实验一、常用元器件的识别与测量及常规电子仪器使用
实验设计常用电子仪器的使用和常用元器件的测试

实验设计常用电子仪器的使用和常用元器件的测试一、实验目的:1.了解常用电子仪器的使用和操作方法;2.掌握常见元器件的测试方法和性能参数的测量。
二、实验仪器和设备:1.示波器;2.多用表;3.信号发生器;4.直流电源。
三、实验步骤:实验一:示波器的使用和操作1.连接电源和地线,打开示波器的电源;2.设置示波器的扫描方式、扫描速度和水平位置;3.连接待测信号源到示波器的通用输入端口;4.调节示波器的垂直灵敏度和位置,使示波器屏幕上显示出待测信号的波形;5.通过示波器的水平和垂直调节,观察待测信号的频率、振幅、相位等特性。
实验二:多用表的使用和操作1.连接电源和地线,打开多用表的电源;2.根据测量要求选择不同的测量模式(电压、电流、电阻等);3.连接待测电路到多用表的相应测量端口;4.调节多用表的量程、灵敏度和位置,测量待测电路的电压、电流、电阻等参数。
实验三:信号发生器的使用和操作1.连接电源和地线,打开信号发生器的电源;2.设置信号发生器的工作模式、频率、幅度和波形类型;3.连接信号发生器的输出端口到待测电路;4.根据需要调节信号发生器的频率、幅度等参数,观察待测电路的响应和特性。
实验四:直流电源的使用和操作1.连接电源和地线,打开直流电源的电源;2.设置直流电源的工作模式、输出电压和电流限制;3.连接直流电源的输出端口到待测电路;4.调节直流电源的输出电压和电流限制,观察待测电路的响应和特性。
1.使用多用表测量电阻元件的电阻值,记录并比较测量结果;2.使用示波器和信号发生器测量电容元件的容值,记录并比较测量结果;3.使用多用表和信号发生器测量电感元件的电感值,记录并比较测量结果;4.使用多用表测量二极管和晶体管的电流-电压特性曲线,观察并记录结果;5.使用示波器和信号发生器测量可调电阻(电位器)的电阻值,记录并比较测量结果。
四、实验注意事项:1.在进行操作和连接电路时,务必断开电源,以免发生触电和短路等危险;2.仪器和设备使用前,要检查其电源和连接是否正确,以确保安全和数据准确性;3.实验过程中,注意保持仪器和设备的清洁和稳定,避免受到外界干扰;4.实验结束后,要关闭电源并恢复实验环境的整洁。
实验一常用仪器的使用常用电子元器件的识别与测试

实验一常用仪器的使用常用电子元器件的识别与测试引言:在电子学实验中,了解和熟练掌握常用仪器的使用方法对于正确进行实验具有非常重要的意义。
同时,将常用电子元器件进行准确的识别和测试也是电子学实验的基础。
本实验旨在通过实际操作,帮助学生们熟悉和掌握常用仪器的使用方法,并学会对常用电子元器件进行准确的识别和测试。
一、常用仪器的使用1.示波器的使用示波器是一种用于观察电信号波形的电子仪器,常用于测量电压、频率、周期等电信号参数。
示波器的使用方法如下:(1)接通示波器电源,并将待测信号的输入端与示波器的输入端相连。
(2)调节示波器的触发源、触发电平和水平控制,使波形图显示最佳效果。
(3)根据需要选择适当的扫描方式、扫描时间和增益,以显示出待测信号的波形图。
2.数字万用表的使用数字万用表是一种用于测量电压、电流、电阻等电学量的仪器,具有测量范围广、读数精确和使用方便等特点。
数字万用表的使用方法如下:(1)将待测电路与数字万用表相连,根据测量值的量级选择合适的测量范围。
(2)选择相应的测量模式(如电压、电流、电阻等),并选择合适的量程。
(3)读取数字万用表显示的测量值,并注意选择合适的单位。
(1)电阻的识别:通过观察电阻上标注的颜色环来确定电阻的阻值。
