2011年全国高中数学联合竞赛试题(B卷)

合集下载

2011年全国高中数学联赛一试试题参考答案与评分标准

2011年全国高中数学联赛一试试题参考答案与评分标准
(t 2 − x1 )(t 2 − x 2 ) + ( 2t − y 1 )( 2t − y 2 ) = 0 ,
即 t 4 − ( x1 + x 2 )t 2 + x1 ⋅ x 2 + 4t 2 − 2( y 1 + y 2 )t + y 1 ⋅ y 2 = 0 , 即 t 4 − 14t 2 − 16t − 3 = 0 , 即 (t 2 + 4t + 3)(t 2 − 4t − 1) = 0 . 从而点 C 与点 A 显然 t 2 − 4t − 1 ≠ 0 , 否则 t 2 − 2 ⋅ 2t − 1 = 0 , 则点 C 在直线 x − 2 y − 1 = 0 上, 或点 B 重合. 所以 t 2 + 4t + 3 = 0 ,解得 t 1 = −1, t 2 = −3 . 故所求点 C 的坐标为 (1,−2) 或 (9,−6) .
一、填空题:本大题共 8 小题,每小题 8 分,共 64 分.把答案填在横线上.
1 .设集合 A = {a1 , a 2 , a 3 , a 4 } ,若 A 中所有三元子集的三个元素之和组成的集合为 B = {−1, 3, 5, 8} ,则集合 A = . 解 显然,在 A 的所有三元子集中,每个元素均出现了 3 次,所以 3(a1 + a 2 + a 3 + a 4 ) = (−1) + 3 + 5 + 8 = 15 , 故 a1 + a 2 + a 3 + a 4 = 5 ,于是集合 A 的四个元素分别为 5-(-1)=6,5-3=2,5-5 =0,5-8=-3,因此,集合 A = {−3, 0, 2, 6} .
2011 年全国高中数学联合竞赛一试 试题参考答案及评分标准(A 卷)

专家预测卷考前必做)2011年全国高中数学联合竞赛加试试题、参考答案(1)

专家预测卷考前必做)2011年全国高中数学联合竞赛加试试题、参考答案(1)

(专家预测卷考前必做)2011年全国高中数学联合竞赛加试试题、参考答案一 试一、填空题(本题满分64分,每小题8分)1. 已知2a ≥-,且{}2A x x a =-≤≤,{}23,B y y x x A ==+∈,{}2,C t t x x A ==∈,若C B ⊆,则a 的取值范围是 。

2. 在ABC ∆中,若2AB = ,3AC = ,4BC =,O 为ABC ∆的内心,且A O AB BC λμ=+ ,则λμ+= .3. 已知函数()()()()21,0,1,0,x x f x f x x -⎧-≤⎪=⎨->⎪⎩若关于x 的方程()f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是 。

4. 计算器上有一个特殊的按键,在计算器上显示正整数n 时按下这个按键,会等可能的将其替换为0~n -1中的任意一个数。

如果初始时显示2011,反复按这个按键使得最终显示0,那么这个过程中,9、99、999都出现的概率是 。

5. 已知椭圆22143x y +=的左、右焦点分别为F 1、F 2,过椭圆的右焦点作一条直线l 交椭圆于点P 、Q ,则△F 1PQ 内切圆面积的最大值是 .6. 设{}n a 为一个整数数列,并且满足:()()()11121n n n a n a n +-=+--,n N +∈.若20072008a ,则满足2008n a 且2n ≥的最小正整数n 是 .7. 如图,有一个半径为20的实心球,以某条直径为中心轴挖去一个半径为12的圆形的洞,再将余下部分融铸成一个新的实心球,那么新球的半径是 。

8. 在平面直角坐标系内,将适合,3,3,x y x y <<<且使关于t 的方程33421()(3)0x y t x y t x y-+++=-没有实数根的点(,)x y 所成的集合记为N ,则由点集N 所成区域的面积为 。

二、解答题(本题满分56分)9. (本小题满分16分)对正整数2n ≥,记11112n n k k n a n k --==⋅-∑,求数列{}n a 中的最大值.10.(本小题满分20分)已知椭圆 12222=+by a x 过定点A (1,0),且焦点在x 轴上,椭圆与曲线y x =的交点为B 、C 。

