2007年CMO第4题的别证

合集下载

07年全国数学建模竞赛试题解答(由于懒得将图片依次贴出,需要者可以下载相关附件)

07年全国数学建模竞赛试题解答(由于懒得将图片依次贴出,需要者可以下载相关附件)

07年全国数学建模竞赛试题解答(由于懒得将图⽚依次贴出,需要者可以下载相关附件)乘公交看奥运摘要本设计要解决的是合理给出两站点间的最佳路线选择问题,即给出⼀条经济且省时的路线。

在处理此问题之前,我们根据调查和分析,对影响线路选择的因素进⾏筛选,最终确定了以下三个影响较⼤的因素:第⼀是换乘次数;第⼆是乘车时间;第三是乘车费⽤。

依据各因素对路线选择的影响程度,我们按不同的权重对它们进⾏考虑。

从实际情况分析,⼈们通常宁愿多乘坐⼏站地也不愿换车,所以我们赋予换乘次数较⼤的权重。

为了解决换乘次数最少,乘车时间相对较短、乘车费⽤相对较少的问题,经过尝试与探索,我们采⽤了现代分析的⽅法,对起始站和终点站有⽆相交站点进⾏分类讨论,归纳出直达,换乘⼀次,换乘两次的情况(三次以上的情形可以类推),并通过Matlab编制程序,给出了任意两站点间的最佳乘车路线以及换车的地点,最后还提出了进⼀步的意见和建议。

关键词:最佳路线换乘次数乘车时间乘车费⽤⼀、问题的重述第29届奥运会明年8⽉将在北京举⾏,作为城市枢纽的公共交通承担着⾮常重的运输任务。

近年来,北京市的公交系统有很⼤的发展,公交线路的条数和公交车数量在迅速增多,给⼈民⽣活带来便利的同时,也⾯临多条线路得选择问题,有时出⾏往往还需要转乘多辆公交车才能到达⽬的地。

如何在短时间、换乘次数最少、成本最低的情况到达⽬的地,是⼈们所关注的问题。

因此,我们通过建⽴线路选择的模型与算法,设计⼀套⾃主查询计算机系统,查询到出⾏时所需的最佳公交路线及换乘⽅法,给⼈们出⾏节约更多的时间和⾦钱。

要求:1、仅考虑公汽线路,建⽴任意两公汽站点之间线路选择问题的数学模型与算法。

并求出以下6对起始站→终到站之间的最佳路线。

(1)S3359→S1828 (2)S1557→S0481 (3)S0971→S0485(4)S0008→S0073 (5)S0148→S0485 (6)S0087→S36762、同时考虑公汽与地铁线路,解决1中问题。