根据电阻色环的顺序,分别对应数字0-9,将色环对应数字的阻值排列在一起即可得到电阻的阻值。
(2)电阻的测试:将待测电阻的两端与万用表的两个测试针相连,选择电阻测量模式,并观察万用表显示的电阻值。
(1)电容的识别:通过观察电容上标注的数值及单位来确定电容的大小。
常见的电容单位包括F(法拉)、uF(微法)、nF(纳法)和pF(皮法)。
(2)电容的测试:将待测电容的两端与万用表的两个测试针相连,选择电容测量模式,并观察万用表显示的电容值。
(1)二极管的识别:通过观察二极管的外观来确定其正负极。
一般而言,二极管的正极外观较长,负极外观较短。
(2)二极管的测试:将待测二极管的两端与万用表的两个测试针相连,选择二极管测试模式。
《常用电子仪器的使用》的实验报告器件常用元器件的识别与简单测试实验报告

实验一、常用电子仪器的使用一、实验目的1、学习电子技术实验中常用电子仪器的主要技术指标、性能和正确使用方法。
2、初步掌握用示波器观察正弦信号波形和读取波形参数的方法。
电路实验箱的结构、基本功能和使用方法。
二、实验原理在模拟电子电路实验中,要对各种电子仪器进行综合使用,可按照信号流向,以接线简捷,调节顺手,观察与读数方便等原则进行合理布局。
接线时应注意,为防止外界干扰,各仪器的公共接地端应连接在一起,称共地。
1.信号发生器信号发生器可以根据需要输出正弦波、方波、三角波三种信号波形。
输出信号电压频率可以通过频率分挡开关、频率粗调和细调旋钮进行调节。
输出信号电压幅度可由输出幅度调节旋钮进行连续调节。
操作要领:1)按下电源开关。
2)根据需要选定一个波形输出开关按下。
3)根据所需频率,选择频率范围(选定一个频率分挡开关按下)、分别调节频率粗调和细调旋钮,在频率显示屏上显示所需频率即可。
4)调节幅度调节旋钮,用交流毫伏表测出所需信号电压值。
注意:信号发生器的输出端不允许短路。
2.交流毫伏表交流毫伏表只能在其工作频率范围内,用来测量300伏以下正弦交流电压的有效值。
操作要领:1)为了防止过载损坏仪表,在开机前和测量前(即在输入端开路情况下)应先将量程开关置于较大量程处,待输入端接入电路开始测量时,再逐档减小量程到适当位置。
2)读数:当量程开关旋到左边首位数为“1”的任一挡位时,应读取0~10标度尺上的示数。
当量程开关旋到左边首位数为“3”的任一挡位时,应读取0~3标度尺上的示数。
3)仪表使用完后,先将量程开关置于较大量程位置后,才能拆线或关机。
3.双踪示波器示波器是用来观察和测量信号的波形及参数的设备。
双踪示波器可以同时对两个输入信号进行观测和比较。
操作要领:1)时基线位置的调节开机数秒钟后,适当调节垂直(↑↓)和水平(←→)位移旋钮,将时基线移至适当的位置。
2)清晰度的调节适当调节亮度和聚焦旋钮,使时基线越细越好(亮度不能太亮,一般能看清楚即可)。
[电子行业企业管理]实验一、常用元器件的识别与测量及常规电子仪器使用
![[电子行业企业管理]实验一、常用元器件的识别与测量及常规电子仪器使用](https://img.taocdn.com/s3/m/ad0d10e11a37f111f1855bbc.png)
(电子行业企业管理)实验一、常用元器件的识别与测量及常规电子仪器使用实验一、常用元器件的识别与测量及常规电子仪器使用一、目的掌握常用电子元件的识别知识与检测技术。
二、实验仪器万用表、示波器、信号发生器、直流稳压电源、毫伏表三、任务电子、电容的测量;二极管、三极管管脚识别与测量,常规电子仪器使用四、实验内容1.电阻器的检测用万用表(指针式或数字式)测量电阻器是测量阻值和判别其质量好坏的最简易方法。
