 多数扫描电镜采用热阴极电子枪。优点:灯丝价格便宜,真 空要求不高;缺点:发射效率低,发射源直径大,分辨率低。
ppt课件
1
主要内容
SEM的工作原理 SEM的主要结构 SEM的组成部分 SEM的主要性能参数 SEM的优点 应用举例
ppt课件
2
SEM的工作原理
电子枪发射电子束(直径50μm)。电压加速、磁透镜系统汇 聚,形成直径约5nm的电子束。
电子束在偏转线圈的作用下,在样品表面作光栅状扫描,激发 多种电子信号。
ppt课件
15
SEM的主要性能参数
分辨率 放大倍数 景深
ppt课件
16
分辨率
对微区成分分析而言,分辨率是指能分析的最小区域;对成像 而言,它是指能分辨两点间的最小距离。
ppt课件
18
二次电子像的信号是二次电子,用于表面形貌分析;背散射电子 像的信号是背散射电子,用于成分分析。因此二次电子像对形貌 敏感,背散射电子像对成分敏感。
ppt课件
5
图2 JSM-6301F场发射扫描电镜的结构
ppt课件
6
电子光学系统
组成:电子枪、电磁透镜、扫描线圈和样品室等部 件。
作用:获得扫描电子束、作为产生物理信号的激发 源。
为了获得较高的信号强度和图像分辨率,扫描电子 束应具有较高的亮度和尽可能小的束斑直径。
ppt课件
7
电子枪
✓ 利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大 多数扫描电镜采用热阴极电子枪。优点:灯丝价格便宜,真 空要求不高;缺点:发射效率低,发射源直径大,分辨率低。
ppt课件
1
主要内容
SEM的工作原理 SEM的主要结构 SEM的组成部分 SEM的主要性能参数 SEM的优点 应用举例
ppt课件
2
SEM的工作原理
电子枪发射电子束(直径50μm)。电压加速、磁透镜系统汇 聚,形成直径约5nm的电子束。
电子束在偏转线圈的作用下,在样品表面作光栅状扫描,激发 多种电子信号。
ppt课件
15
SEM的主要性能参数
分辨率 放大倍数 景深
ppt课件
16
分辨率
对微区成分分析而言,分辨率是指能分析的最小区域;对成像 而言,它是指能分辨两点间的最小距离。
扫描电镜的结构、原理及其操作使用ppt课件
四、扫描电镜的调整
• 电子束合轴 • 放入试样 • 图像调整
四、扫描电镜的调整
• 电子束合轴
•
调整电子束对中〔合
轴〕的方法有机械式和电磁
式。
• ①机械式是调整合轴螺钉
• ②电磁式那么是调整电磁对 中线圈的电流,以此挪动电
四、扫描电镜的调整
• 放入试样
•
将试样固定在试样
盘上,并进展导电处置,使
试样处于导电形状。将试样
•
样品在入射电子束作
用下会产生各种物理信号,有
二次电子、背散射电子、特征
X射线、阴极荧光和透射电子。
•
不同的物理信号要用
不同类型的检测系统。它大致
二、扫描电镜的构造
常用的检测系统为闪烁计数器,它位于样 品上侧,由闪烁体,光导管和光电倍增器所组 成,如图5所示。
二、扫描电镜的构造
图5 电子检测器
三、扫描电镜的根本原理
二、扫描电镜的构造
构成: 电子光学系统,包括电子枪、电磁透镜和扫
描线圈等; 机械系统,包括支撑部分、样品室; 真空系统; 样品所产生信号的搜集、处置和显示系统。
二、扫描电镜的构造
图1 Sirion 200 扫描电镜外
观照片
二、扫描电镜的构造
图2 扫描电子显微镜
构造表示图 (a)系统方框图
二、扫描电镜的构造
六、实验报告要求
• 简要阐明扫描的原理及电镜各部分的作用。 • 根据他的了解,举例阐明扫描电镜的运用。 • 根据实验察看的断口特征,简述韧窝断口、
穿晶解理断口、脆性沿晶断口、疲劳断口的 典型形貌特征。
END!
