2019年艺体生复习资料高中数学全套(含答案)
2019年高考数学艺术生专用复习讲义(完整版)

2019年高考数学艺术生专用复习讲义(完整版)§1集合(1)【基础知识】集合中元素与集合之间的关系:文字描述为 和 符号表示为 和常见集合的符号表示:自然数集 正整数集 整数集 有理数集 实数集集合的表示方法1 2 3 集合间的基本关系:1相等关系:_________A B B A ⊆⊆⇔且 2子集:A 是B 的子集,符号表示为______或B A ⊇ 3 真子集:A 是B 的真子集,符号表示为_____或____不含任何元素的集合叫做 ,记作 ,并规定空集是任何集合的子集,是任何非空集合的【基本训练】1.下列各种对象的全体,可以构成集合的是(1)某班身高超过1.8m 的女学生; (2)某班比较聪明的学生;(3)本书中的难题 (4)使232x x -+最小的x 的值2. 用适当的符号(,,,,)∈∉=⊂⊃填空:___;Q π {}3.14____Q ; *___;N N {}{}21,____21,x x k k Z x x k k z =+∈=-∈3.用描述法表示下列集合: 由直线1y x =+上所有点的坐标组成的集合;4.若A B B ⋂=,则____A B ;若A B B ⋃=则_____;_____A B A B A B ⋂⋃5.集合{}{}35,A x x B x x a =-<=<,且A B ⊆,则a 的范围是【典型例题讲练】例1 设集合11,,,2442k k M x x k Z N x x k Z ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭,则_______M N练习: 设集合11,,,3663k k P x x k Z Q x x k Z ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭,则______P Q 例2已知集合{}2210,,A x ax x x R a =++=∈为实数。
(1) 若A 是空集,求a 的取值范围;(2) 若A 是单元素集,求a 的取值范围;(3) 若A 中至多只有一个元素,求a 的取值范围; 练习:已知数集1,,a P b b⎧⎫=⎨⎬⎩⎭,数集{}20,,Q a b b =+,且P Q =,求,a b 的值【【课堂小结】集合的概念及集合元素的三个特性【课堂检测】1.设全集,U R =集合{}1M x x =>,{}21P x x =>,则______M P 2. 集合{}{}2320,10,P x x x Q x mx =-+==-=若P Q ⊇,则实数m 的值是3.已知集合A 有n 个元素,则集合A 的子集个数有 个,真子集个数有 个4.已知集合A ={-1,3,2m -1},集合B ={3,2m }.若B A ⊆,则实数m = .5.已知含有三个元素的集合2{,,1}{,,0},b a a a b a =+求20042005a b +的值.§2集合(2)【典型例题讲练】例3 已知集合{}23100A x x x =--≤(1) 若{},121B A B x m x m ⊆=+≤≤-,求实数m 的取值范围。
2019年高考数学艺术类考生专用复习资料:等差数列、等比数列

2019年高考数学艺术类考生专用复习资料
等差数列、等比数列
要点梳理
1.等差、等比数列的定义
如果一个数列从第二项起,每一项与它的前一项的差都等于同一常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的.
如果一个数列从第二项起,每一项与它的前一项的比都等于同一常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的.
2.等差、等比数列的通项公式
(1)等差数列的通项公式:.
(2)等比数列的通项公式:.
(3)推广:a n=a m+d(等差数列);a n=a m·(等比数列).
激活思维
1.(必修5P38习题3改编)在等差数列{a n}中,若a1=-1,d=2,则a8=.
2.(必修5P49习题1改编)已知数列{a n}为正项等比数列,a2=9,a4=4,那么数列{a n}的通项公式
a n=.
3.(必修5P49习题1改编)已知-1,a,b,c,-9成等比数列,那么b=,a·c=.
4.(必修5P38习题4改编)在等差数列{a n}中,若a3+a13=18,则a8=.
真题演练
1.(2018·全国卷Ⅱ)已知S n为等差数列{a n}的前n项和,若a1=-7,S3=-15.
(1)求数列{a n}的通项公式;(2)求S n,并求S n的最小值.
2.(2018·全国卷Ⅰ)已知数列{a n}满足a1=1,na n+1=2(n+1)a n,设b n =.
(1)求b1,b2,b3的值;
(2)判断数列{b n}是否为等比数列,并说明理由;
(3)求数列{a n}的通项公式.
2019年高考数学艺术类考生专用复习资料第1 页共4 页。
2019届全国卷高三数学艺体生、学困生补习资料,专题复习资料:专题(19)算法初步与复数(基础篇-含答案)

【背一背基础知识】算法的三种基本逻辑结构:顺序结构、条件结构、循环结构.1.顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构.顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤.在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作.2.条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构条件P是否成立而选择执行A框或B框.无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行.一个判断结构可以有多个判断框.条件结构主要应用于一些需要依据条件进行判断的算法中,如分段函数的的求值、数据大小关系等问题中,常常用条件结构来设计算法.3.循环结构的两种基本类型:(a)当型循环:当给定的条件成立时,反复执行循环体,直至条件不成立为止;(b)直到型循环:先第一次执行循环体,再判断给定的条件是否成立,若成立,跳出循环体;否则,执行循环体,直至条件第一次不成立为止.循环结构一般用于一些有规律的重复计算的算法中,如累加求和、累乘求积等问题常常用循环结构来解决.【讲一讲基本技能】1.必备技能:求解循环结构的算法问题时,只需将各次循环的结构一一进行列举,或寻找规律,适当地进行归纳总结,利用归纳得到的等式进行求解;求解条件结构的算法问题时,一般只需根据变量的取值范围选择不同的条件分支进行求解,选择合适的表达式求解.2.典型例题例1阅读下边的程序框图,运行相应的程序,则输出i的值为()(A) 2 (B) 3 (C) 4 (D)5【答案】C【考点定位】本题主要考查程序框图及学生分析问题解决问题的能力.【名师点睛】天津卷程序框图常以客观题形式出现,属于基础题,解决此类问题的关键是确定循环次数,当循环次数不多时,可以逐次列出计算结果,天津卷2014年第3题和本题是同一类问题,希望考生留意这种命题方式.例2根据右边框图,当输入x 为6时,输出的y =( ) A .1 B .2 C .5 D .10【答案】D【考点定位】程序框图的识别.【名师点睛】1.本题考查程序框图的识别,解题的关键是判断什么时候退出循环.2.考查逻辑思维能力、计算能力.本题属于基础题,常考题型.例3.执行如图3所示的程序框图,若输出15S =,则框图中①处可以填入( )A .4n >B .8n >C .16n >D .16n <【分析】本题是一道考查算法与程序框图中有关循环结构判断条件的选择.对于此类问题的处理,一般只需将每次循环的结果一一进行列举,并对控制变量在倒数第二次循环与最后一次循环的值是否满足判断条件进行选择,主要是抓住倒数第二次循环控制变量不满足判断条件,而最后一次循环控制变量满足判断条件来进行筛选.【练一练趁热打铁】1.执行如图2所示的程序框图,如果输入n=3,中输入的S=( )A、67B、37C、89D、49【答案】B【考点定位】程序框图【名师点睛】识别运行算法流程图和完善流程图是高考的热点.解答这一类问题,第一,要明确流程图的顺序结构、条件结构和循环结构;第二,要识别运行流程图,理解框图所解决的实际问题;第三,按照题目的要求完成解答.对流程图的考查常与数列和函数等知识相结合,进一步强化框图问题的实际背景.2.若某图的程序框图如图5所示,则该程序运行后的值是________.【答案】4.3.阅读如图所示的程序框图,运行相应的程序.若输入x的值为1,则输出y的值为()A.2 B.7 C.8 D.128【答案】C【考点定位】程序框图.【名师点睛】本题考查程序框图,关键在于读懂框图有什么功能,要注意依序进行,认真判断条件来决定程序的执行方向.理解每个变量和框图的关系.运算量不大,重在理解,重在细心,属于基础题.复数的概念及其几何意义【背一背基础知识】1.形如a bi +(),a b R ∈的数叫复数,其中i 叫做复数的虚数单位,且21i =-,a 叫做复数的实部,b 叫做复数的虚部.复数集用集合C 表示. 2.复数的分类:对于复数z a bi =+(),a b R ∈① 当0b =时,z 是实数; ② 当0b ≠时,z 是虚数; ③ 当0a =且0b ≠时,z 是纯虚数.3.