测量方法如下(以MF-47为例):⑴检查电池⑵机械调零⑶选择倍率挡⑷电阻挡调零⑸测量电阻2.电容器的检测⑴电容器的充放电检测⑵电容器漏电电阻的检测3.二极管的简易测量⑴用指针式万用表测试二极管①二极管的好坏及电极的判别。
用万用表的R×1K挡,用红、黑两表笔分别接触二极管的两个电极,测出其正、反向电阻值,一般二极管的正向电阻为几十欧到几千欧,反向电阻为几百千欧以上。
正、反向电阻差值约大约好,至少应相差百倍为宜。
若正、反向电阻都为零,则管子内部短路;若正、反向电阻都为∞,则管子内部开路;若正、反向电阻接近,则管子性能差。
用上述测法测得阻值较小的那次,黑表笔所接触的电极为二极管的正极,另一端为负极。
这是因为在磁电式万用表的欧姆挡,黑表笔接表内电池的正端,红表笔接表内电池的负端。
②二极管类型的判别。
经验证明,用500型万用表的R×1K挡测二极管的正向电阻时,硅管为6~20kΩ,锗管为1~5kΩ。
用2.5V或10V电压挡测二极管的正向导通电压时,一般锗管的正向电压为0.1V~0.3V,硅管的正向电压为0.5V~0.7V。
注意:用不同类型的万用表或同一类型的万用表的不同量程去测二极管的正向电阻时,所得结果是不同的。
⑵用数字式万用表测试二极管①极性判别。
将数字式万用表置于二极管挡,红表笔插入“V•Ω”插孔,黑表笔插入“COM”插孔,这时红表笔接表内电源正极,黑表笔接表内电源负极。
将两只笔分别接触二极管的两个电极,如果显示溢出符号“1”,说明二极管处于截止状态;如果显示在1V以下,说明二极管处于正向导通状态,此时与红表笔相接的是管子的正极,与黑表笔相接的是负极。
实验一电子仪器使用及常用元件的识别与测试

《模拟电子技术》实验指导书熊年禄陈荣孙利华编写机电学院电子信息工程教研室2011年3月目录实验一常用电子仪器的使用及常用元器件的识别与测试 (1)实验二单管放大电路的焊接装配及测量 (14)实验三两级阻容耦合放大电路 (21)实验四负反馈放大电路 (23)实验五差动放大器 (26)实验六集成运算放大器与模拟运算电路 (30)实验七串联稳压及集成稳压电路 (37)实验一常用电子仪器的使用及常用元器件的识别与测试一、实验目的1.掌握常用电子仪器的基本功能并学习其正确使用方法。
2.掌握用双踪示波器观察和测量波形的幅值、频率及相位的方法。
3.掌握常用元器件的识别与测试方法。
二、实验仪器1.函数信号发生器2.交流毫伏表3.双踪示波器4.数字万用表5.二极管,三极管,电阻,电容若干三、仪器的基本组成及使用方法在模拟电子技术实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。
它们和万用电表一起,可以完成对模拟电路的静态和动态工作情况的测试。
实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1.1所示。
接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。
信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。
图1.1 模拟电子电路中常用电子仪器布局图1.函数信号发生器函数信号发生器主要由信号产生电路、信号放大电路等部分组成。
可输出正弦波、方波、三角波三种信号波形。
输出信号电压幅度可由输出幅度调节旋钮进行调节,输出信号频率可通过频段选择及调频旋钮进行调节。
其外形如下图:使用说明:电源开关:将电源开关按键弹出即为“关”位置,将电源线接入,按电源开关,以接通电源。
LED显示窗口:此窗口指示输出信号的频率,当“外测”开关按入,显示外测信号的频率。
实验一 常用电子元器件的认识与检测