2011年全国高中数学联合竞赛试题及解答.(B卷)

2011年全国高中数学联合竞赛试题及解答.(B卷)

2011年全国高中数学联合竞赛(B 卷)一试一、填空题:本大题共8个小题,每小题8分,共64分。

2011B1、设等差数列{}n a 的前n 项和为n S ,若201011S S -=,则2011S = . ◆答案:10092011★解析:因为{}n a 是等差数列,所以201011S S -=即120091006=a ,得200911006=a , 所以2011S =()20092011201122011100620111==+a a a2011B 2、已知复数z 的模为1,若1z z =和2z z =时1z i ++分别取得最大值和最小值,则12z z -= .◆答案:()i +12★解析:由z i i z z i ++≤++≤-+111,即12112+≤++≤-i z ,当i z ++1取得最大值(最小值)时,z 与i +1共线,且方向相同(相反), 又⎪⎭⎫ ⎝⎛+=+4sin 4cos 21ππi i ,所以4sin 4cos 1ππi z +=,45sin45cos 2ππi z += 所以()i i i z z +=--+=-1245sin 45cos4sin4cos 21ππππ2011B 3、若正实数b a ,满足2211≤+ba ,32)(4)(ab b a =-,则=b a log . ◆答案: 1- ★解析:由2211≤+ba ,得ab b a 22≤+. 又 23322)(8)(24)(44)(4)(ab ab ab ab ab b a ab b a =⋅⋅≥+=-+=+,即ab b a 22≥+. ①于是 ab b a 22=+.②再由不等式①中等号成立的条件,得1=ab .与②联立解得⎩⎨⎧+=-=,12,12b a 或⎩⎨⎧-=+=,12,12b a ,故1log -=b a .2011B 4、把扑克牌中,2,,,,A J Q K 的分别看作数字1,2,,11,12,13.现将一副扑克牌中的黑桃、红桃各13张放在一起,从中随机取出2张牌,其花色相同且两个数的积是完全平方数的概率为_____. ◆答案:652 ★解析:从26张牌中任意取出2张,共有325226=C 种取法。