复数相等:若1z a bi =+(),a b R ∈,2z c di =+(),c d R ∈,则12z z =的充要条件是a c =且b d =.特别地:若0a bi +=(),a b R ∈的充要条件是0a b ==. 4.复数z a bi =+(),a b R ∈与复平面内的点(),Z a b 一一对应.复数z a bi =+(),a b R ∈与复平面内所有以原点O 为起点的向量OZ 一一对应. 5.复数的模:向量OZ 的模叫做复数z a bi =+(),a b R ∈的模,记作z 或a bi +,且||z =【讲一讲基本技能】1.必备技能:对于复数的基本概念及其几何意义的考查,一般首先通过复数的基本运算将复数利用一般形式进行表示,然后利用相关知识与公式进行求解. 2.典型例题例1.已知i 是虚数单位,若复数(1)(2)ai i ++是纯虚数,则实数a 等于 ( )A .2-B .2C .12-D .12【分析】本题是考查复数的基本概念,所以首先应该将复数利用一般形式表示出来,然后对其实部或虚部加以相应的限制条件,求解出相应的参数即可. 【答案】B【解析】(1)(2)2(21)ai i a a i ++=-++是纯虚数,故20,210, 2.a a a -=+≠∴= 例2.复数(12i)i +的实部为________. 【答案】-2【考点定位】复数的概念与运算.【名师点睛】本题考查复数的概念和运算,利用复数的乘法法则进行求解.本题属于基础题,注意复数实部的概念.例3.已知i 是虚数单位,若()234m i i +=-,则实数m 的值为( )A .2-B .2±C .D .2【分析】本题是考查复数相等的充要条件,首先借助复数的基本运算将两个复数化为一般形式,利用复数相等的充要条件,得到两个复数的实部相等,虚部相等,列方程组求解. 【解析】因为()()21234m i m mi i +=-+=-,则有21324m m ⎧-=⎨=-⎩,解得2m =-,故选A .例4.设i 是虚数单位,则复数()2z i i =-在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】本题是考查复数的几何意义,首先应该借助复数的基本运算将复数表示成一般形式,确定复数的实部与虚部,便可确定所对应的点的坐标,进而对问题进行解答.例5.已知i 是虚数单位,11z i=+,则z =( )A .0B .1C .D .2【分析】本题是考查复数模的计算,首先应该借助复数的基本运算将复数表示成一般形式,确定复数的实部与虚部,最后利用公式计算复数的模.【解析】111z i i=+=-,z ∴==C .【练一练趁热打铁】1.已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A【解析】当1a b ==时,()()2212a bi i i +=+=,反过来()22222a bi a b abi i +=-+=,则220,22a b ab -==,解得1,1a b ==或1,1a b =-=-,故1a b ==是()22a bi i +=的充分不必要条件,故选A2.设1aiz i-=,若复数z 为纯虚数(其中i 是虚数单位),则实数a 等于( ) A .1- B .0 C .1 D .12【答案】B 【解析】由于1aiz a i i-==--为纯虚数,则0a -=,解得0a =,故选B . 3.已知i 是虚数单位,则复数()312z i i =⋅-+的虚部为( )A .2iB .iC .2D .1 【答案】D【解析】因为()()()32121222z i i i i i i i =⋅-+=-⋅-+=-=+,所以复数z 的虚部为1,故选D .4.已知a 、b R ∈,i 为虚数单位,若211ia bi i-+=+,则实数a b +=( ) A .2 B .3 C .4 D .5 【答案】B5.设复数113z i =-,21z i =-,则12z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】()()1213124z z i i i +=-+-=-,对应点的坐标为()2,4-,所以复数12z z +在复平面内对应的点在第四象限,故选D . 6.复数21ii+的模是 .【解析】因为()()()()()21212111112i i i i ii i i i i i --===-=+++-,所以21i i ==+复数四则运算【背一背基础知识】1.共轭复数:实部相等,虚部互为相反数.若z a bi =+(),a b R ∈,则它的共轭复数z a bi =-.2.复数的加法、减法、乘法、除法运算:加法、减法法则:()()()()a bi c di a c b d i +±+=±+±;乘法法则:()()()()2a bi c di ac adi bci bdi ac bd ad bc i +⋅+=+++=-++;除法法则:()()()()2222a bi c di a bi ac bd bc adi c di c di c di c d c d+-++-==+++-++. 【讲一讲基本技能】1.必备技能:对于复数的基本运算,首先确定复数的实部与虚部,然后利用复数四则运算的基本运算法则进行即可. 2.典型例题例1.若(1)(23)i i a bi ++-=+(,,a b R i ∈是虚数单位),则,a b 的值分别等于( ) A .3,2- B .3,2 C .3,3- D .1,4- 【答案】A【考点定位】复数的概念.【名师点睛】本题考查复数相等的充要条件和复数运算,利用复数相等可以确定参数的取值,属于基础题,但是要注意运算准确.例2.已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i 【答案】D【解析】()221121212i i i i i +=++=+-=,故选D .【名师点晴】本题主要考查的是复数的乘法运算,属于容易题.解题时一定注意()21i +的展开,否则很容易出现错误.解本题需要掌握的知识点是复数的乘法运算,即()2222a bi a b abi +=-+,21i =-.例3.设103iz i=+,则z 的共轭复数为 ( ) A .13i -+ B .13i -- C .13i + D .13i -【分析】本题是考查复数的共轭复数的计算,首先应该借助复数的四则运算将复数化为一般形式,确定其实部与虚部,然后根据共轭复数的定义求出其共轭复数. 【答案】D . 【解析】()()()1031013,333i i iz i z i i i -===+∴++-的共轭复数为13i -,故选D . 例4 i 是虚数单位,计算12i2i-+ 的结果为 . 【答案】-i【解析】()2i i 212i i 2i i 2i 2i 2i-+---===-+++. 【考点定位】本题主要考查复数的乘除运算..【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题.高考中复数考查频率较高的内容有:复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性.【练一练趁热打铁】1.i 为虚数单位,607i =( ) A .i - B .i C .1- D .1【答案】A . 【解析】因为6072303()ii i i =⋅=-,所以应选A .【考点定位】本题考查复数的概念及其运算,涉及分数指数幂的运算性质.【名师点睛】将复数的幂次运算和分数指数幂运算结合在一起,不仅考查了复数的概念,也考查了分数指数幂的运算性质,充分体现了学科内知识之间的联系性,能够较好的反应学生基础知识的识记能力和计算能力.2.设i 为虚数单位,则复数2ii+等于( ) A .1255i + B .1255i -+ C .1255i -D .1255i --【答案】A3.若复数Z 满足1zi-i =,其中i 为虚数单位,则Z=( ) (A )1i - (B )1i + (C )1i -- (D )1i -+ 【答案】A【解析】由题意(1)1,z i i i =-=+所以,1z i =-,故选A . 【考点定位】1.复数的运算;2.共轭复数.【名师点睛】本题考查复数的概念和运算,采用分母实数化和利用共轭复数的概念进行化解求解.本题属于基础题,注意运算的准确性.4. 已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +【答案】C【考点定位】复数运算【名师点睛】本题考查复数的运算,先由(1)1z i i -=+解出z ,再利用复数的除法运算法则求出复数z,本题也可以设出复数z,利用两个复数相等的充要条件,解出复数z,解复数题目的关键熟悉复数的相关概念,掌握复数的运算法则.(一)选择题(12*5=60分)1.执行如图所示的程序框图,输出的S值为()A.1B.3C.7D.15输出【答案】C2.阅读右图所示的程序框图,运行相应的程序,输出的n的值为().1.2.3.4A B C D【答案】B .【解析】执行程序,1n =,满足条件22nn >,2n =;不满足条件22nn >,输出2,n =选B .3.执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( ) A.12s>B .35s >C .710s >D .45s >【答案】C4.已知2(1)i z-=1i +(i 为虚数单位),则复数z = ( )A 、1i +B 、1i -C 、 1i -+D 、1i -- 【答案】D【解析】由题22(1)(1)22(1i)1,1112i i i i i z i z i i -----=+∴====--++ ,故选D. 