得精度。 B通道输入端:本册信号频率大于100MHZ,接入此通道进行测量。
频率测量:
A通道测量时,根据输入信号的幅度大小决定衰减按键置×20 或×1。输入幅度大 于300mVrms,衰减开关置×20 位置。
模拟电路实验箱
DF1931交流数字毫伏表是用于测量频率5HZ~2MHZ,电压100UV –300V的正弦波有效值电压。该仪器采用为数字显示,精度 高,频率影响误差小,输入阻抗高,有电压、dB、dBm三种 显示方式,显示清晰直观。可自动转换量程,使用方便。
一、主要技术指标 1.交流电压测量范围;30uv – 300v 2.dB测量范围:-79dB - +50dB (0dB=1V) 3.dBm测量范围:-77dB - +52dB( 0dBm=1mv600Ω ) 4.量程;3mV、30mV、300mV、3V、30V、300V 5.频率范围:5HZ~2MHZ
将炭棒连接CH1输入端,并将炭 棒接上2Vp-p 校准信号
将AC-GND-DC置于AC位置,此时,CRT上显 示方波。
可调整VOLTS/div,TIME/div以显示更清晰数据 便于读取
调整 CH1 position 及 trace position , 便于读取周 期、电压Vp-p值。
DF1931交流数字毫伏表基本性能
屏
1V
实验二 单管交流放大电路
实验目的 熟悉电子元器件和模拟电路实验箱, 掌握放大电路静态工作点的调试方法及其对放大电路
性能的影响。 学习测量放大电路Q点,Av的方法, 了解共射极电路特学习放大电路的动态性能
实验仪器 示波器 信号发生器 数字万用表
实验1_常用电子仪器的使用及电子元器件的检测

信号负斜率触发
触发电平(LEVEL)
调整扫描起点和触发电平,使波形稳定
其 CAL(UP-P)校准信号 它
校准信号频率为 1kHz,电压峰-峰值为 0.5V 方波
(2)电压测量
1)交流电压值的测量
被测信号通过探头输入示波器,耦合方式开关置 AC,适当调节 Y 轴衰减(VOLTS/DIV)开关和扫 描时间调节(TIME/DIV)开关以得到适合高度的一个或两个完整周期的波形。调节垂直位移旋钮 (POSITION)使电压峰值与某一刻度线重合,以便读出电压值。根据屏幕上的坐标读出被测波形负峰和正 峰在 Y 轴上的高度(格数 DIV),测出被测信号电压的峰-峰值。
(2) 量程选择。如果所选择的量程档太低,仪表将会显示“1”,表示过 载;如果所选择的量程档太高,仪表不能显示出最精确的测量值。最合适的量程应选择使测量结果的有效 数字位数最多的那一档,此时测量精度最高。
表 3 VC9801 型数字万用表各功能档符号和按钮含义
Ω
欧姆档
A--
直流电流档
V--
直流电压档
显示波形幅度适中,周期适中。 6) 调节垂直位移旋钮和水平位移旋钮使显示的波形对准某一刻度,以便读取电压(UP-P)和周期
(T)。CH2 的操作与 CH1 相同。
图 1 GOS-620 示波器
装置名称
电源开关(POWER)
示 波 辉度调节(INTEN) 管 聚焦调节(FOCUS) 电 路 标尺亮度(ILLUM)
二、实验原理 在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、数字万用表,这些仪器的
结合使用,可以完成对模拟电子电路的静态和动态工作情况的测试。 1、双踪示波器 如图 1,GOS-620 示波器是一种双通道示波器,带宽为 20MHz,最小垂直偏转因数为 1mv/cm,扫描
实验设计:常用电子仪器的使用和常用元器件的测试

实验设计:常用电子仪器的使用和常用元器件的测试1、示波器测量前的调节与准备。