2007年全国高中数学联赛四川高中数学竞赛预赛试题参考解答及评分细则

2007年全国高中数学联赛四川高中数学竞赛预赛试题参考解答及评分细则

二00七年高中数学联赛四川赛区初赛试题参考答案及评分标准说明:1、评阅试卷时,请依据评分标准.选择题和填空题只设5分和0分两档;其它各题的评阅,请严格按照评分标准规定的评分档次给分,不要再增加其它中间档次.2、如果考生的解答题方法和本解答不同,只要思路合理,步骤正确,在评阅时可参考本评分标准适当划分档次评分,5分一个档次,不要在增加其它中间档次. 一、选择题(本题满分30分,每小题5分)1、A2、B3、C4、C5、B6、D 二、填空题(本题满分30分,每小题5分)7、32- 8、}51|{<<-x x 9、9 10、}11|{<<>x a ax x 或 11、715 12、1207411 三、解答题(本大满分80分,每小题20分)13、如图,CF BE AD ,,分别是锐角ABC ∆的三条高,垂足分别为F E D ,,.以BC 为直径的圆O 和AD 交于G 点,过G 的直径的另一端点为K .若FK EK ,和BC 分别交于M ,N .求证:ON OM =.证明: CF BE AD ,,分别是锐角ABC ∆∴ 它们必相交于一点,记为H∴ H 为ABC ∆的垂心 (连结DE GM GE ,,∵ GK 是⊙O 的直径 ∴90=∠GEM∵90=∠GDM ,∴ E M D G ,,,四点共圆 ∴ GDE GME ∠=∠又 ∵ E C D H ,,,四点共圆, ∴ GDE ∠=∠∴ FKE HCE GME ∠=∠=∠, ∴ GM ∥FK (15分) ∴ ONK OMG ∠=∠,∵ KON GOM ∠=∠,KO GO =,∴ ONK OMG ∆≅∆, ∴ ON OM = (20分)14、若)2,0(π∈x ,求x x x x x f 3cos 2cos 6cos 3cos 2)(23--+=的最大值及取最大值时x 的值.解:因为x x x x x x x sin 2sin cos 2cos )2cos(3cos -=+=x x x x x x c o s 3c o s 4)c o s 1(c o s 2c o s )1c o s 2(322-=---= (5分) 所以)cos 21(cos 3cos 6cos 3)(232x x x x x f -=-=91)3cos 21cos cos (33=-++≤x x x (15分)等号当且仅当x x cos 21cos -=,即31cos =x 时取得.所以,当31arccos =x 时,)(x f 有最大值91. (20分)15、已知椭圆)0(12222>>=+b a by a x 的右焦点为F ,右准线与x 轴交于E 点,若椭圆的离心率22=e ,且1||=EF . (Ⅰ)求b a ,的值;(Ⅱ)若过F 的直线交椭圆于B A ,两点,且+与向量)2,4(-=共线,(其中,O 为坐标原点),求OA 与OB 的夹角.解:(Ⅰ)由题意知⎪⎪⎩⎪⎪⎨⎧=-=1222c ca a c ,解得1,2==c a ,从而1=b . (5分)(Ⅱ)由(Ⅰ)知)0,1(F ,显然直线AB 不垂直于x 轴, 可设直线AB :)1(-=x k y联立⎪⎩⎪⎨⎧=+-=12)1(22y x x k y ,消去y ,得0)1(24)21(2222=-+-+k x k x k (10分) 设),(11y x A ,),(22y x B ,则2221214k k x x +=+,222121)1(2k k x x +-=22221212121222142)()1()1(k kk k k k k x x k x k x k y y +-=-+⋅=-+=-+-=+ 于是)212,214(),(2222121k kk k y y x x +-+=++=+依题意22124214222-+-=+k kk k ,即k 2=故2=k ,或0=k (舍去) 分)又[)1()1(22121=-⋅-=k x k x k y y 2222221421)1(2[k k k k k ++-+-=故02122121)1(22222222121=+-=+-+-=+=⋅kk k k k k y y x x 所以,与的夹角为90. (20分) 16、已知正整数列}{n a 满足条件:对于任意正整数n ,从集合},,,{21n a a a 中不重复地任取若干个数,这些数之间经过加减运算后所得的数的绝对值为互不相同的正整数,且这些正整数与n a a a ,,,21 一起恰好是1至n S 全体自然数组成的集合,其中n S 为数列}{n a 的前n 项和.(1)求21,a a 的值;(2)求数列}{n a 的通项公式.解:(1)记},,2,1{n n S A =,显然111==S a .对于22121a a a S +=+=,有|}1|,1,,1{},,2,1{22222a a a S A -+== }4,3,2,1{=故412=+a ,所以32=a . (5分)(2)由题意知,集合},,,{21n a a a 按上述规则,共产生n S 个正整数;而集合},,,,{121+n n a a a a 按上述规则产生的1+n S 个正整数中,除n S ,,2,1 这n S 个正整数外,还有||,,11i a i a a n i n n -++++(n S i ,,2,1 =),共12+n S 个数.所以,13)12(1+=++=+n n n n S S S S . (10分) 因为 )21(3211+=++n n S S ,所以,21321213)21(111-⨯=-⨯+=++n n n S S (15分) 又因为当2≥n 时,1113)21321()21321(---=-⨯--⨯=-=n n n n n n S S a 而11=a 也满足13-=n n a .所以,13-=n n a (1≥n ). (20分)。

中国数学奥林匹克(CMO)历届试题及解答(1986-2005)

中国数学奥林匹克(CMO)历届试题及解答(1986-2005)