【考点定位】复数的运算【名师点睛】在对复数之间进行乘法运算时,直接利用多项式的乘法分配律进行计算,在最后一步的计算中,根据21i =-,最后根据复数的加法原则,实部与实部相加,虚部与虚部相加便可得到最终结果;在进行复数的除法运算时,首先将分式的分子分母同时乘以分母的共轭复数,分子的运算遵循复数的乘法运算法则,从而得到相应的结果. 5.复数的11z i =-模为( )A .12 B .2C D .2 【答案】B 【解析】()()1111111111222i i z i i i i i ----=====----+-+--,因此复数z 的模为z ==,故选B . 6.已知复数21iz i+=+,则复数z 在复平面内对应的点在 ( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D7.复数(32)z i i =-的共轭复数z 等于( ).23A i -- .23B i -+ .23C i - .23D i +【答案】C【解析】依题意可得32,23z i z i =+∴=-.故选C . 8.已知复数z 满足()3425i z +=,则z =( )A .34i -B .34i +C .34i --D .34i -+ 【答案】A【解析一】由题意得()()()()25342534253434343425i i z i i i i --====-++-,故选A . 【解析二】设(),z a bi a b R =+∈,则()()()()()3434344325i z i a bi a b a b i +=++=-++=,由复数相等得3425430a b a b -=⎧⎨+=⎩,解得34a b =⎧⎨=-⎩,因此34z i =-,故选A .9.已知复数1z i =-(i 为虚数单位),z 为z 的共轭复数,则下列结论正确的是( )A .1z i =--B .1z i =-+C .2z =D .z =【答案】D【解析】1z i =-,1z i ∴=+,z ∴==D .10.执行如图所示的程序框图,输出的k 的值为( )A .3B .4C .5D .6【答案】B【考点定位】程序框图.【名师点晴】本题主要考查的是程序框图,属于容易题.解题时一定要抓住重要条件“14a <”,否则很容易出现错误.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.11.i为虚数单位,则211i i -⎛⎫= ⎪+⎝⎭( )A . 1B . 1-C .iD .i - 【答案】B【解析】因为212112i ii i --⎛⎫==- ⎪+⎝⎭,故选B . 12.某算法的程序框图如图所示,如果输出的结果是26,则判断框内应为( ) A .1k > B .2k > C .3k > D .4k >【答案】C(二) 填空题(4*5=20分)13.阅读如图所示的程序框图,运行相应的程序,若输入n 的值为9,则输出S 的值为 .【答案】1067【解析】依题意:该程序框图是计算1067921222921=+⋅⋅⋅++++⋅⋅⋅++=S ,故输出1067=S .14.执行右边的程序框图,若输入的x 的值为1,则输出的y 的值是 .【答案】13 【解析】【考点定位】算法与程序框图.【名师点睛】本题考查算法与程序框图,在理解条件分支结构的基础上,准确地加以计算. 本题属于基础题,考查算法与程序框图的基本概念和基本结构,本题给定数据较小,循环次数少,大大降低了题目的难度.15.设i 是虚数单位,则复数1i i-=_________. 【答案】2i【解析】12i i i i i-=+=【考点定位】本题考查复数的概念,复数代数形式的四则运算等基础知识.【名师点睛】解决本题的关键取决于对复数运算的熟练程度,也就是1i=-i 的运算,容易误解为1i=i ,从而导致答案错误.一般地,i 4n =1,i 4n +1=i ,i4n +2=-1,i4n +3=-i ,而1i=i -1=-i.属于容易题16.【2015高考上海,文3】若复数z 满足i z z +=+13,其中i 是虚数单位,则=z .21【答案】i 2141【考点定位】复数的概念,复数的运算.【名师点睛】本题用待定系数法求复数.复数不能比较大小,两个复数相等,实部与虚部分别相等.共轭复数的实部相等虚部互为相反数.共轭复数的模相等.。
2019年高考数学备考艺体生百日突围系列 强化训练06(文)解析版

2106届艺体生强化训练模拟卷六(文)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{|(1)(2)0}A x x x =∈+-≤Z ,{|22}B x x =-<<,则A B =I A 、{|12}x x -≤< B 、{1,1}- C 、{0,1,2} D 、{1,0,1}- 【答案】D【解析】因为集合{|(1)(2)0}{|12}{1,0,1,2}A x x x x x =∈+-≤=∈-≤≤=-Z Z ,所以由交集的定义可知:A B =I {1,0,1}-,故应选D . 2.复数12ii--对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D【解析】由题意可得:131255i i i -=--. 故选D. 3.已知直线1:210l ax y ++=与直线2:(3)0l a x y a --+=,若12l l ⊥,则a 的值为( ) A .1 B .2 C .6 D .1或2 【答案】D【解析】由12l l ⊥,则()023=--a a ,即1=a 或2=a ,选D .4.已知曲线23ln 2x y x =-的一条切线的斜率为2,则切点的横坐标为( ) A .3 B .2 C .1 D .12【答案】A5. 某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 ( )A .11B .12C .13D .14【答案】B【解析】系统抽样,是把所有个体编号后,按照一定的规律依次抽样,从题中可看出每20人里抽取1人,因此落入区间[481,720]的人数为7204801220-=,选B.6.以原点为中心,焦点在y 轴上的双曲线C 的一个焦点为F ,一个顶点为(0,2)A -,则双曲线C 的方程为( )A .22122y x -= B .221412y x -= C .22144y x -= D .22142y x -= 【答案】C 【解析】7.在区间[]0,π上随机取一个实数x ,使得1sin 0,2x ⎡⎤∈⎢⎥⎣⎦的概率为( )A .1πB .2πC .13 D .23【答案】C【解析】在区间[0,]π上,当5[0,][,]66x πππ∈时,1sin [0,]2x ∈,由几何概型知,符合条件的概率为13.8. 执行如图所示的程序框图,则输出S 的值为( )A.2C .0 D.【答案】A 【解析】9. 若x ,y 满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .3-B .0C .32D .3 【答案】A【解析】\作出不等式组02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域,如下图:由图可知当直线经过点C (0,3)时min 3z =-,故选A . 10.已知函数()12cos 222f x x x =+,若其图象是由sin 2y x =图象向左平移ϕ(0ϕ>)个单位得到,则ϕ的最小值为( ) A .6πB .56π C .12π D .512π【答案】C【解析】()sin(2)6f x x π=+,函数sin 2y x =的图象向左平移(0)ϕϕ>个单位后的解析式为sin(22)y x ϕ=+,从而()12k k πϕπ=+∈N ,有ϕ的最小值为12π. 故选C.二、填空题(每题5分,满分10分,将答案填在答题纸上)11.在ABC ∆中,,,a b c 分别是,,A B C 的对边,若2,sin cos a b B B =+=,则c 的大小为 . 【答案】3+1 【解析】12. 设x R ∈,向量(,1)a x =,(1,2)b =-,且a b ⊥,则||a b += .【解析】∵a b ⊥,∴202x x -=⇒=,∴(3,1)||10a b a b +=-⇒+=,故选B .13. 某几何体的三视图如右图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为 .【答案】283π 【解析】由三视图可得,该几何体是一个三棱柱,三棱柱的底面是边长为2的正三角形,侧棱长是2,三棱柱的两个底面的中心的中点与三棱柱的顶点的连线就是外接球的半径r ==,球的面积2228443s r πππ===. 三、解答题 (本大题共3小题,共36分.解答应写出文字说明、证明过程或演算步骤.)14.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,并且2sin 12A BC +=+. (1)求角C 的大小;(2)若2a c ==,求b . 【答案】(1) 6C π=,(2) 2b =或4b =.【解析】15.