角越小,在试样上扫描面积越小,其放大倍
率M越大。 A(CRT上 扫 描 振 幅 )
扫描电镜的基本工作原理及主要图象方式PPT课件
C.W.Qatley 和McMullan 在剑桥(Cambridge )制成了第 一台现代的SEM,分辨率达到500Å 。McMullan和后来的 Smith(史密斯)指出经过信号处理,可以改善图象。Smith 还第一次引入了对信号的非线性放大(γ-处理)。他又用电 磁透镜代替了原来的静电透镜。并且以双重偏转扫描改进了原 来的扫描系统。他还在SEM中加入了消象散器。第一台成功的 商品型仪器是在1965年问世的,由英国剑桥科学仪器公司制 成。 1966年日本电子光学公司也制成了扫描电镜.在不到十年 的时间中,美国,英国,法国,荷兰,日本和西德已经制成了 一千多台扫描电镜。
第13页/共85页
图4 电子与物质的相互作用
第14页/共85页
3.成象原理
扫描电镜的成象过程与电视的摄象——显象过程很相似。 来自扫描发生器的扫描信号分别送给电子光学系统的扫描 线圈和显象管的扫描线圈,让电子束与显象管的阴极射束 (实际上也是电子束)做同步扫描,使阴极射束在荧光屏 上的照射点(称为象点)与电子束在样品上的照射点(称 为物点)按时间顺序一一对应,样品上的物点在电子束作 用下所产生的信号被检测器随时检出,经视频放大器放大 后控制显象管阴极射束的强度使荧光屏上象点的亮度受试 样上物点所产生的信号的大小的调制,从而得到与样品性 质有关的图象。这是一种按时间顺序逐点成象的方式。前 面提到的电子束与样品相互作用所产生的各种信息都可以 作为调制图象的信号。
第18页/共85页
2.二次电子的收集 二次电子常用装在样品室侧面的闪烁体——光电
倍增管检测器检测。入射电子产生的二次电子被加 有+100V至+200V偏压的栅网收集。闪烁体表面有几 十个纳米厚的导电铝膜,在其加上+10KV偏压。穿 过收集栅网的二次电子被加速到闪烁体。具有加速 电子的能量,足以使闪烁体发光,光强度与二次电 子数量成正比。闪烁体发出的光量子通过光导管送 到光电倍增管转换成电压信号,用来调制阴极束。
第13页/共85页
图4 电子与物质的相互作用
第14页/共85页
3.成象原理
扫描电镜的成象过程与电视的摄象——显象过程很相似。 来自扫描发生器的扫描信号分别送给电子光学系统的扫描 线圈和显象管的扫描线圈,让电子束与显象管的阴极射束 (实际上也是电子束)做同步扫描,使阴极射束在荧光屏 上的照射点(称为象点)与电子束在样品上的照射点(称 为物点)按时间顺序一一对应,样品上的物点在电子束作 用下所产生的信号被检测器随时检出,经视频放大器放大 后控制显象管阴极射束的强度使荧光屏上象点的亮度受试 样上物点所产生的信号的大小的调制,从而得到与样品性 质有关的图象。这是一种按时间顺序逐点成象的方式。前 面提到的电子束与样品相互作用所产生的各种信息都可以 作为调制图象的信号。
第18页/共85页
2.二次电子的收集 二次电子常用装在样品室侧面的闪烁体——光电
倍增管检测器检测。入射电子产生的二次电子被加 有+100V至+200V偏压的栅网收集。闪烁体表面有几 十个纳米厚的导电铝膜,在其加上+10KV偏压。穿 过收集栅网的二次电子被加速到闪烁体。具有加速 电子的能量,足以使闪烁体发光,光强度与二次电 子数量成正比。闪烁体发出的光量子通过光导管送 到光电倍增管转换成电压信号,用来调制阴极束。
扫描电镜原理-SEM剖析精品PPT课件
能清晰成像。
•
二次电子的强度主要与样品表面形
貌有关。二次电子和背散射电子共同用于扫描
电镜(SEM)的成像。
特征X射 线