∈ Z.
1 3 2n+1 (2n + 1)ϕ = (2l + 3 = 2t + 3 2 )π (l ∈ Z). ∴ (2n + 1)(2k + 6 ) = 2l + 2 , 6 2 , n = 6t + 4(t ∈ Z). 5(2n+1) 5 ) = 2l + 3 = 2t + 3 或(2n + 1)(2k + 6 2, 6 2 , 5|4t + 3, t ≡ 3 (mod 5)(t ∈ Z).
+1 ∴ cos(n + 1)θ − cos nθ − 1 = −(2 sin 2n2 θ sin θ 2 + 1) = 0. +1 sin(n + 1)θ − sin nθ = 2 cos 2n2 θ sin θ 2 = 0. +1 +1 1 θ ∴ cos 2n2 θ = 0, sin 2n2 θ = ±1, sin θ 2 = ± 2 , 设 2 = ϕ. π (1)sin ϕ = 1 2 ,sin(2n + 1)ϕ = −1. ϕ = 2kπ + 6 或2kπ + 5π 6 ,k
设t = 5s + 3,则n = 6s + 4,总有6|n + 2. (2)sin ϕ = − 1 2 ,sin(2n + 1)ϕ = 1.显然以−ϕ代ϕ即有(1).所以6|n + 2.证毕. 2.把边长为1的正三角形ABC 的各边都n等分,过各分点平行于其它两边的直线, 将这三角形分成若干个 小三角形,这些小三角形的顶点都称为结点, 并且在每一结点上放置了一个实数.已知: (1)A, B, C 三点上放置的数分别为a, b, c. (2)在每个由有公共边的两个最小三角形组成的菱形之中, 两组相对顶点上放置的数之和相等. 试求:(1)放置最大数的点和放置最小数的点之间的最短距离. (2)所有结点上数的总和S . 解:(1)不难证明同一直线上相邻三个结点上放置的数中间一个为两边的等差中项,所以同一直线上的数 按顺序成等差数列. 若两端的数相等,则所有的数都相等.否则两端的数为最大的和最小的. 若a, b, c相等,显然所有数都相等,最短距离显然为0. 若a, b, c两两不等,最大的数与最小的数必出现在A, B, C 上,最短距离为1. 若a, b, c有两个相等但不与第三个相等,不妨设a = b > c,最小的数为c,最大的数出现在线段AB 的任意 结点上. 当n为偶数时,与C 最近的为AB 中点,最短距离为

2007年第六届中国女子数学奥林匹克试题及解答

2007年第六届中国女子数学奥林匹克试题及解答

综上 ,最少取出 11 枚棋子 ,才可能满足要求 . 三、 定义集合 A = { m
k + 1| m ∈N+ , k ∈P} . k +1
.
i +1 数 ,则对任意的 k1 、 k2 ∈P 和正整数 m 1 、 m2 , m1 k1 + 1 = m2
由于对任意的 k 、 i ∈P ,且 k ≠i ,
是无理
由 m1 是正整数知 , 对 i = 1 ,2 ,3 ,4 ,5 , 满足这个 条件的 m1 的个数为 m
5
k +1 i +1 k +1 i +1
.
k 2 + 1 Ζ m 1 = m 2 , k1 = k 2 .
从而 , n =
注意到 A 是一个无穷集 . 现将 A 中的元素按从 小到大的顺序排成一个无穷数列 . 对于任意的正整 数 n ,设此数列中第 n 项为 m k + 1 . 接下来确定 n 与 m 、 k 间的关系 .
yx
2
当 x = 0 时 ,上式也成立 .
a1 a2 a2 a3 a n a1 故 2 + 2 + …+ 2 a2 + 1 a3 + 1 a1 + 1
2 2 2
4 . (1) 记 S 中的 n 个点为 A 1 , A 2 , …, A n .
建立直角坐标系 ,设 A i ( x i , y i ) ( i = 1 ,2 , …, n) . 易证
32
中 等 数 学
2007 女子数学奥林匹克
第一天
1. 设 m 为正整数 ,如果存在某个正整数
n ,使得 m 可以表示为 n 和 n 的正约数个数 (包括 1 和自身 ) 的商 , 则称 m 是 “好数” .求

2007年全国高中数学联合竞赛湖北省预赛

2007年全国高中数学联合竞赛湖北省预赛

2007年全国高中数学联合竞赛湖北省预赛说明:1. 评阅试卷时,请依据本评分标准。

选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准规定的评分档次给分,不要再增加其它中间档次。

2. 如果考生的解题方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,5分为一个档次,不要再增加其他中间档次。