(本小题满分12分)对某校高一年级学生参加社区服务次数统计,随机抽取了M 名学生作为样本,得到这M 名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表如下:(1)求出表中,,,M r m n 的值;(2)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少一人参加社区服务次数在区间[)25,30内的概率.【答案】(1)20M =,4m =,0.25n =,0.2r =;(2)35P =. 【解析】16.(本小题满分12分)如图,在四棱锥CD P -AB 中,PA ⊥平面CD AB ,D 2PA =AB =A =,四边形D AB ⊥A ,C//D B A 且C 4B =,点M 为C P 中点.()1求证:平面D A M ⊥平面C PB ;【解析】17. 已知点M 在椭圆22221x y a b+=(0)a b >>上,以M 为圆心的圆与x 轴相切于椭圆的右焦点F.(1)若圆M 与y 轴相交于A ,B 两点,且ABM ∆是边长为2的正三角形,求椭圆的方程. 【解析】(1)因为ABM ∆是边长为2的正三角形,所以圆M 的半径2r =,M 到圆y 轴的距离d =1)知:2b r a =,dc =,………………8分所以,c =22b a =,又因为222a b c -=,解得:3a =, 226b a ==,………………10分所求椭圆方程是:22196x y +=.………………12分 18. 已知函数()ln ()f x x a x a R =-∈.(1)当2a =时,求曲线()f x 在1x =处的切线方程;【解析】(1)当2a =时,()2ln f x x x =-,(1)1f =,切点(1,1),∴'2()1f x x=-,∴'(1)121k f ==-=-, ∴曲线()f x 在点(1,1)处的切线方程为:1(1)y x -=--,即20x y +-=. 请考生在第19、20、21三题中任选一题做答,如果多做,则按所做的第一题记分. 19. 如右图,圆1O 与圆2O 内切于点A ,其半径分别为3与2,圆1O 的弦AB 交圆2O 于点C (1O 不在AB 上),AD 是圆1O 的一条直径.(Ⅰ)求ACAB的值;(Ⅱ)若BC =,求2O 到弦AB 的距离. 【解析】20.在直角坐标系xoy 中,直线l的参数方程为14x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),再以原点为极点,以x 正半轴为极轴建立坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C 的方程为4sin ρθ=. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B ,若点M 的坐标为(2,1)-,求MA MB +的值.【解析】(Ⅰ)由极坐标与直角坐标互化公式得圆的直角坐标方程式为22(2)4x y +-=;21.已知函数()21,f x x x R =-∈, (Ⅰ)解不等式()1f x x <+; (Ⅱ)若对于,x y R ∈,有111,2136x y y --≤+≤.求证:()1f x <. 【解析】(Ⅰ)()1121102f x x x x x <+⇔-<-<+⇔<<,所以不等式()1f x x <+的解集为{02}x x <<;(Ⅱ)()212(1)(21)f x x x y y =-=--++115212121366x y y ≤--++≤⨯+=<.。
2019年高考数学备考艺体生百日突围系列 强化训练01(理)解析版

2106届艺体生强化训练模拟卷一(理)一.选择题.1. 已知集合}22{≤≤-=x x M ,}1{x y x N -==,那么=N M ( ) A .}12{<≤-x x B .}12{≤≤-x x C .}2{-<x x D .}2{≤x x【答案】B【解析】因为{}{}{|10|1,N x y x x x x ===-≥=≤又因为}22{≤≤-=x x M ,所以=N M {}|1x x ≤⋂{22}x x -≤≤=}12{≤≤-x x ,所以应选B.2. 2015i ++,则复数z 在复平面内对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】由于4()n k k i i n Z +=∈,所以22015231i i i i i i +++=++=-,所以1(1)111(1)(1)22i z i i i i ---===-+++-,对应点11(,)22-,在第二象限,故选B .3. 下列说法正确的是( )A .命题“若21x =,则1x =”的否命题是“若21x =,则1x ≠”B .“1x =-”是“220x x --=”的必要不充分条件C .命题“若x y =,则sin sin x y =”的逆否命题是真命题D .“t an 1x =”是“4x π=”的充分不必要条件【答案】C 【解析】4. 已知向量)2,1(=,)1,3(21=-b a ,)3,(x =,若()//2+,则=x ( ) .A 2- .B 4- .C 3- .D 1-【答案】C【解析】由题意,()1(3,1)2(3,1)4,22a b b a ⎡⎤-=⇒=-=-⎣⎦,则()()2=-5,52//-15-503a b a b c x x ++∴=∴=-,故选C.5. 已知等差数列{}n a 中,25a = ,411a =,则前10项和=10S ( ) A .55 B .155C .350D .400【答案】B【解析】 由21110(101)10124152101553113a a d a S a d a a d d -=+==⎧⎧⇒∴=+=⎨⎨=+==⎩⎩. 6.某程序框图如图所示,若该程序运行后输出k 的值是6,则输入的整数0S 的可能值为( )A .5B .6C .8D .15 【答案】C 【解析】7.函数()21ln 2f x x x =-的图象大致是( )【答案】B 【解析】8.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[)90,80,[)100,90 加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120 【答案】B【解析】由频率分布直方图可知,该模块测试成绩不少于60分的频率为(0.0300.0250.0150.010)10+++⨯=0.8,所以该模块测试成绩不少于60分的学生人数为4808.0600=⨯,故选B .9.在ABC ∆中,角,,A B C 所对边分别为,,a b c , 且(2)cos cos b a C c A -= , 3c =,sin sin sin A B A B +=,则ABC ∆的面积为( )A.8 B.2 C.2 D.4【答案】D【解析】2221(2)cos cos ,,cos ,=23b a Cc A a b c ab C C π-=∴+-=∴=∴,结合sin sin sin A B A B +=可得()sin sin sin sin A B C A B += , 由正弦定理可得()222,,c 2cos a b c a b a b ab C +=∴+==+- ,()22390,3ab ab ab ∴--=∴=,1sin 2ABC S ab C ∆∴==,故选D. 10.已知双曲线)0,0(12222>>=-b a by a x 的一个焦点到一条渐近线的距离为c 35(c 为双曲线的半焦距长),则双曲线的离心率为( ) A .25 B .253 C . 23 D .53【答案】C 【解析】二、填空题. 11.二项式5的展开式中常数项为 . 【答案】10-.【解析】因为二项式5的展开式的通项为:1555655((1)rr r r r rC C x --=-,令1550r -=,即3r =,所以其展开式中的常数项为:335(1)10C -=-,故应填10-.12.设变量,x y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数2z y x =-的最小值为 .【答案】7-【解析】如图作出约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩的可行域,ABC ∆内部(含边界),再作出直线0:20l y x -=,当把直线0l 向下平移时对应的2z y x =-在减小,向上平移时,z 增大,因此当平移直线0l 过点(5,3)B 时,z 取得最小值7-.13. 若函数()cos2sin f x x a x =+在区间,62ππ⎛⎫⎪⎝⎭是减函数,则a 的取值范围是 . 【答案】(],2-∞. 【解析】三.解答题14. 在公差不为零的等差数列{n a }中,32=a ,731,,a a a 成等比数列. (1)求数列{n a }的通项公式;(2)设数列{n a }的前n 项和为n S ,记nn S b 31=. 求数列}{n b 的前n 项和n T .【解析】①设{n a }的公差为d ,依题意得⎪⎩⎪⎨⎧≠+=+=+0)6()2(311211d d a a d a d a ,解得 21=a ,1=d ,∴ 1)1(2⨯-+=n a n 即 1+=n a n . ② .2)1(92)132(32)(3313+=++=+=n n n n a a n S n n)111(92)1(9213+-=+==n n n n S b n n )1(92)]111()3121()211[(9221+=+-++-+-=+++=n nn n b b b T n n故 T n =)1(92+n n.15. 