如果入射电子把样品表面原子的内层电子撞 出,被激发的空穴由高能级电子填充时,能 量以电磁辐射的形式放出,就产生特征X射线 ,可用于元素分析。
如果入射电子把外层电子打进内层,原
俄歇 子被激发了.为释放能量而电离出次外层电
d 2a
△F——焦深; d ——电子束直径; 2a——物镜的孔径角
衬度
表面形貌衬度
原子序数衬度
衬度
表面形貌衬度
表面形貌衬度主要是样品表面的凹凸(称为表面地 理)决定的。一般情况下,入射电子能从试详表面 下约5nm厚的薄层激发出二次电子。
原子序数衬度
原子序数衬度指扫描电子束入射试祥时产生的背散 射电子、吸收电子、X射线,对微区内原子序数的 差异相当敏感,而二次电子不敏感。
低原子序 Z
高原子序 Z
高加速电压 kV
低加速电压 kV
1. 电子束斑大小基本不能影响分辨率 2. 而加速电压 kV 和平均原子序 Z 则起决定作用。
信号的方向性
SE 信号 – 非直线传播 通过探头前加有正电压的金属网来吸引
BSE 信号 – 直线发散传播 探头需覆盖面积大
X-射线信号 –直线发散传播
样品腔
SEM控制台
样品腔 样品台
OM & SEM
Comparison
显微镜类 型 OM
SEM
照明源 可见光 电子束
照射方式
成像信息
光束在试样上 以静止方式投
射
反射光/投射 光
电子束在试样 上作光栅状扫
描
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响二次电子产额的因素主要有: (1)二次电子能谱特性; (2)入射电子的能量; (3)材料的原子序数; (4)样品倾斜角。
二次电子像衬度来源: (1)形貌衬度 (2)成分衬度 (3)电压衬度 (4)磁衬度
二次电子像衬度特点: (1)分辨率高 (2)景深大,立体感强 (3)主要反应形貌衬度。
PPT课件
背散射电子像及衬度特点
背散射系数与原子序数的关系
10
二次电子与背散射电子之间的区别
二次电子 当样品中存在凸起小颗粒或尖角时
成分有差别, 形貌无差别
成分无差别 形貌有差别
成分形貌都有差别
对二次电子像衬度会有很大影响,
背散射电子
其原因是,在这些部位处电子离开 检测器由一对硅半导体组成,对于原子
收集背散射电子时,背散射电子仍沿出射直线方向运动,收集器只能收 集直接沿直线到达栅网上的那些电子。
PPT课件
13
加速电压、电子束与样品之间的关系
PPT课件
14
工作距离对图像的影响
PPT课件
15
孔径尺寸对图像的影响
PPT课件
16
束斑大小最图像的影响
PPT课件
17
能谱仪
能谱仪全称为能量分散谱仪(EDS). 目前最常用的是Si(Li)X射线能谱仪,其关键部件是Si(Li)检测器,
PPT课件
9
影响背散射电子产额的因素有: (1)原子序数Z (2)入射电子能量E0 (3)样品倾斜角
背散射电子像衬度来源: (1)成分衬度 (2)形貌衬度 (3)磁衬度(第二类)
背散射电子像衬度特点: (1)分辩率低 (2)背散射电子检测效率低,衬度小 (3)主要反应原子序数衬度
(2)灵敏度高 X射线收集立体角大。由于能谱仪中Si(Li)探头可以 放在离发射源很近的地方(10cm左右),无需经过晶体衍射,信号强度 几乎没有损失,所以灵敏度高(可达104cps/nA,入射电子束单位强度所 产生的X射线计数率)。此外,能谱仪可在低入射电子束流(10-11A)条件 下工作,这有利于提高分析的空间分辨率。
被激发的特征X射线照射到连续转动的分光晶体上实现分光(色散),即不同波 长的X射线将在各自满足布拉格方程的2方向上被(与分光晶体以2:1的角速度 同步转动的)检测器接收。
波谱仪的特点:
波谱仪的突出优点是波长分辨率很高。如它可将波长十分接近的 VK(0.228434nm)、CrK1(0.228962nm)和CrK2(0.229351nm)3根谱线清晰地分 开。
PPT课件
5
电子束与固体样品作用产生的信号 特征X射线
PPT课件
6
二次电子、背散射电子和特征X射线
二次电子 它是被入射电子轰击出来的样品核外 电子。
背散射电子 它是被固体样品中原子反射回来的一 部分入射电子。
特征X射线 它是原子的内层电子受到激发之后,在能级跃迁过程中直接释放的具有 特征能量和波长的一种电磁波辐射。
即锂漂移硅固态检测器,它实际上是一个以Li为施主杂质的n-i-p型 二极管。
Si(Li)检测器探头结构示意图
PPT课件
18
以Si(Li)检测器为探头的能谱仪实际上是一整套复杂的电子学装置。
Si(Li)X射线能谱仪
PPT课件
19
Si(Li)能谱仪的优点
(1)分析速度快 能谱仪可以同时接受和检测所有不同能量的X射线 光子信号,故可在几分钟内分析和确定样品中含有的所有元素探测元 素的范围为4Be-92U。
表层的机会增多 。
序数信息来说,进入左右两个检测器的
信号,大小和极性相同,而对于形貌信
息,两个检测器得到的信号绝对值相同,
其极性相反。
PPT课件
11
二次电子像与背散射电子像的比较
Al
Sn
二次电子图像
背散射电子图像
PPT课件
12
信号收集
收集二次电子时,为了提高收集有效立体角,常在收集器前端栅网上加 上+250V偏压,使离开样品的二次电子走弯曲轨道,到达收集器。这样就 提高了收集效率。
扫描电镜的原理及使用
分析测试中心
PPT课件
1
主要内容
扫描电镜的作用 扫描电镜的主要构造和工作原理 扫描电镜对样品的作用 能谱的工作原理、结构、特点 波谱的工作原理、结构、特点 JEOL-6380LV型SEM和EDAX EDS的主要功能 分析举例 样品的制备
PPT课件
2
扫描电镜的作用
显微形貌分析(SEM) 应用于材料、医药以及生物等领域。
成分的常规微区分析(EDS) 元素定性、半定量成分分析
PPT课件
3
扫描电镜由三个系统组成 (1) 电子光学系统(镜筒) (2) 信号收集和图像显示系统 (3) 真空系统
扫描电镜的构造及原理
PPT课件
4
几种类型电子枪性能比较
SEM: 二次电子 背散射电子
EDS: 特征X射线射线
二次电子:产生范围在5-50nm的区域 背散射电子:产生范围在100nm-1μm深度 特征X射线:产生范围在500nm-5 μm深度
PPT课件
8
二次电子像衬度及特点 二次电子信号主要来自样品表层5-50nm深度范围。
(3)谱线重复性好 由于能谱仪没有运动部件,稳定性好,且没有聚焦 要求,所以谱线峰值位置的重复性好且不存在失焦问题,适合于比较 粗糙表面的分析工作。
PPT课件
20
Si(Li)能谱仪的缺点
(1)能量分辨率低,峰背比低。由于能谱仪的探头直接对着样品,所 以由背散射电子或X射线所激发产生的荧光X射线信号也被同时检测到, 从而使得Si(Li)检测器检测到的特征谱线在强度提高的同时,背底也 相应提高,谱线的重叠现象严重。故仪器分辨不同能量特征X射线的 能力变差。能谱仪的能量分辨率(130eV)比波谱仪的能量分辨率(5eV) 低。
(2)工作条件要求严格。Si(Li)探头必须始终保持在液氮冷却的低温 状态,即使是在不工作时也不能中断,否则晶体内Li的浓度分布状态 就会因扩散而变化,导致探头功能下降甚至完全被破坏。
PPT课件
21
波谱仪
波谱仪全称为波长分散谱仪(WDS)。
在电子探针中,X射线是由样品表面以下m数量级的作用体积中激发出来的, 如果这个体积中的样品是由多种元素组成,则可激发出各个相应元素的特征X 射线。