一、选择题(本题满分36分,每小题6分)本题共有6小题,每小题均给出A ,B ,C ,D 四个结论,其中有且仅有一个是正确的。

请将正确答案的代表字母填在题后的括号内。

每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分。

1. 已知,a b 是方程3274log 3log (3)3x x +=-的两个根,则a b += ( )A.1027B.481C.1081D.2881解 原方程变形为3333log 3log (3)4log (3)log 273x x +=-,即331log 141log 33xx++=-+.令31log x t +=,则1433t t+=-,解得121,3t t =-=-.所以31log 1x +=-或31log 3x +=-,所以方程的两根分别为19和181,所以1081a b +=. 故选(C ).2. 设D 为△ABC 的边A B 上一点,P 为△ABC 内一点,且满足34A D A B =,25A P A D B C =+ ,则APD ABCSS =△△ ( )A.310B.25C.715D.815解 连PD ,则25D P B C =,所以//D P B C ,故AD P B ∠=∠,故1sin 323214510sin 2APD ABCAD D P AD P S S AB BC B⋅⋅∠==⋅=⋅⋅∠△△. 故选(A ). 3. 定义在R 上的函数()f x 既是奇函数又是周期函数,若()f x 的最小正周期是π,且当x∈[0,2π)时,()sin f x x =,则8()3f π的值为 ( )A.2B.2-C.12D. 12-解 根据题设条件可知8()(3)()()sin 333332f f f f ππππππ=-+=-=-=-=- 故选(B ).4. 已知1111ABC D A B C D -是一个棱长为1的正方体,1O 是底面1111A B C D 的中心,M 是棱1B B 上的点,且:2:3S S =11△DBM △O B M ,则四面体1O AD M 的体积为 ( )A.724B.316C.748D.1148解 易知A C ⊥平面11D B BD ,设O 是底面A B C D 的中心,则A O ⊥平面1D O M .因为1111223S B D B M B M S O B B MB M⋅==⋅=⋅11△DBM △O B M,所以113BM B M=,故113,44B M B M ==.于是S S S S S =---1111111△DO M D B BD △DD O △O B M △DBM11311112222424=⨯⨯-⨯-⨯⨯=所以11733248V S AO =⋅=⨯=11A-O MD △DO M . 故选(C ).5. 有编号分别为1,2,3,4,5的5个红球和5个黑球,从中取出4个,则取出的球的编号互不相同的概率为 ( )A.521. B.27. C.13D.821解 从10个球中取出4个,不同的取法有410C 210=种.如果要求取出的球的编号互不相同,可以先从5个编号中选取4个编号,有45C 种选法.对于每一个编号,再选择球,有两种颜色可供挑选,所以取出的球的编号互不相同的取法有445C 280⋅=种.因此,取出的球的编号互不相同的概率为80821021=. 故选(D ).6. 使得381n+是完全平方数的正整数n 有 ( ) A. 0个 B. 1个 C. 2个 D. 3个解 当4n ≤时,易知381n+不是完全平方数.故设4n k =+,其中k 为正整数,则CA C 138181(31)n k+=+.因为381n +是完全平方数,而81是平方数,则一定存在正整数x ,使得231k x +=,即231(1)(1)k x x x =-=+-,故1,1x x +-都是3的方幂.又两个数1,1x x +-相差2,所以只可能是3和1,从而2,1x k ==.因此,存在唯一的正整数45n k =+=,使得381n +为完全平方数.故选(B ). 二、填空题(本题满分54分,每小题9分)本题共有6小题,要求直接将答案写在横线上。

2007年全国初中数学竞赛试题及参考答案

2007年全国初中数学竞赛试题及参考答案

中国教育学会中学数学教学专业委员会 2007年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分。

以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里。

不填、多填或错填得零分)1、方程组⎩⎨⎧=+=+6||12||y x y x 的解的个数为( )A 、1B 、 2C 、3D 、4 答案:A解析:若0≥x ,则⎩⎨⎧=+=+6||12y x y x ,于是6||-=-y y ,显然不可能若0 x ,则⎩⎨⎧=+=+-6||12y x y x于是18||=+y y ,解得9=y ,进而求得3-=x 所以,原方程组的解为⎩⎨⎧=-=93y x ,只有1个解.故选(A ).2、口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( )A 、 14B 、 16C 、18D 、20答案:B解析:用枚举法:红球个数 白球个数 黑球个数 种 数 5 2,3,4,5 3,2,1,0 4 4 3,4,5,6 3,2,1,0 4 3 4,5,6,7 3,2,1,0 4 2 5,6,7,8 3,2,1,0 4 所以,共16种. 故选(B ).3、已知ABC ∆为锐角三角形,⊙O 经过点B ,C ,且与边AB ,AC 分别相交于点D ,E . 若⊙O 的半径与ADE ∆的外接圆的半径相等,则⊙O 一定经过ABC ∆的( )A 、内心B 、外心C 、重心D 、垂心 答案:B解析: 如图,连接BE ∵ABC ∆为锐角三角形 ∴BAC ∠,ABE ∠均为锐角又∵⊙O 的半径与ADE ∆的外接圆的半径相等,且DE 为两圆的公共弦 ∴ABE BAC ∠=∠∴BAC ABE BAC BEC ∠=∠+∠=∠2 若ABC ∆的外心为1O 则BAC C BO ∠=∠21 ∴⊙O 一定过ABC ∆的外心 故选(B ).4、已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx 恰有一个公共实数根,则abc ca b bc a 222++的值为( ) A 、0 B 、1 C 、2 D 、3 答案:D解析:设0x 是它们的一个公共实数根,则02=++c bx ax ,02=++a cx bx ,02=++b ax cx把上面三个式子相加,并整理得()()01020=++++x x c b a因为0432112002+⎪⎭⎫ ⎝⎛+=++x x x所以0=++c b a于是()()33333333222=+-=+-+=++=++abcb a ab abc b a b a abc c b a ab c ca b bc a 故选(D ).5、方程256323+-=++y y x x x 的整数解(x ,y )的个数是( )A 、0B 、1C 、3D 、无穷多 答案:A解析:原方程可化为()()()()()2113212++-=++++y y y x x x x x因为三个连续整数的乘积是3的倍数,所以上式左边是3的倍数,而右边除以3余2,这是不可能的。