汽车是碳排放量比较大的行业之一,某地规定,从2015年开始,将对二氧化碳排放量超过130g/km 的轻型汽车进行惩罚性征税.检测单位对甲、乙两品牌轻型汽车各抽取5量进行二氧化碳排放量检测,记录如下(单位:g/km )经测算得乙品牌轻型汽车二氧化碳排放量的平均值为120/x g km =乙.(Ⅰ)求标准x 的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性;(Ⅱ)从被检测的5量甲品牌轻型汽车中任取2量,二氧化碳排放量超过130g/km 的车辆数为X ,求X 的分布列与期望. 【解析】(Ⅱ)被检测的5辆甲品牌轻型汽车中二氧化碳排放量超过130g/km 的车辆数为2,故X 的可能取值为0,1,2,所以2325(0)C P X C ===310,113225(1)C C P X C ===35,2225(2)C P X C ===110, 所以X 的分布列为EX=3310+1+210510⨯⨯⨯=45…………………………12分 16. 如图,已知ACD AB DE ACD DE ∆⊥,//,平面是正三角形,22===AB DE AD ,且CD F 是的中点.⑴求证:BCE AF 平面//;【解析】17. 已知椭圆C 的中心在原点,焦点在x 轴上,长轴长为4,且点⎪⎪⎭⎫⎝⎛23,1在椭圆C 上.求椭圆C 的方程.【答案】1422=+y x 【解析】因为C 的焦点在x 轴上且长轴为4,故可设椭圆C 的方程为14222=+b y x (0>>b a ), 因为点⎪⎪⎭⎫ ⎝⎛23,1在椭圆C 上,所以143412=+b , 解得12=b ,所以,椭圆C 的方程为1422=+y x . 18. 已知函数()32=3 1.f x x x +++讨论()f x 的单调性.【答案】(1)-∞1,)+∞11) 【解析】请考生在第19、20、21三题中任选一题做答,如果多做,则按所做的第一题记分.19. 如图,在ABC ∆中,90B ∠=︒,以AB 为直径的圆O 交AC 于D ,过点D 作圆O 的切线交BC 于E ,AE 交圆O 于点F .(1)证明:E 是BC 的中点;(2)证明:AD AC AE AF ⋅=⋅. 【解析】(1)证明:连接BD ,因为AB 为O 的直径,所以BD AC ⊥. 又90B ∠=︒,所以CB 切O 于点B ,且ED 切于O 于点E ,因此EB ED =,EBD EDB ∠=∠,90CDE EDB EBD C ∠+∠=︒=∠+∠, 所以CDE C ∠=∠,得ED EC =,因此EB EC =,即E 是BC 的中点.(2)证明:连接BF ,显然BF 是Rt ABE ∆斜边上的高, 可得ABEAFB ∆∆,于是有AB AEAF AB=, 即2AB AE AF =⋅,同理可得2AB AD AC =⋅,所以AD AC AE AF ⋅=⋅. 20. 已知在直角坐标系xOy 中,圆C 的参数方程为12cos 2sin x y θθ=+⎧⎨=⎩(θ为参数).(1)以原点为极点、x 轴正半轴为极轴建立极坐标系,求圆C 的极坐标方程; (2)直线l 的坐标方程是3πθ=,且直线l 圆C 交于,A B 两点,试求弦AB 的长.【解析】21. 已知函数()|21||23|f x x x =++-. (1)求不等式()6f x ≤的解集;(2)若关于x 的不等式()|1|f x a <-的解集非空,求实数a 的取值范围.【解析】(1)原不等式等价于32(21)(23)6x x x ⎧>⎪⎨⎪++-≤⎩或1322(21)(23)6x x x ⎧-≤≤⎪⎨⎪+--≤⎩或12(21)(23)6x x x ⎧<-⎪⎨⎪-+--≤⎩, 解得322x <≤或1322x -≤≤或112x -≤≤-,即不等式的解集为[]2,1-; (2)∵|21||23||(21)(23)|4x x x x ++-≥+--=, ∴|1|4a ->,∴3a <-或5a >.试题习题,尽在百度百度文库,精选试题。
2019年高考数学备考艺体生百日突围系列 强化训练02(文)解析版

2106届艺体生强化训练模拟卷二(文)第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,2,3,4,2,2M N ==-,下列结论成立的是( ) A .N M ⊆ B .MN M = C . MN N =M N N⋂=D .{}2MN =【答案】D 【解析】{}{}{}1,2,3,42,22MN =-=,{}{}{}1,2,3,42,22,1,2,3,4MN =-=-,故选D .2.已知R a ∈,若复数iia z +-=12为纯虚数,则=+ai 1( ) A .10 B .10 C .5 D .5 【答案】D 【解析】3.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n 人中,抽取35人进行问卷调查,已知高二被抽取的人数为13人,则n 等于( )A 、660B 、720C 、780D 、800 【答案】B【解析】由已知,抽样比为13178060=,所以有351,72060078060n n ==++.故选B . 4.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~120km/h ,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有( )A .30辆B .300辆C .170辆D .1700辆 【答案】D .【解析】以正常速度通过该处的汽车频率为:1(0.010.005)100.85-+⨯=, ∴以正常速度通过该处的汽车约有:0.852*******⨯=辆,故选D . 5.函数3121)(++-=x x f x的定义域为( ).(A )(]1,3- (B )(]0,3- (C )()(]0,33,-⋃-∞- (D )()(]1,33,-⋃-∞- 【答案】B 【解析】6.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ). A .5 B .7 C .9 D .11 【答案】A 【解析】13533,1,a a a a ++=∴=()15535552a a S a+⨯∴===.7.如图所示是一个几何体的三视图,若该几何体的体积为12,则主视图中三角形的高x 的值为( )A.12B.34C. 1D.32【答案】C【解析】由题意可知,该几何体为一个四棱锥,底面面积为32,高为x ,体积为131322V x =⋅⋅=,解得=1x ,故选C . 8.同时具有性质“①最小周期是π;②图象关于直线3x π=对称;③在,63ππ⎡⎤-⎢⎥⎣⎦上是增函数”的一个函数是( ) A .sin 26x y π⎛⎫=+⎪⎝⎭ B .cos 23y x π⎛⎫=+ ⎪⎝⎭C .sin 26y x π⎛⎫=- ⎪⎝⎭D .cos 26y x π⎛⎫=-⎪⎝⎭【答案】C 【解析】9.函数()2xf x e x =+-的零点所在的区间是( )A .1(0,)2B .1(,1)2C .(1,2)D .(2,3)【答案】A【解析】因为()012000<-=-+=e f 、02322121>-=-+=⎪⎭⎫ ⎝⎛e e f ,所以根据零点的存在性定理可得函数()2xf x e x =+-的零点所在的区间是1(0,)2.10.以双曲线22221x y a b-=(0,0)a b >>上一点M 为圆心的圆与x 轴恰相切于双曲线的一个焦点F ,且与y 轴交于P Q 、两点.若MPQ ∆为正三角形,则该双曲线的离心率为( )A .4 B【答案】D 【解析】二、填空题11.已知|a |=3,|b |=5,且=12a b ⋅,则向量a 在向量b 上的投影为 【答案】512 【解析】由定义可知向量a 在向量bθcos,于是51212=⇒==⋅θθ. 12.实数,x y 满足不等式组00220y x y x y ≥⎧⎪-≥⎨⎪--≥⎩,则11y x -+的取值范围是 .【答案】1[,1)2-【解析】由题意可知不等式所表示的区域如下图,11y x -+表示可行域点到(1,1)-的连线的斜率【答案】9 【解析】三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)14. 已知等比数列{}n a 的前n 项和为n S ,11232,,2,3a S S S =成等差数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)数列{}n n b a -是首项为-6,公差为2的等差数列,求数列{}n b 的前n 项和.【解析】(Ⅰ)由已知得21343S S S =+,则()()21111431a a q a a q q +=+++.代入12a =,得230q q -=,解得0q =(舍去)或13q =.所以1123n n a -⎛⎫= ⎪⎝⎭.(Ⅱ)由题意得28n n b a n -=-,所以11282283n n n b a n n -⎛⎫=+-=+- ⎪⎝⎭.设数列{}n b 的前n 项和为n T ,则()12136281213n n n n T ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭-+-⎢⎥⎣⎦=+-121733n n n -⎛⎫=-+- ⎪⎝⎭.15. 随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm ),获得身高数据的茎叶图如图.