模拟示波器一般在测量之前首先打开电源开关,按照表1所示正确调节和设置各旋钮,使得屏幕上能看到两条亮度适中、清晰的扫描线,然后再将探头接入测试点。
表1 测量前示波器各旋钮调节和设置列表按键即可,关键是如何根据测量要求设置菜单变量,表2是示波器面板上各个菜单设置情况。
表2 Tektronix数字示波器面板各按钮、菜单设置2、机内标准信号测量将机内的标准方波信号输入到CH1通道,用示波器测量这个信号,将波形画在坐标纸上,测量数据记录到表3中并分析讨论(峰峰值和周期要按所列格式记录)。
用数字示波器测量电压峰峰值、高电平、低电平、周期时必须用三种方法:第一种方法是直接使用面板上的“MEASURE”按钮,然后在显示屏上读数;第二种方法是先读出波形垂直所占格数或水平所占格数,然后用“格数×倍率(V/DIV ,S/DIV )”方式计算相应电压或时间;第三种方法是用游标来测量。
如果是模拟示波器,只用第二种方法即可。
表3 机内标准信号的测量实验技巧:1) 用“格数×倍率(V/DIV ,S/DIV )”方式测量信号高、低电平时的步骤:输入信号从某个通道输入后,首先将该通道的耦合方式拨到GND 位置,在屏幕上会显示一条扫描基线,该扫描基线代表0V 电压的位置,调节上下位移旋钮使基线固定于某个标尺上,记住该位置。
然后将耦合方式调节到DC 耦合,屏幕上显示脉冲信号,参考标尺读出高、低电平等电压值。
注意耦合方式由GND 调至DC 后,上下位移旋钮不可再调。
2) 用数字示波器测量电压时,注意面板上探头设置的倍率,实际测量值是读数除以探头倍率。
3) 探头检测示波器的探头线接入波形以后,一般要将示波器面板上的部分旋钮作相应调整,比如根据被测信号电压大小调节CH1、CH2电压灵敏度旋钮,根据被测信号频率大小调节扫描速率等等。
但如果出现的仍然是扫描线,最常见的是示波器的探头和连接电缆损坏,此时应首先检查探头。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一、常用元器件的识别与测量及常规电子仪器使用一、目的掌握常用电子元件的识别知识与检测技术。
二、实验仪器万用表、示波器、信号发生器、直流稳压电源、毫伏表三、任务电子、电容的测量;二极管、三极管管脚识别与测量,常规电子仪器使用四、实验内容1.电阻器的检测用万用表(指针式或数字式)测量电阻器是测量阻值和判别其质量好坏的最简易方法。
测量方法如下(以MF-47为例):⑴检查电池⑵机械调零⑶选择倍率挡⑷电阻挡调零⑸测量电阻2.电容器的检测⑴电容器的充放电检测⑵电容器漏电电阻的检测3.二极管的简易测量⑴用指针式万用表测试二极管①二极管的好坏及电极的判别。
用万用表的R×1K挡,用红、黑两表笔分别接触二极管的两个电极,测出其正、反向电阻值,一般二极管的正向电阻为几十欧到几千欧,反向电阻为几百千欧以上。
正、反向电阻差值约大约好,至少应相差百倍为宜。
若正、反向电阻都为零,则管子内部短路;若正、反向电阻都为∞,则管子内部开路;若正、反向电阻接近,则管子性能差。
用上述测法测得阻值较小的那次,黑表笔所接触的电极为二极管的正极,另一端为负极。
这是因为在磁电式万用表的欧姆挡,黑表笔接表内电池的正端,红表笔接表内电池的负端。
②二极管类型的判别。
经验证明,用500型万用表的R×1K挡测二极管的正向电阻时,硅管为6~20kΩ,锗管为1~5kΩ。
用2.5V或10V电压挡测二极管的正向导通电压时,一般锗管的正向电压为0.1V~0.3V,硅管的正向电压为0.5V~0.7V。
注意:用不同类型的万用表或同一类型的万用表的不同量程去测二极管的正向电阻时,所得结果是不同的。
⑵用数字式万用表测试二极管①极性判别。