2007年全国高中数学联合竞赛试题及解答.

2007年全国高中数学联合竞赛试题及解答.

2007年全国高中数学联合竞赛一试一、填空题:本大题共6个小题,每小题6分,共36分。

2007*1、如图,在正四棱锥ABCD P -中,060=∠APC ,则二面角C PB A --的平面角的余弦值为A.71 B.71- C.21 D.21-◆答案:B★解析:如图,在侧面PAB 内,作AM ⊥PB ,垂足为M 。

连结CM 、AC ,则∠AMC 为二面角A−PB−C 的平面角。

不妨设AB =2,则22==AC PA ,斜高为7,故2272⋅=⨯AM ,由此得27==AM CM 。

在△AMC 中,由余弦定理得712cos 222-=⋅⋅-+=∠CM AM AC CM AM AMC 。

2007*2、设实数a 使得不等式2232a a x a x ≥-+-对任意实数x 恒成立,则满足条件的a 所组成的集合是A.⎥⎦⎤⎢⎣⎡-31,31 B.⎥⎦⎤⎢⎣⎡-21,21 C.⎥⎦⎤⎢⎣⎡-31,41 D.[]3,3-◆答案:A★解析:令a x 32=,则有31||≤a ,排除B 、D 。

由对称性排除C ,从而只有A 正确。

一般地,对R k ∈,令ka x 21=,则原不等式为2|||34|||23|1|||a k a k a ≥-⋅+-⋅,由此易知原不等式等价于|34|23|1|||-+-≤k k a ,对任意的R k ∈成立。

由于⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<≤-≥-=-+-125334121134325|34|23|1|k k k k k k k k ,所以31|}34|23|1{|min R =-+-∈k k k ,从而上述不等式等价于31||≤a 。

2007*3、将号码分别为9,,2,1 的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。

甲从袋中摸出一个球,其号码为a ,放回后,乙从袋中再摸出一个球,其号码为b 。

则使不等式0102>+-b a 成立的事件发生的概率等于A.8152 B.8159 C.8160 D.8161◆答案:D ★解析:甲、乙二人每人摸出一个小球都有9种不同的结果,故基本事件总数为8192=个。