(1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于cm 173的同学,求身高为cm 176的同学身高被抽中的概率. 【解析】由古典概型的概率计算公式可得:52104)()()(==Ω=n M n N P . 12分 16.如图,在四棱锥P-ABCD 中,P D ⊥平面ABCD,底面ABCD 为菱形,602BAD AB PD ∠===,,O 为AC 与BD 的交点,E 为棱PB 上一点. (Ⅰ)证明:平面EA C ⊥平面PBD ;【解析】17. 已知抛物线21:8C y x =与椭圆22222:1(0)x y C a b a b+=>>有公共焦点2F ,点A 是曲线12,C C 在第一象限的交点,且25AF =.( I )求椭圆2C 的方程;【解析】 ( I )∵抛物线21:8C y x =的焦点为2(2,0)F , ∴双曲线2C 的焦点为1(2,0)F -、2(2,0)F ,设00(,)A x y 在抛物线21:8C y x =上,且25AF =,由抛物线的定义得,025x +=,∴03x =,∴2083y =⨯,∴0y =±,∴1||7AF =,又∵点A 在双曲线2C 上,由双曲线定义得:275a =+=12,∴6a =,∴22232b a c =-= ∴椭圆2C 的方程为:22+13632x y =.18.已知函数2()ln ,()f x ax x x a R =+∈ (Ⅰ)当12a =-时,判断函数()f x 在定义域内的单调性并给予证明; 【解析】请考生在第19、20、21三题中任选一题做答,如果多做,则按所做的第一题记分.19. 如图,直线AB 经过圆O 上的点C ,并且OA =OB ,CA =CB ,圆O 交直线OB 于点E 、D ,其中D 在线段OB 上.连结EC ,CD .(Ⅰ)证明:直线AB 是圆O 的切线; (Ⅱ)若tan ∠CED =12,圆O 的半径为3,求OA 的长.【解析】(1)证明:连结OC . 因为OA OB CA CB ==,,所以.OC AB ⊥ 又OC 是圆O 的半径,所以AB 是圆O 的切线. ………………………5分(2)因为直线AB 是圆O 的切线,所以.BCD E ∠=∠ 又CBD EBC ∠=∠,所以.BCD BEC △△∽ 则有BC BD CD BE BC EC ==,又1tan 2CD CED EC ∠==,故12BD CD BC EC ==. 设BD x =,则2BC x =,又2BC BD BE =⋅,故2(2)(6)x x x =+,即2360x x -=. 解得2x =,即2BD =. 所以32 5.OA OB OD DB ==+=+= ………………………10分20. 在直角坐标系xOy 中,设倾斜角为α的直线l:2x t t αα⎧⎪⎨⎪⎩=+cos y sin (t 为参数)与曲线C :2x θθ⎧⎨⎩=cos y =sin (θ为参数)相交于不同的两点A ,B .(Ⅰ)若α=3π,求线段AB 中点M 的坐标: (Ⅱ)若|PA |·|PB |=|OP |2,其中P (2,求直线l 的斜率. .【解析】21. 已知函数f (x )=|x -3|.(Ⅰ)若不等式f (x -1)+f (x )<a 的解集为空集,求实数a 的取值范围; (Ⅱ)若|a |<1,|b |<3,且a ≠0,判断()f ab a与f (b a )的大小,并说明理由.【解析】(1)因为(1)()|4||3||43|1f x f x x x x x -+=-+--+-=≥,不等式(1)()f x f x a -+<的解集为空集,则1a …即可,所以实数a 的取值范围是(1]-∞,. ………………………5分试题习题,尽在百度百度文库,精选试题。
2019年高考数学备考艺体生百日突围系列 强化训练08(文)解析版

2106届艺体生强化训练模拟卷八(文)一、选择题本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若π02x <<,则1tan <x x 是1sin <x x 的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A 【解析】当π02x <<时cos 0x >,若tan 1sin cos 1x x x x x <⇒<<;反之,当3x π=时,sin 1326x x π=⨯=<,而t a 3133x x ππ=⨯=>,说明1tan <x x 是1sin <x x 成立的充分不必要条件,选择A.2.设全集{}U 1,3,5,6,8=,{}1,6A =,{}5,6,8B =,则()U AB =ð( )A .{}6B .{}5,8C .{}6,8D .{}3,5,6,8 【答案】B【解析】由题{}(){}U U3,5,8,5,8A =∴A B =痧,故选B.3.设i 是虚数单位,复数iia -+2是纯虚数,则实数=a ( ) A .2 B .21 C .21- D .2-【答案】B4.已知实数,x y 满足010240y y x y x ≥⎧⎪-+≤⎨⎪-+≥⎩,若z y ax =-(0)a ≠取得的最优解(,)x y 有无数个,则a 的值为( )A .2B .1C .1或2D .1- 【答案】C【解析】如图,作出约束条件010240y y x y x ≥⎧⎪-+≤⎨⎪-+≥⎩表示的的可行域,ABC ∆内部(含边界),再作出直线:0l y ax -=,把直线l 上下平移,最后经过的可行域的点就是最优解,由于题设中最优解有无数个,因此直线l 与直线AB 或AC 平行(0a ≠),所以1a =或2,选C .5.各项为正的等比数列{}n a 中,4a 与14a 的等比中项为22,则=+11272log log a a A .1 B .2 C .3D . 4【答案】C 【解析】6.把函数cos 23y x π⎛⎫=- ⎪⎝⎭的图象向右平移12π,得到函数()f x 的图象,则函数()f x 为( )A .周期为π的奇函数B .周期为π的偶函数C .周期为2π的奇函数D .周期为2π的偶函数 【答案】A【解析】由题意得, ()cos[2()]cos(2)sin 23122f x x x x πππ=--=-=,所以()f x 是周期为π的奇函数,选A . 7.函数||cosxy ln x =的图象大致是( )【答案】C . 【解析】显然cos ln ||xy x =是偶函数,故排除A ,B ,又∵当01x <<时,cos 0x >,ln ||0x <, ∴0y <,故排除D ,故选C .8.如图所示,若输入的n 为10,那么输出的结果是( )A .45B .110C .90D .55 【答案】D 【解析】9.如图,已知双曲线C :22221x y a b -=()0,0>>b a 的右顶点为,A O 为坐标原点,以A 为圆心的圆与双曲线C 的某渐近线交于两点Q P ,.若60PAQ ∠=︒且3OQ OP =,则双曲线C 的离心率为A【答案】B 【解析】10.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知actan 21tan A cB b+=,则C =( ) A 、30° B 、45° C 、45°或135° D 、60°【答案】B 【解析】由已知得,BBC B A B A b b c B A sin sin sin sin cos cos sin tan tan -=∴-=22,A B A C B A cos sin cos sin cos sin -=∴2A C C cos sin sin 2=∴21=∴A cos ︒=60A ,.再由正弦定理得,C sin sin 322260=︒22=∴C sin ,所以︒︒=13545或C .又因c a >,所以C A >>︒60,故︒=45A .选B.二、填空题每题5分,满分10分,将答案填在答题纸上11.若某几何体的三视图如右,该几何体的体积为2,则俯视图中的x =_________.【答案】2 【解析】12.已知函数()f x 的定义域为[1,5]-,部分对应值如下表:()f x 的导函数'()y f x =的图象如图所示,下列关于()f x 的命题: ①函数()f x 是周期函数; ②函数()f x 在[0,2]上是减函数;③如果当[1,]x t ∈-时,()f x 的最大值是2,那么t 的最大值是4; ④当12a <<时,函数()y f x a =-有4个零点;⑤函数()y f x a =-的零点个数可能为0,1,2,3,4.其中正确命题的序号是_____________(写出所有正确命题的序号). 【答案】②⑤【解析】首先由导函数的图像和原函数的关系画出原函数的大致图像如图:13. 已知矩形CD AB 的周长为18,把它沿图中的虚线折成正六棱柱,当这个正六棱柱的体积最大时,它的外接球的表面积为 .【答案】13π【解析】解法一:设正六棱柱的的底面边长为x ,高为y ,则69x y +=,所以302x <<,正六棱柱的体积226(96)33(96)426V x y x x x x x =⨯=-=⋅⋅-333(96)[]3x x x ++-≤=,当且仅当396,1x x x =-=时等号成立.此时3y =.