将数字式万用表置于二极管挡,红表笔插入“V•Ω”插孔,黑表笔插入“COM”插孔,这时红表笔接表内电源正极,黑表笔接表内电源负极。
将两只笔分别接触二极管的两个电极,如果显示溢出符号“1”,说明二极管处于截止状态;如果显示在1V以下,说明二极管处于正向导通状态,此时与红表笔相接的是管子的正极,与黑表笔相接的是负极。
②好坏的测量。
将数字式万用表置于二极管挡,红表笔插入“V•Ω”插孔,黑表笔插入“COM”插孔。
当红表笔接二极管的正极,黑表笔接二极管的负极时,显示值在1V以下;当黑表笔接二极管的正极,红表笔接二极管的负极时,显示溢出符号“1”,说明被测二极管正常。
若两次测量均显示溢出,则表示二极管内部断路。
若两次测量均显示“000”,则表示二极管已击穿短路。
③硅管与锗管的测量。
量程开关位置及表笔插法同上,红表笔接被测二极管的正极,黑表笔接负极,若显示电压在0.5V∽0.7V,说明被测管是硅管;若显示电压在0.1V∽0.3V,说明被测管是锗管。
用数字式万用表判断二极管类型是,不宜用电阻挡进行测量,因为数字式万用表电阻挡所提供的测量电流太大,而二极管是非线性元件,其正、反向电阻与测试电流的大小有关,所以,用数字式万用表测出来的电阻值与正常值相差极大。
4.晶体三极管的简易测试利用万用表来简易测试晶体三极管①判断基极和管子类型由于三极管的基极对集电极和发射极的正向电阻都较小,据此,可先找出基极。
将万用表拨在R×100或R×1K挡上,当红表笔接触某一电极时,将黑表笔分别与另外两个电极接触,如果两次测得的电阻值均为几十至上百千欧的高电阻时,则表明该管为NPN型管,且这时红表笔所接触的电极为基极b。
同理,如用黑表笔接触某一电极时,将红表笔分别与另外两个电极接触,如果两次测得的电阻值均为几百欧姆的低电阻,则表明该管仍然为NPN型管,且这时黑表笔所接触的电极为基极b。
反之,当红表笔接触某一电极时,将黑表笔分别与另外两个电极接触,如果两次测得的电阻值均为几百欧姆的低电阻时,则表明该管为PNP型管,且这时红表笔所接触的电极为基极b。
②判断集电极和发射极从三极管的结构原理图上看,似乎发射极e和集电极c并无区别,可以互换使用,其实,二者的性能差别非常悬殊,这是因为两边的掺杂浓度不一样的缘故。
正确使用了发射极e和集电极c时,三极管的放大能力强;反之,则非常弱。
根据这一点,就可以把管子的e、c极区别开。
在判别出管型和基极b的基础上,任意假定一个电极为e极,另一个为c极,对于PNP型管,将红表笔接假定的c极,黑表笔接e极,再用手同时捏住管子的b、c极,注意不要将两极直接相碰,同时注意万用表指针向右摆动的幅度,然后使假设的e、c极对调,再次进行测量,若第一次观测时的摆动幅度大,则说明对e、c极的假设是对的,若第二次观测时的摆动幅度大,则说明第二次的假设是对的。
对于NPN型管,我们也可以采用同样的方法来处理。
上述判别电极方法的原理是:利用万用表欧姆挡内部的电池,给三极管的c、e极加上电压,使之具有放大能力,用手同时捏住b、c极时,相当于用人体电R,就等于从三极管的基极b输入一个微小的电流,此时阻代替基极偏置电阻b万用表指针向右摆动的幅度就间接反映出其放大能力的大小,从而可正确地判别出e、c极来。
5.用示波器观察信号波形⑴观察不同频率的信号波形将低频信号发生器的输出信号电压调节为2V,接至示波器的“Y轴输入”。
调节示波器,分别观察频率为1kHz、15kHz、200kHz的正弦信号。
要求荧光屏上显示出高度为4div并有三个完整周期的稳定正弦波。
⑵观察扫描信号频率大于被测信号频率时的信号波形,调节示波器,使荧光低频信号发生器输出信号电压幅度同上,频率为4kHZ屏上显示一个完整周期的正弦波。