2011年全国高中数学联赛湖北省预赛试题word版含参考答案

2011年全国高中数学联赛湖北省预赛试题word版含参考答案

2011年全国高中数学联合竞赛湖北省预赛试题参考答案(高一年级)说明:评阅试卷时,请依据本评分标准。

填空题只设8分和0分两档;解答题的评阅,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分。

一、填空题(本题满分64分,每小题8分。

直接将答案写在横线上。

) 1.计算:sin ²10º+sin ²20º+sin ²30º+…+sin ²90º=? 5 .2.设等差数列﹛an ﹜的前n 项和为Sn ,已知S12=21,则a3+a4+a9+a10=____7____.3.已知P 是△ABC 所在平面上一点,满足PA ﹙→﹚+PB ﹙→﹚+2PC ﹙→﹚=3AB ﹙→﹚,则△ABP 与△ABC 的面积之比为1:2.4.111(1)(1)(1)121231232011---+++++++ =6712011.5.满足方程x ²+8xsin ﹙xy ﹚+16=0(x ∈R,y ∈[0,2π﹚)的实数对﹙x,y ﹚的个数为 8 . 6.已知函数2()2||2f x x x =-+的定义域为[,]a b (其中a b <),值域为[2,2]a b ,则符合条件的数组(,)a b 为1(,22+.7.设集合{0,1,2,3,4,5,6,7,8,9}A =.如果方程20x mx n --=(,m n A ∈)至少有一个根0x A ∈,就称该方程为合格方程,则合格方程的个数为 23 .8.已知关于x 的方程||x k -=[1,1]k k -+上有两个不相等的实根,则实数k 的取值范围是01k <≤.二、解答题(本大题满分56分,第9题16分,第10题20分,第11题20分)9.已知二次函数2()y f x x bx c ==++的图象过点(1,13),且函数y =1()2f x -是偶函数. (1)求()f x 的解析式;(2)函数()y f x =的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.解 (1)因为函数1()2y f x =-是偶函数,所以二次函数2()f x x bx c =++的对称轴方程为12x =-,故1b =. ------------------------------------------4分又因为二次函数2()f x x bx c =++的图象过点(1,13),所以113b c ++=,故11c =. 因此,()f x 的解析式为2()11f x x x =++. ------------------------------------------8分(2)如果函数()y f x =的图象上存在符合要求的点,设为P 2(,)m n ,其中m 为正整数,n 为自然数,则2211m m n ++=,从而224(21)43n m -+=,即[2(21)][2(21)]43n m n m ++-+=.------------------------------------------12分 注意到43是质数,且2(21)2(21)n m n m ++>-+,2(21)0n m ++>,所以有2(21)43,2(21)1,n m n m ++=⎧⎨-+=⎩解得10,11.m n =⎧⎨=⎩因此,函数()y f x =的图象上存在符合要求的点,它的坐标为(10,121).------------------------------------------16分10.已知a,b ∈R ,关于x 的方程x^4+ax^3+2x ²+bx+1=0有一个实根,求a ²+b ²的最小值. 解 设r 为方程432210x ax x bx ++++=的实根,则有432210r ar r br ++++=,即222(1)()0r r ar b +++=.显然0r ≠. ------------------------------------------5分 容易证明22224()()(1)ar b a b r +≤++,于是222224422222442424()(1)1(1)(21)[]11(1)(1)ar b r r r r a b r r r r r r r ++++++≥=-⋅==++++42244422424(1)4(1)414448(1)1r r r r r r r r r r +++++==++≥=++. ------------------------------------------15分当且仅当4224141r r r r +=+且2a r b =时等号成立,此时21r =,a b =.结合222(1)()0r r ar b +++=可求得2,1,a b r ==-⎧⎨=⎩或2,1.a b r ==⎧⎨=-⎩因此22a b +的最小值为8. ------------------------------------------20分11.已知数列{}n a 满足2*1121,(N )3n n n a a a a n n+==+∈.证明:对一切*N n ∈,有(1)11n n a a +<<; (2)1124n a n>-.解 (1)显然,0n a >,所以212nn n n a a a a n+=+>(*n N ∈).所以,对一切*k N ∈,211221k k k k k k a a a a a a k k++=+<+,所以21111k k a a k +-<. --------------------5分所以,当2n ≥时,111121122111111111111()3[1]3[1()](1)1n n n n k k k k n k k a a a a a k k k k k ----====+=-->->-+=-+---∑∑∑∑ 13[11]111nn n =-+-=>--, 所以1n a <. 又1113a =<,故对一切*n N ∈,有1n a <. 因此,对一切*n N ∈,有11n n a a +<<. ------------------------------------------10分 (2)显然111113424a =>=-. 由1n a <,知2122k k k k k a a a a a k k +=+<+,所以2121k k k a a k +>+,所以2211122221111k k k k k k k k k a k a a a a a a a a k k k k +++=+>+⋅=+++,所以211111k k a a k +->+, ------------------------------------------15分 所以,当*n N ∈且2n ≥时,111121111111111111111()33()1(1)1n n n n k k k k n k k a a a a a k k k k k ----====+=--<-<-=--+++∑∑∑∑ 1213(1)n n n+=--=, 所以11112122(21)24n n a n n n>=->-++. ------------------------------------------20分。

全国高中数学联赛试题参考答案(0000)

全国高中数学联赛试题参考答案(0000)

2011年全国高中数学联合竞赛一试试卷(A 卷)一、填空题:本大题共8小题,每小题8分,共64分.把答案填在横线上.1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A {-3,0,2,6}.2.函数11)(2-+=x x x f 的值域为.3.设b a ,为正实数,2211≤+ba,32)(4)(ab b a =-,则=b a log .4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是.5.现安排7名同学去参加5个运动工程,要求甲、乙两同学不能参加同一个工程,每个工程都有人参加,每人只参加一个工程,则满足上述要求的不同安排方案数为.(用数字作答)6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为.7.直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为.8.已知=n a C ())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为.二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤. 9.(本小题满分16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(本小题满分20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*.(1)求数列}{n a 的通项公式;(2)若0>t ,试比较1+n a 与n a 的大小.11.(本小题满分20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.2011年全国高中数学联合竞赛加试试卷(A卷)考试时间:2011年10月16日 9:40—12:10二、(本题满分40分)证明:对任意整数4≥n ,存在一个n 次多项式0111)(a x a xa x x f n n n ++++=--具有如下性质:(1)110,,,-n a a a 均为正整数;(2)对任意正整数m ,及任意)2(≥k k 个互不相同的正整数kr r r ,,,21,均有)()()()(21k r f r f r f m f ≠.三、(本题满分50分)设)4(,,,21≥n a a a n 是给定的正实数,n a a a <<< 21.对任意正实数r ,满足)1(n k j i r a a a a jk ij ≤<<≤=--的三元数组),,(k j i 的个数记为)(r f n .证明:4)(2n r f n <.四、(本题满分50分)设A 是一个93⨯的方格表,在每一个小方格内各填一个正整数.称A 中的一个)91,31(≤≤≤≤⨯n m n m 方格表为“好矩形”,若它的所有数的和为10的倍数.称A 中的一个11⨯的小方格为“坏格”,若它不包含于任何一个“好矩形”.求A 中“坏格”个数的最大值.。