易知正六棱柱的外接球的球心是其上下中心连线的中点,如图所示,外接球的半径为OE ==所以外接球的表面积为2413.S R ππ==解法二:设正六棱柱的的底面边长为x ,高为y ,则69x y +=,所以302x <<,正六棱柱的体积2233()6(96)42V x x y x x=⨯=-,2'())V x x x =-,令2'()73()0V x x x =->,解得01x <<,令2'())0V x x x =-<得312x <<,即函数()V x 在(0,1)是增函数,在3(1,)2是减函数,所以()V x 在1x =时取得最大值,此时3y =.易知正六棱柱的外接球的球心是其上下中心连线的中点,如图所示,外接球的半径为2OE ==所以外接球的表面积为2413.S R ππ==三、解答题本大题共3小题,共36分.解答应写出文字说明、证明过程或演算步骤. 14.已知数列{}n a 的前n 项和为()211,,1,1,2,2n n n S a S n a n n n ==--= ,(1)证明:数列1n n S n +⎧⎫⎨⎬⎩⎭是等差数列,并求n S ;(2)设323n n S b n n =+,求证:12512nb b b ++⋅⋅⋅+<. 【解析】(2)因为321111()3(1)(3)213n n S b n n n n n n ===-+++++ ………………9分 所以12111111111111()()224351322323n b b b n n n n ++⋅⋅⋅+=-+-+⋅⋅⋅+-=+--++++ 1552612<⨯= …………12分 15. (12分)某市随机抽取一年(365天)内100天的空气质量指数API 的监测数据,结果统计如下:记某企业每天由于空气污染造成的经济损失为S (单位:元),空气质量指数API 为ω,在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当API 为150时造成的经济损失为500元,当API 为200时,造成的经济损失为700元);当API 大于300时造成的经济损失为2000元. (I )试写出S (ω)表达式;(II )试估计在本年内随机抽取一天,该天经济损失S 大于500元且不超过900元的概率; (III )若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?K 2=【解析】16.(本小题满分12分)在平行六面体1111ABCD A BC D -中,12AA AD AB ===,160A AD DAB ∠=∠=︒,O 是AD 的中点.1A(I)证明AD⊥面1AOB;(II)当平面ABCD⊥平面11AA D D,求11B CDDV-.【解析】(I)证明:取AD的中点O,连接1,AO BO由11160AA ADAA ADA AD=⎫⇒⊥⎬∠=︒⎭同理BO AD⊥AO⇒⊥平面1A BO,1A B AD⊥(II)11//A B平面11CDDC111111111116B CDD A CDDC AD D ABCD A B C DV V V V----∴===由(I)1AO AD⊥又平面ABCD⊥平面11AA D D∴1AO⊥平面ABCD1AO sin60ABCDS AB AD=︒=111116ABCD A B C D ABCDV AO S-∴==111616B CDDV-∴=⨯=17.椭圆1:2222=+byaxC)0(>>ba的焦距为4,且以双曲线1422=-xy的实轴为短轴,斜率为k的直线l经过点)1,0(M,与椭圆C交于不同两点A、B. (Ⅰ)求椭圆C的标准方程;【解析】18. 已知函数()21x f x x e =-+.(I)求()f x 的最大值;【解析】(Ⅰ)f '(x )=2-e x ,x <ln 2时,f '(x )>0;x >ln 2时,f '(x )<0,所以f (x )在(-∞,ln 2)上单调递增,在(ln 2,+∞)上单调递减,则当x =ln 2时,f (x )取得最大值2ln 2-1. …4分 请考生在第19、20、21三题中任选一题做答,如果多做,则按所做的第一题记分.19.(本小题满分10分)选修4-1:几何证明选讲如图所示,锐角三角形ABC 的内心为I ,过点A 作直线BI 的垂线,垂足为H ,点E 为圆I 与边CA 的切点.(1)求证,,,A I H E 四点共圆;(2)若50C ∠=︒,求IEH ∠的度数.【解析】(1)由圆I 与AC 相切于点E 得IE AC ⊥,结合H I A H ⊥,得90AEI AHI ∠=∠=︒,所以,,,A I H E 四点共圆.(2)由(1)知,,,A I H E 四点共圆,所以IEH HAI ∠=∠.由题意知12HIA ABI BAI ABC ∠=∠+∠=∠+ 1111()()218090222BAC ABC BAC C C ∠=∠+∠=︒-∠=︒-∠, 结合IH AH ⊥,得1190909022()HAI HIA C C ∠=︒-∠=︒-︒-∠=∠,所以12IEH C ∠=∠.由50C ∠=︒得25IEH ∠=︒. 20. (本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,以原点为极点,x 轴为极轴建立极坐标系,曲线1C 的方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),曲线2C 的极坐标方程为2:cos sin 1C ρθρθ+=,若曲线1C 与2C 相交于A 、B 两点.(1)求||AB 的值;(2)求点(1,2)M -到A 、B 两点的距离之积.【解析】21.(本小题满分10分)选修4-5:不等式选讲已知函数f(x)=lx+1|-a|x-l|.(I)当a=-2时,解不等式f(x )>5;(II)若(x)≤a|x+3|,求a 的最小值.【解析】(Ⅰ)当a =-2时,f (x )=⎩⎪⎨⎪⎧1-3x ,x <-1,3-x ,-1≤x ≤1,3x -1,x >1.由f (x )的单调性及f (- 4 3)=f (2)=5,得f (x )>5的解集为{x |x <- 4 3,或x >2}. …5分。
【艺术生高考专用】最新2019年高考数学艺术生冲刺专题训练测试题04三角函数Word版附答案及解析

【艺术生高考专用】2019年高考数学艺术生冲刺专题训练测试题04专题4三角函数测试题命题报告:高频考点:三角函数求值和化简、三角函数的图像和性质,三角函数恒等变换以及解三角形等。
考情分析:本单元再全国卷所占分值约15分左右,如果在客观题出现,一般三题左右,如果出现值解答题中,一般一题,难度不大重点推荐:第22题,是否存在问题,有一定难度。
21题数学文化题。
一.选择题1.若角600°的终边上有一点(﹣1,a),则a的值是()A.B.C.2 D.﹣22.(2018•贵阳二模)已知sin(π﹣α)=﹣,且α∈(﹣),则tan(2π﹣α)=()A.B.C.D.3.(2018•安徽二模)θ为第三象限角,,则sinθ﹣cosθ=()A.B.C.D.4.函数f(x)=sin(2x+φ)的图象向右平移个单位后所得的图象关于原点对称,则φ可以是()A.B.C.D.5.(2018•桂林三模)关于函数f(x)=2cos2+sinx(x∈[0,π]),则f(x)的最大值与最小值之差为()A.3 B.2 C.0 D.﹣217.欲测量P,Q两棵树和A,P两棵树之间的距离,现可测得A,B两点间的距离为100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如图所示.则P,Q两棵树和A,P两棵树之间的距离各为多少?18.(2018秋•重庆期中)已知函数f(x)=2cos2x+sin(2x﹣).(Ⅰ)求f(x)的最大值;(Ⅱ)在△ABC中,角A、B、C所对的边分别为a、b、c,若f(A)=f(B)且A≠B,a=1,c=,求b.19.函数f(x)=2sin2(+x)﹣cos2x.(1)请把函数f(x)的表达式化成f(x)=Asin(ωx+φ)+b(A>0,ω>0,|φ|<)的形式,并求f(x)的最小正周期;(2)求函数f(x)在x∈[,]时的值域.20.(2018春•金华期末)已知函数的最大值为3.(1)求a的值及f(x)的单调递减区间;(2)若,,求cosα的值.21.已知函数,(ω>0).(Ⅰ)求函数f(x)的值域;(Ⅱ)若方程f(x)=﹣1在(0,π)上只有三个实数根,求实数ω的取值范围.22.已知函数f(x)=sinωx(sinωx+co sωx)﹣(ω>0)的图象相邻对称轴之间的距离为2π.(Ⅰ)求ω的值;(Ⅱ)当x∈[﹣π,π]时,求f(x)最大值与最小值及相应的x的值;(Ⅲ)是否存在锐角α,β,使a+2β=,f()•f(2)=同时成立?若存在,求出角α,β的值;若不存在,请说明理由.答案及解析专题4三角函数测试题选择题1.【答案】:B【解析】角600°的终边上有一点(﹣1,a),∴tan600°=tan(540°+60°)=tan60°= =,∴a=﹣.故选:B2.【答案】:B3.【答案】:B【解析】∵θ为第三象限角, =,∴tanθ==2,再根据sin2θ+cos2θ=1,sinθ<0,cosθ<0,∴sinθ=﹣,cosθ=﹣,∴sinθ﹣cosθ=﹣,故选:B.4.【答案】:B【解析】函数f(x)=sin(2x+φ)的图象向右平移个单位后,可得y=sin(2x﹣+φ).∵图象关于原点对称,∴φ﹣=kπ,k∈Z可得:φ=.当k=0时,可得φ=.故选:B.5【答案】:A【解析】f(x)=2cos2+sinx=cosx+sinx+1=,∵x∈[0,π],∴x+∈[,],可得sin(x+)∈[﹣,1],∴函数f(x)∈[0,3],则f(x)的最大值与最小值之差为3.故选:A.17.【分析】△PAB中,∠APB=180°-(75°+60°)=45°,由正弦定理得=⇒AP=50.