固定示波器的“t/div”和“扫描微调”位置,改变低频信号发生器输出信号频率分别为2kHz和1kHz,观察并分析这三种频率时的信号波形。
实验二二极管伏安特性的测试一、目的1.学会直流稳压电源、电流表和电压表的使用方法。
2.了解二极管的伏安特性。
二、实验仪器直流稳压电源、万用表三任务测量电阻R=820Ω、二极管和稳压二极管串连电路的伏安特性及各个元件的伏安特性。
电路如图所示。
改变电源电压E的大小,测出相应的电流I。
串联支路的总电压U R,U D,列表记录。
四、实验内容1.按照电路图正确接线,测定二极管的正、反向伏安特性曲线。
测正向特性时,电源电压最高取3伏;测反向特性时,电源电压最高取20伏。
2.电压与电流均从零开始测量,然后缓慢改变电压,按照电压和电流的实际变化范围选取数据点,记下电流表和电压表读数(不要超过二极管额定值)。
对正向及反向的ID -VD关系都要测10个以上的点,并注意在曲线的弯曲部分,点应密些,在平直部分,点可疏些。
3.自拟表格记录实验数据,并画出二极管的正向及反向伏安特性曲线。
因正、反向电压电流相差很大,作图时可选用不同单位。
四、注意事项1.电源电压不得超过20V。
2.测量电流I时,电压表不能同时接在电路中。
五、要求1.自拟实验步骤及数据表格2.整理实验数据3.画出串联电路各个元件的伏安特性曲线(画在同一个坐标平面内)4.分析本实验中电压表内阻对测量结果的影响实验三信号波形参数的测量一、目的1、了解示波器的工作原理,初步掌握用示波器观察信号波形和测量波形参数的方法。
2、了解低频信号发生器和低频毫伏表的工作原理,初步学会正确使用这两种基本测量仪器。
二、仪器函数信号发生器、示波器、低频毫伏表、数字万用表三、实验内容1.用示波器和低频毫伏表测量交流信号的电压用示波器和低频毫伏表同时测量低频信号发生器的输出电压。
信号发生器的输出电压,可用低频毫伏表准确测出。
调节信号发生器输出信号的频率为1kHz,然后改变“输出调节”和变换“输出衰减”挡,使输出信号电压分别为3V、0.3V、100mV(用低频毫伏表监测),含1V直流成分的正弦信号,用万用表测量其直流成分,再用示波器测量这些电压,画出波形并将结果填入表1中,加以比较。
表12、用示波器测量信号的周期与频率将信号发生器输出电压固定为某一数值。
用示波器分别测量信号发生器的频率指示为1kHz 、5kHz 、100kHz 时的信号周期T ,并换算出相应的频率值f ,记入表2中。
为了保证测量的精度,应使屏幕上显示波形的一个周期占有足够的格数;或测量2~4个周期的时间,再取其平均值。
3.用示波器测量矩形波信号(1)调节函数信号发生器、使其输出周期为0.1ms ,峰峰值为2V ,占空比为50%,不含直流成分的矩形波形信号,用示波器观测此信号,记录其实际频率值,并记录示波器上显示的被测信号波形。
(2)调节函数信号发生器、使其输出频率为0.2ms,峰峰值为3V ,占空比为50%,含1V 直流成分的矩形波信号,用示波器观测此信号,记录其实际频率值,并记录示波器上显示的被测信号波形。
(3)调节函数信号发生器、使其输出周期为1ms ,低电平为0V ,高电平为3V ,占空比为20%的矩形波信号,用示波器观测此信号,记录其实际频率值,并记录示波器上显示的被测信号波形。
3.用示波器测量两个信号的相位差用1K Ω的电阻和0.1μF 的电容组成一个RC 网络,输入1KHz 的正弦信号,用示波器分别测量从电阻上和电容上输出的信号与输入信号的相位差。
用双踪示波器观测其波形,并记录示波器上显示的波形,计算相位差。
电路连接如图所示。