2007年全国初中数学联合竞赛试题参考答案及评分标准

2007年全国初中数学联合竞赛试题参考答案及评分标准

2007年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为D C B A ,,,的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1. 已知z y x ,,满足x z z y x +=-=532,则zy y x 25+-的值为 ( ) (A )1. (B )31. (C )31-. (D )21. 【答】B.解 由x z z y x +=-=532得x z x y 23,3==,所以31333525=+-=+-x x x x z y y x ,故选(B ). 注:本题也可用特殊值法来判断.2.当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算代数式2211xx +-的值,将所得的结果相加,其和等于 ( ) (A )-1. (B )1. (C )0. (D )2007.【答】C.解 因为=+-++-222211)1(1)1(1n n n n 011112222=+-++-n n n n ,即当x 分别取值n 1,n n (为正整数)时,计算所得的代数式的值之和为0;而当1=x 时,0111122=+-.因此,当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算所得各代数式的值之和为0.故选(C ).3. 设c b a ,,是△ABC 的三边长,二次函数2)2(2b a cx x ba y ----=在1=x 时取最小值b 58-,则△ABC 是 ( ) (A )等腰三角形. (B )锐角三角形. (C )钝角三角形. (D )直角三角形.【答】D.解 由题意可得⎪⎪⎩⎪⎪⎨⎧-=----=---,5822,1)2(2b b a c b a b a c 即⎪⎩⎪⎨⎧==+,53,2b c a c b 所以b c 53=,b a 54=,因此222b c a =+,所以△ABC 是直角三角形. 故选(D ).4. 已知锐角△ABC 的顶点A 到垂心H 的距离等于它的外接圆的半径,则∠A 的度数是( )(A )30°. (B )45°. (C )60°. (D )75°. 【答】C. 解 锐角△ABC 的垂心在三角形内部,如图,设△ABC 的外心为O ,D 为BC 的中点,BO 的延长线交⊙O 于点E ,连CE 、AE ,则CE //AH ,AE //CH ,则OD CE AH OB 2===,所以∠OBD =30°,∠BOD =60°,所以∠A =∠BOD =60°.故选(C ).5.设K 是△ABC 内任意一点,△KAB 、△KBC 、△KCA 的重心分别为D 、E 、F ,则ABC DEF S S △△:的值为 ( )(A )91. (B )92. (C )94. (D )32. 【答】A.解 分别延长KD 、KE 、KF ,与△ABC 的三边AB 、BC 、CA 交于点M 、N 、P ,由于D 、E 、F 分别为△KAB 、△KBC 、△KCA 的重心,易知M 、N 、P 分别为AB 、BC 、CA 的中点,所以ABC MNP S S △△41=. 易证△DEF ∽△MNP ,且相似比为3:2,所以MNP DEF S S △△2)32(=ABC S △4194⋅=ABC S △91=. 所以:DEF S △19ABC S =△.故选(A ). 6.袋中装有5个红球、6个黑球、7个白球,从袋中摸出15个球,摸出的球中恰好有3个红球的概率是 ( )(A )101. (B )51. (C )103. (D )52. 【答】B.解 设摸出的15个球中有x 个红球、y 个黑球、z 个白球,则z y x ,,都是正整数,且7,6,5≤≤≤z y x ,15=++z y x .因为13≤+z y ,所以x 可取值2,3,4,5.当2=x 时,只有一种可能,即7,6==z y ;当3=x 时,12=+z y ,有2种可能,7,5==z y 或6,6==z y ;当4=x 时,11=+z y ,有3种可能,7,4==z y 或6,5==z y 或5,6==z y ;当5=x 时,10=+z y ,有4种可能,7,3==z y 或6,4==z y 或5,5==z y 或4,6==z y . 因此,共有1+2+3+4=10种可能的摸球结果,其中摸出的球中恰好有3个红球的结果有2种,所以所求的概率为51102=.故选(B ). 二、填空题(本题满分28分,每小题7分)1. 设121-=x ,a 是x 的小数部分,b 是x -的小数部分,则=++ab b a 333____1___. 解 ∵12121+=-=x ,而3122<+<,∴122-=-=x a . 又∵12--=-x ,而2123-<--<-,∴22)3(-=---=x b .∴1=+b a ,∴=++ab b a 333=++-+ab b ab a b a 3))((221)(3222=+=++-b a ab b ab a . 2. 对于一切不小于2的自然数n ,关于x 的一元二次方程22(2)20x n x n -+-=的两个根记作n n b a ,(2≥n ),则)2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a =.10034016- 解 由根与系数的关系得2+=+n b a n n ,22n n a b n ⋅=-,所以=--)2)(2(n n b a (2-n n b a 4)++n n b a 222(2)42(1)n n n n =--++=-+, 则11111()(2)(2)2(1)21n n a b n n n n =-=----++, )2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a=11111111111003()()()()22334200720082220084016⎡⎤--+-++-=--=-⎢⎥⎣⎦. 3. 已知直角梯形ABCD 的四条边长分别为6,10,2====AD CD BC AB ,过B 、D 两点作圆,与BA 的延长线交于点E ,与CB 的延长线交于点F ,则BF BE -的值为____4_____.解 延长CD 交⊙O 于点G ,设DG BE ,的中点分别为点N M ,,则易知DN AM =.