2011年全国高中数学联赛加试试题参考答案与评分标准

2011年全国高中数学联赛加试试题参考答案与评分标准

………………10 分
注意到,若 i, j 固定,则显然至多有一个 k 使得①成立.因 i < j ,即 i 有 j −1 种选法,
故 g j (r) ≤ j −1. 同样地,若 j, k 固定,则至多有一个 i 使得①成立.因 k > j ,即 k 有 n − j 种选法,故
g j (r) ≤ n − j .从而
又因为 Q 为 BD 的中点,所以 ∠CQB = ∠DQF . 又 ∠AQB = ∠DQF ,所以 ∠AQB = ∠CQB .
………………40 分
2011 年全国高中数学联合竞赛加试(A 卷)答案第 1 页(共 4 页)
二、(本题满分 40 分)证明:对任意整数 n ≥ 4 ,存在一个 n 次多项式
i = m +1
即第 2 行至第 3 行、第 m +1列至第 n 列组成一个“好矩形”,从而至少有 2 个小方格不是“坏
格”,矛盾.
类似地,也不存在 m, n, 0 ≤ m < n ≤ 9 ,使 S m + Tm ≡ S n + Tn (mod10) . …………30 分
因此上述断言得证.故
9
9
9
∑ ∑ ∑ S k ≡ Tk ≡ (S k + Tk ) ≡ 0 +1+ 2 +L + 9 ≡ 5(mod10) ,
f (x) = (x +1)(x + 2)L(x + n) + 2 ,

………………10 分
将①的右边展开即知 f (x) 是一个首项系数为 1 的正整数系数的 n 次多项式.
下面证明 f (x) 满足性质(2).
对任意整数 t ,由于 n ≥ 4 ,故连续的 n 个整数 t +1, t + 2,L, t + n 中必有一个为 4 的倍数,

2011年全国高中数学联赛试题及答案详解(B卷)

2011年全国高中数学联赛试题及答案详解(B卷)

二、解答题:本大题共 3 小题,共 56 分.解答应写出文字说明、证明过程 或演算步骤.
9.(本小题满分 16 分)已知实数 x, y, z 满足:x ≥ y ≥ z ,x + y + z = 1,x 2 + y 2 + z 2 = 3 .求
实数 x 的取值范围. 解 令 x = 1+ t .由 x + y + z = 1得 z = −t − y ,代入 x 2 + y 2 + z 2 = 3 ,得
2011 年全国高中数学联合竞赛一试答案(B 卷)第 4 页(共 5 页)
x 2 − 4 pq x − 2qy1 y2 = 0 .

y1 + y2
y1 + y2
由于 A1 A2 所在的直线与抛物线 x 2 = 2qy 相切,所以方程①的判别式
化简整理得
Δ
=
⎜⎜⎝⎛ −
)=
2009a1006
=1,
于是 a1006
=
1 2009
,所以
S 2011
= 2011( a1
+ a 2011 )09

2.已知复数 z 的模为 1, 若 z = z1 和 z = z2 时|z+1+i|分别取得最大值和最小值,则
z1 − z2 =

解 易知|1+i|-|z|≤|z+1+i|≤|1+i|+|z|,即 2 −1 ≤|z+1+i|≤ 2 +1 .
2
2
又 x ≥ y ,所以 1+ t ≥ − t + 4 − 4t − 3t 2 ,即 2 + 3t ≥ 4 − 4t − 3t 2 ,解得 t ≥ 0 . 2