△QAB中,∠ABQ=90°,∴AQ=100,∠PAQ=75°-45°=30°,由余弦定理得PQ2=(50)2+(100)2-2×50×100cos30°=5000,∴PQ==50.因此,P,Q两棵树之间的距离为50 m,A,P两棵树之间的距离为50 m.18.【解析】:(Ⅰ) f ( x)=cos 2x+1+sin 2xcos﹣cos2xsin=sin2x+cos2x+1=sin(2x+)+1∴当sin(2x+)=时,可得f ( x)的最大值为 2;(Ⅱ) f ( A)=f (B)⇒sin(2A+)=sin(2B+),且 A≠B,∴2A++2B=π,即 A+B=,那么:C=π﹣A﹣B=,余弦定理:c2=a2+b2﹣2abcosC,即13=1+b2+b,∴b=3.19.【解析】:(1)函数f(x)=2sin2(+x)﹣cos2x=1﹣cos()cos2x=sin2x ﹣cos2x+1=2sin(2x﹣)+1,∴f(x)的最小正周期T=.(2)由(1)可知f(x)=2sin(2x﹣)+1∵x∈[,],∴2x﹣∈[,]∴≤sin(2x﹣)≤1,则2≤f(x)≤3故得函数f(x)在x∈[,]时的值域为[2,3].20.【解析】:(1)====.当时,f(x)max=2﹣1+a=3,∴a=2.由,k∈Z.得到,k∈Z.∴f(x)的单调递减区间为,k∈Z;(2)∵,,∴,又,∴,∴,∴==.21.【思路分析】(Ⅰ)利用三角恒等变换化简函数的解析式,再根据正弦函数的值域求得函数f(x)的值域.(Ⅱ)求出方程f(x)=﹣1在(0,π)上从小到大的4个实数根,再根据只有三个实数根,求出实数ω的取值范围.【解析】:(Ⅰ)函数=sinωx+2cos (﹣)sin(﹣)=sinωx+2cos(﹣)sin(﹣)=sinωx+sin(ωx﹣)=sinωx ﹣cosωx=2sin(ωx﹣),故函数f(x)的值域为[﹣2,2].(Ⅱ)若方程f(x)=﹣1,即sin(ωx﹣)=﹣,∴ωx﹣=2kπ﹣,或ωx ﹣=2kπ﹣,k∈Z.即x=,或 x=,(0,π)上,由小到大的四个正解依次为:x=,或x=,或x=,或x=,∵方程f(x)=﹣1在(0,π)上只有三个实数根,∴,解得<ω≤.22.【思路分析】(Ⅰ)由已知利用三角函数恒等变换的应用可得函数解析式f(x)=sin(2ωx﹣),利用正弦函数的周期公式可求ω的值.(Ⅱ)由(Ⅰ)得f(x)=sin(x﹣),由﹣π≤x≤π,可求范围﹣≤﹣≤,根据正弦函数的图象和性质即可计算得解.(Ⅲ)由已知利用三角函数恒等变换的应用可求tan2β=,结合范围β为锐角,0<2β<π,可得β=,α=﹣2β=,即可得解.(Ⅱ)由(Ⅰ)得f(x)=sin(x﹣),由﹣π≤x≤π,得:﹣≤﹣≤,∴﹣1≤sin(x﹣)≤,∴f(x)min=﹣,此时x﹣=﹣,解得x=﹣;f(x)min=,此时x﹣=,解得x=π.………………………(7分)(Ⅲ)存在,理由如下:存在,理由如下:∵f(α+)=sin,f(2β+)=sin(β+)=cosβ,∴f(α+)•f(2β+)=sin cosβ=,∴sin cosβ=,………………………(9分)又a+2β=,a=﹣2β,∴sin cosβ=sin(﹣β)cosβ=,∴(cosβ﹣sinβ)cosβ=,∴cos2β﹣sinβcosβ=,∴×﹣sin2β=,即:cos2β﹣sin2β=0,∴tan2β=,又β为锐角,0<2β<π,∴2β=,β=,从而α=﹣2β=.………………………(12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、集合中元素的个数的计算:
(1)若集合 中有 个元素,则集合 的所有不同的子集个数为2 ,所有真子集的个数是2 -1,所有非空真子集的个数是2 -2。
(2) 中元素的个数的计算公式为:
(1). (2). (3).
10.(P17复习题13)对于集合A,B,我们把集合 记作 .例如, ,则有
据此,试解答下列问题:
(1)已知 ,求 及 ;
C D={(a,1),(a,2),(a,3)} D C={(1,a),(2,a),(3,a)}
(2)已知 ,求集合A,B;A={1,2}B={2}
(3)若A有3个元素,B有4个元素,试确定 有几个元素?12
②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;
符号“ ”是表示集合与集合之间关系的,立体几何中的体现面与直线(面)的关系。
(2)A B={x| x A且x B} A B={x| x A或x B};
C A={x| x I且x A}
(3)对于任意集合 ,则:
① ; ; ;
② A B; B A;
A B= ; A B=U;
③ ; ;
(4)①若 为偶数,则 2K,(k );若 为奇数,则 2k+1, (k );
高考题
1.若集合 , 满足 ,则实数a=2.
2.设集合 ,
3.已知全集 ,集合 , ,那么集合 等于
4.设集合 ,则
5.设集合 , , ,则
6.定义集合运算: 设 , ,则集合 的所有元素之和为6
7.(湖南卷2)“ 成立”是“ 成立”的必要不充分条件
8.已知全集 ,集合 , ,则集合 中元素的个数为2
;
(3)韦恩图的运用:
四、 满足条件 , 满足条件 ,
若p q,q p;则 是 的充分非必要条件 ;
若p q,q p;则 是 的必要非充分条件 ;
若p q;则 是 的充要条件 ;
若p q,q p;则 是 的既非充分又非必要条件 ;
五、原命题与逆否命题,否命题与逆命题具有相同的充要性;
注意:“若 ,则 ”在解题中的运用,
14.(重庆卷11)设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则 = .
函数
一、映射与函数:
(1)映射的概念:(2)一一映射:(3)函数的概念:
如:若 , ;问: 到 的映射有3 个, 到 的映射有4 个; 到 的函数有81个,若 ,则 到 的一一映射有6个。
9.设m,n是整数,则“m,n均为偶数”是“m+n是偶数”的充分而不必要条件
10.(福建卷2)设集合A={x| },B={x|0<x<3=,那么“m A”是“m B”的充分而不必要条件
11.已知U=R,A= ,B= ,
则
12.已知集合 ,则集合 =D
A. B. C. D.
13.(江苏卷4)A= ,则A Z的元素的个数0.
正面词语
至少有一个
任意的
所有的
至多有n个
任意两个
否定
一个也没有
某些
存在
至少n+1个
存在两个不
课本题
1.设 ,则 (1,2)
2.(P13练习5)设
则 A, , R, A。
3.(P14习题9)一个集合的所有子集共有 个,若 ,则 {1,2.4}
4.(P14习题10)我们知道,如果集合 ,那么S的子集A的补集为 .类似地,对于集合A,B,我们把集合叫 做集合A,B的差集,记作A-B.若 ,则 {1,2.3.6.7.8}.若 ,则集合 与 之间的关系为A B=
函数 的图象与直线 交点的个数为0或1个。
二、函数的三要素:定义域,值域,对应法则。
相同函数的判断方法:①定义域相同;②对应法则一样(两点必须同时具备)
(1)函数解析式的求法:
①定义法(拼凑):②换元法:③待定系数法:④赋值法:
(2)函数定义域的求法:
① ,则g(x) ;② 则f(x) ;
③ ,则f(x) ;④如: ,则 ;
5.(P17复习题6)已知集合 ,则 )
6.(P17复习题8)满足 的集合A最多有4个。
7.(P17复习题10)期中考试,某班数学优秀率为70%,语文优秀率为75%.则上述两门学科都优秀的百分率至少为45% 。
8.(P17复习题11)设全集为U,则 三者之间的关系为
9.(P17复习题12)设A,B均为有限集,A中元素的个数为m,B中元素的个数为n, 中的元素的个数s, 中的元素的个数t,则下列各式能成立的序号是(1)(2)
⑤含参问题的定义域要分类讨论;
⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。如:已知扇形的周长为20,半径为 ,扇形面积为 ,则 -r +定义域为(0,10)。
(3)函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;
注意:区分集合中元素的形式:如: ; ; ; ;
;
(5)空集是指不含任何元素的集合。( 、 和 的区别;0与三者间的关系)
空集是任何集合的子集,是任何非空集合的真子集。
注意:条件为 ,在讨论的时候不要遗忘了 的情况。
如: ,如果 ,求 的取值。
二、集合间的关系及其运算
(1)符号“ ”是表示元素与集合之间关系的,立体几何中的体现点与直线(面)的关系;
如:“ ”是“ ”的充分不必要条件。
六、反证法:当证明“若 ,则 ”感到困难时,改证它的等价命题“若 则 ”成立,
步骤:1、假设结论反面成立;2、从这个假设出发,推理论证,得出矛盾;
3、由矛盾判断假设不成立,从而肯定结论正确。
正面词语
等于
大于
小于
是
都是
至多有一个
否定
不等于
不大于
不小于
不是
不都是
至少有两个
艺体生全套复习资料
高
中
数
学
集合与简易逻辑:
一、理解集合中的有关概念
(1)集合中元素的特征:确定性,互异性,无序性。
(2)集合与元素的关系用符号 表示。
(3)常用数集的符号表示:自然数集N;正整数集N 、N ;整数集Z;有理数集Q、实数集R。
(4)集合的表示法:列举法,描述法,符号法(数轴法,韦恩图法)