因为10==CD BC ,由割线定理,易证DG BF =,所以42)(2)(2==-=-=-=-AB AM BM DN BM DG BE BF BE . 4. 若64100+a 和64201+a 均为四位数,且均为完全平方数,则整数a 的值是___17____. 解 设264100m a =+,264201n a =+,则100,32<≤n m ,两式相减得 ))((10122m n m n m n a -+=-=,因为101是质数,且101101<-<-m n ,所以101=+m n ,故1012-=-=n m n a .代入264201n a =+,整理得020*******=+-n n ,解得59=n ,或343=n (舍去).所以171012=-=n a .第二试 (A )一、 (本题满分20分)设n m ,为正整数,且2≠m ,如果对一切实数t ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离不小于2t n +,求n m ,的值.解 因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为3mt + …………………………5分由题意,32mt t n +≥+,即22(3)(2)mt t n +≥+,即222(4)(64)90m t m n t n -+-+-≥ ………………………………………………………………………………………………10分由题意知,042≠-m ,且上式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m ……………………………………………………15分 A B C DE F G M N22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m ……………………………………20分 二、(本题满分25分)如图,四边形ABCD 是梯形,点E 是上底边AD 上一点,CE 的延长线与BA 的延长线交于点F ,过点E 作BA 的平行线交CD 的延长线于点M ,BM 与AD 交于点N .证明:∠AFN =∠DME . 证明 设MN 与EF 交于点P ,∵NE //BC , ∴△PNE ∽△PBC ,∴PC PE PB PN =, ∴PC PN PE PB ⋅=⋅. …………………………………5分又∵ME //BF ,∴△PME ∽△PBF ,∴PF PE PB PM =, ∴PF PM PE PB ⋅=⋅. ………………………………10分∴PF PM PC PN ⋅=⋅,故PFPC PN PM = …………………………………………………………15分 又∠FPN =∠MPE ,∴△PNF ∽△PMC ,∴∠PNF =∠PMC ,∴NF//MC …………………20分 ∴∠ANF =∠EDM.又∵ME//BF ,∴∠FAN =∠MED.∴∠ANF +∠FAN =∠EDM +∠MED ,∴∠AFN=∠DME. …………………………………25分三、 (本题满分25分)已知a 是正整数,如果关于x 的方程056)38()17(23=--+++x a x a x 的根都是整数,求a 的值及方程的整数根.解 观察易知,方程有一个整数根11=x ,将方程的左边分解因式,得[]056)18()1(2=+++-x a x x …………………………………………………………5分因为a 是正整数,所以关于x 的方程 056)18(2=+++x a x (1)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.而原方程的根都是整数,所以方程(1)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数. ……………………………………………………………………………………10分设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a . ………………………………………………………15分显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以 A B C D E F M N P⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a ……………………………………………20分 当39=a 时,方程(1)即056572=++x x ,它的两根分别为1-和56-.此时原方程的三个根为1,1-和56-.当12=a 时,方程(1)即056302=++x x ,它的两根分别为2-和28-.此时原方程的三个根为1,2-和28-. …………………………………………………………………………………25分 第二试 (B )一、(本题满分20分)设n m ,为正整数,且2≠m ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为1d ,二次函数nt x n t x y 2)2(2+-+-=的图象与x 轴的两个交点间的距离为2d .如果21d d ≥对一切实数t 恒成立,求n m ,的值.解 因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以31+=mt d ; 一元二次方程02)2(2=+-+-nt x n t x 的两根分别为t 2和n -,所以n t d +=22.………5分所以,21d d ≥22)2()3(23n t mt n t mt +≥+⇔+≥+⇔ 09)46()4(222≥-+-+-⇔n t n m t m (1) ………………10分由题意知,042≠-m ,且(1)式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m ……………………………………………………15分 22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m …………………………………20分 二、(本题满分25分)题目和解答与(A )卷第二题相同. 三、(本题满分25分)设a 是正整数,二次函数a x a x y -+++=38)17(2,反比例函数xy 56=,如果两个函数的图象的交点都是整点(横坐标和纵坐标都是整数的点),求a 的值.