2011年全国高中数学联赛试题参考答案

2011年全国高中数学联赛试题参考答案

2011年全国高中数学联合竞赛一试试题(A 卷)考试时间:2011年10月16日 8:00—9:20一、填空题:本大题共8小题,每小题8分,共64分.把答案填在横线上.1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A.2.函数11)(2-+=x x x f 的值域为 .3.设b a ,为正实数,2211≤+ba,32)(4)(ab b a =-,则=b a log .4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 .5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为 .(用数字作答)6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 .7.直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为 .8.已知=n a C ())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为 .二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤. 9.(本小题满分16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(本小题满分20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*.(1)求数列}{n a 的通项公式; (2)若0>t ,试比较1+n a 与n a 的大小.11.(本小题满分20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.2011年全国高中数学联合竞赛加试试题(A卷)考试时间:2011年10月16日 9:40—12:10二、(本题满分40分)证明:对任意整数4≥n ,存在一个n 次多项式0111)(a x a x a x x f n n n ++++=--具有如下性质:(1)110,,,-n a a a 均为正整数;(2)对任意正整数m ,及任意)2(≥k k 个互不相同的正整数k r r r ,,,21 ,均有)()()()(21k r f r f r f m f ≠.三、(本题满分50分)设)4(,,,21≥n a a a n 是给定的正实数,n a a a <<< 21.对任意正实数r ,满足)1(n k j i r a a a a jk i j ≤<<≤=--的三元数组),,(k j i 的个数记为)(r f n .证明:4)(2n r f n <.四、(本题满分50分)设A是一个93⨯的方格表,在每一个小方格内各填一个正整数.称A中的一个)9⨯nmm方格表为“好矩形”,若它的所有数的和为10的倍数.称A n≤≤1(≤1,3≤中的一个11⨯的小方格为“坏格”,若它不包含于任何一个“好矩形”.求A中“坏格”个数的最大值.出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题:本大题共8小题,每小题8分,满分64分.把答案填在横线上.
1.设等差数列{a n }的前n 项和为S n ,若S 2010−S 1=1,则S 2011=.
2.已知复数z 的模为1,若z =z 1和z =z 2时|z +1+i |分别取得最大值和最
小值,则z 1−z 2=
.
3.若正实数a,b 满足1a +1b
⩽2√2,(a −b )2=4(ab )3,则log a b =.4.把扑克牌中的A,2,···,J,Q,K 分别看作数字1,2,···,11,12,13.现将一幅扑克牌中的黑桃、红桃各13张放在一起,从中随机取出2张牌,其花色相同且两个数的积是完全平方数的概率为.5.若△ABC 的角A,C 满足5(cos A +cos C )+4(cos A cos C +1)=0,则
tan A 2·tan C 2=.6.已知正方体ABCD −A 1B 1C 1D 1的棱长为6,M,N 分别是BB 1,B 1C 1上的点,B 1M =B 1N =2,S,P 分别是线段AD,MN 的中点,则异面直线SP 与AC 1的距离为.
7.在△ABC 中,E,F 分别是AC,AB 的中点,AB =23AC .若BE CF
<t 恒成立,则t 的最小值为.8.抛物线y 2=2p x −p 2
(p >0)上动点A 到点B (3,0)的距离的最小值记为d (p ),满足d (p )=2的所有实数p 的和为.
二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.
9.已知实数x,y,z 满足:x ⩾y ⩾z,x +y +z =1,x 2+y 2+z 2=3.求实数x 的取值范围.
10.已知数列{a n }满足:a 1=2t −2(t ∈R 且t =±1),
a n +1=2(t n +1−1)a n a n +2t n −2
(n ∈N ∗).(1)求数列{a n }
的通项公式;
2011年全国高中数学联合竞赛试题(B 卷)
(2)若t>0,试比较a n+1与a n的大小.
11.已知A1(x1,y1),A2(x2,y2),A3(x3,y3)是抛物线y2=2px(p>0)上不同的三点,
△A1A2A3有两边所在的直线与抛物线x2=2qy(q>0)相切,证明:对不同的i,j∈{1,2,3},y i y j(y i+y j)为定值.。

相关文档
最新文档