解 联立方程组⎪⎩⎪⎨⎧=-+++=,56,38)17(2x y a x a x y 消去y 得a x a x -+++38)17(2x 56=,即 056)38()17(23=--+++x a x a x ,分解因式得[]056)18()1(2=+++-x a x x (1) ………………………………………5分 显然11=x 是方程(1)的一个根,(1,56)是两个函数的图象的一个交点.因为a 是正整数,所以关于x 的方程 056)18(2=+++x a x (2)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根. ……………………………10分而两个函数的图象的交点都是整点,所以方程(2)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a . ……………………………………………………15分显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a …………………………………………20分 当39=a 时,方程(2)即056572=++x x ,它的两根分别为1-和56-,此时两个函数的图象还有两个交点)56,1(--和)1,56(--.当12=a 时,方程(2)即056302=++x x ,它的两根分别为2-和28-,此时两个函数的图象还有两个交点)28,2(--和)2,28(--. …………………………………………………………25分 第二试 (C )一、(本题满分25分)题目和解答与(B )卷第一题相同.二、(本题满分25分)题目和解答与(A )卷第二题相同.三、(本题满分25分)设a 是正整数,如果二次函数a x a x y 710)232(22-+++=和反比例函数xa y 311-=的图象有公共整点(横坐标和纵坐标都是整数的点),求a 的值和对应的公共整点. 解 联立方程组⎪⎩⎪⎨⎧-=-+++=,311,710)232(22x a y a x a x y 消去y 得a x a x 710)232(22-+++= 113a x-,即0113)710()232(223=-+-+++a x a x a x ,分解因式得 []0311)12()12(2=-+++-a x a x x (1) ………………………………5分 如果两个函数的图象有公共整点,则方程(1)必有整数根,从而关于x 的一元二次方程 0311)12(2=-+++a x a x (2)必有整数根,所以一元二次方程(2)的判别式∆应该是一个完全平方数, ……………………10分而224)18(10036)311(4)12(222-+=++=--+=∆a a a a a .所以224)18(2-+a 应该是一个完全平方数,设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即224)18)(18(=-+++k a k a .………………………………………15分 显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a …………………………………………20分 当39=a 时,方程(2)即0106512=-+x x ,它的两根分别为2和53-,易求得两个函数的图象有公共整点)53,2(-和)2,53(-.当12=a 时,方程(2)即025242=-+x x ,它的两根分别为1和25-,易求得两个函数的图象有公共整点)25,1(-和)1,25(-. …………………………………………………………………25分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1996年上海市高中理科实验班招生试题)
解 由x ,y ,z 的对称性,不妨假设x ≤y ≤z ,由 得x +1≥x +x 2
,所以x 2
≤1,因为x >0,所以0<x ≤1.
由 得 x =
z +1
y +1
.因为y ≤z ,所以y +1≤z +1,所以x ≥1,所以x 只能是1.
代入 , 得
2=y +y z ,
y +1=2z , 由 得 z =1
2
(y +1),
代入 ,得y 1=-4(舍去),y 2= 1.
所以z =1,所以x =y =z = 1.
2007年CM O 第4题的别证
沈 毅 (重庆市合川太和中学 401555)
题目 设O 和I 分别是△A B C 的外心和内心,△AB C 的内切圆与边BC ,CA ,A B 分别相切于点D ,E ,F ,直线FD 与CA 相交于点P ,直线DE 与A B 相交于点Q ,点M ,N
分别是线段PE ,QF 的中点.求证:OI ⊥MN .
(2007年中国数学奥林匹克题)本文给出该题的一种纯几何证法.
图1 图2
证明 (1)先考虑点M 的情形.如图1,设IA 与EF 交于点K ,IC 与ED 交于点L ,连结K M ,K L ,I E ,易得K ,L 分别是EF ,ED 的中点.
由中位线定理知K M ∥P D ,K L ∥P D .
所以M ,K ,L 三点共线.∠ML E =
∠P DE =∠ME K .
易证△M EL ∽△MK E .即得ME 2=MK ML .
而由∠I K E =∠I L E =90°,知K ,I ,L ,E 四点共圆.
因此∠MK A =∠I K L =∠I EL =∠I CE .
所以△M A K ∽△M LC ,即M K ML =MA MC .
所以ME 2=M A MC .同样可得 N F 2=N A N B .
(2)如图2,设△A B C 的外接圆和内切圆的半径分别为R ,r .连结I M ,I N ,OM ,ON .
则I M 2=ME 2+r 2,I N 2=N F 2+r 2.由圆幂定理得OM 2=MA MC +R 2,
ON 2=N A N B +R 2.
结合(1)中结论知 I M 2-I N 2=OM 2
-ON 2
.
所以OI ⊥M N .
这种解法真的错了吗
邹振兴 (江苏省兴化市实验中学 225700)
问题 为了了解某户家庭每天用电情况,抽查了某个月10天该户用电情况如下:
每天用电度数
0.51 1.52 2.53天数
1
1
2
3
1
2
(1)求该户10天用电的众数和平均数;
(2)根据获得的数据,估计该户本月的用电数量(按30天计算);如果每度电的价格
为0.5元,估计该户家庭本月的电费支出是多少?
这是一道典型的表式信息题,主要考查众数、平均数以及用样本去估计总体等数学知识,是目前有关统计方面的热门试题.该问题的标准答案如下:
解 (1)因为每天用电度数为2度的天
・41・2007年第10期 中学数学月刊 。

相关文档
最新文档