高三物理电场、磁场、复合场专题训练
专题18 电场磁场和重力场复合场模型-2023年高考物理磁场常用模型精练(解析版)

2023年高考物理《磁场》常用模型最新模拟题精练专题18.电场磁场和重力场复合场模型1.(2022山东聊城重点高中质检)如图所示,空间存在水平向右的匀强电场和垂直于纸面向里的匀强磁场,一质量为m 、带电量大小为q 的小球,以初速度v 0沿与电场方向成45°夹角射入场区,能沿直线运动。
经过时间t ,小球到达C 点(图中没标出),电场方向突然变为竖直向上,电场强度大小不变。
已知重力加速度为g ,则()A.小球一定带负电B.时间t 内小球做匀速直线运动C.匀强磁场的磁感应强度为2mgqv D.电场方向突然变为竖直向上,则小球做匀加速直线运动【参考答案】BC 【名师解析】假设小球做变速直线运动,小球所受重力与电场力不变,而洛伦兹力随速度的变化而变化,则小球将不可能沿直线运动,故假设不成立,所以小球一定受力平衡做匀速直线运动,故B 正确;小球做匀速直线运动,根据平衡条件可以判断,小球所受合力方向必然与速度方向在一条直线上,故电场力水平向右,洛伦兹力垂直直线斜向左上方,故小球一定带正电,故A 错误;根据平衡条件,得0cos 45mg qv B =︒解得02mgB qv =,故C 正确;根据平衡条件可知tan 45mg qE =︒电场方向突然变为竖直向上,则电场力竖直向上,与重力恰好平衡,洛伦兹力提供向心力,小球将做匀速圆周运动,故D 错误。
二、计算题1.(2022山东四县区质检)如图所示,在xOy 坐标系内,圆心角为120°内壁光滑、绝缘的圆管ab ,圆心位于原点O 处,Oa 连线与x 轴重合,bc 段为沿b 点切线延伸的直管,c 点恰在x 轴上。
坐标系内第三、四象限内有水平向左的匀强电场,场强为E 1(未知);在第二象限内有竖直向上的匀强电场,场强为E 2(未知)。
在第二、三象限内有垂直于纸面向外的匀强磁场,磁感应强度大小均为B 。
现将一质量为m 、带电量为+q 的小球从圆管的a 端无初速度释放,小球到达圆管的b 端后沿直线运动到x 轴,在bc 段运动时与管壁恰无作用力,从圆管c 端飞出后在第二象限内恰好做匀速圆周运动。
[必刷题]2024高三物理下册电磁场专项专题训练(含答案)
![[必刷题]2024高三物理下册电磁场专项专题训练(含答案)](https://img.taocdn.com/s3/m/762b735e91c69ec3d5bbfd0a79563c1ec5dad7a3.png)
[必刷题]2024高三物理下册电磁场专项专题训练(含答案)试题部分一、选择题:A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动2. 下列关于电磁感应现象的描述,错误的是:A. 闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流B. 感应电流的方向与磁场方向有关C. 感应电流的大小与导体运动速度成正比D. 感应电流的大小与导体长度成正比A. 电势能减小B. 电势能增加C. 电势增加D. 电势减小A. 电容器充电时,电场能转化为磁场能B. 电容器放电时,电场能转化为磁场能C. 电感器中的电流增大时,磁场能转化为电场能D. 电感器中的电流减小时,磁场能转化为电场能A. 电磁波在真空中传播速度为3×10^8 m/sB. 电磁波的传播方向与电场方向垂直C. 电磁波的传播方向与磁场方向垂直D. 电磁波的波长与频率成正比A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动A. 洛伦兹力的方向垂直于带电粒子的速度方向B. 洛伦兹力的大小与带电粒子的速度成正比C. 洛伦兹力的大小与磁感应强度成正比D. 洛伦兹力的方向与磁场方向垂直8. 一个闭合线圈在磁场中转动,下列关于感应电动势的说法,正确的是:A. 感应电动势的大小与线圈面积成正比B. 感应电动势的大小与磁场强度成正比C. 感应电动势的大小与线圈转速成正比D. 感应电动势的方向与磁场方向平行A. 变化的电场会产生磁场B. 变化的磁场会产生电场C. 静止的电荷会产生磁场D. 静止的磁场会产生电场A. 电场强度与磁场强度成正比B. 电场强度与磁场强度成反比C. 电场强度与电磁波频率成正比D. 电场强度与电磁波波长成正比二、判断题:1. 带电粒子在电场中一定受到电场力的作用。
()2. 电磁波在传播过程中,电场方向、磁场方向和传播方向三者相互垂直。
()3. 在LC振荡电路中,电容器充电完毕时,电场能最大,磁场能为零。
高考物理带电粒子在复合场中的运动试题经典

一、带电粒子在复合场中的运动专项训练1.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。
在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E0、磁感应强度B0、粒子的比荷qm均已知,且2mtqBπ=,两板间距2210mEhqBπ=。
(1)求粒子在0~t0时间内的位移大小与极板间距h的比值。
(2)求粒子在板板间做圆周运动的最大半径(用h表示)。
(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。
【来源】带电粒子的偏转【答案】(1)粒子在0~t0时间内的位移大小与极板间距h的比值115sh=(2)粒子在极板间做圆周运动的最大半径225hRπ=(3)粒子在板间运动的轨迹如图:【解析】【分析】【详解】(1)设粒子在0~t0时间内运动的位移大小为s121012s at =① 0qEa m=②又已知200200102,mE m t h qB qB ππ== 联立解得:115s h = (2)解法一粒子在t 0~2t 0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。
设运动速度大小为v 1,轨道半径为R 1,周期为T ,则10v at =21101mv qv B R =联立解得:15h R π= 又002mT t qB π== 即粒子在t 0~2t 0时间内恰好完成一个周期的圆周运动。
在2t 0~3t 0时间内,粒子做初速度为v 1的匀加速直线运动,设位移大小为s 22210012s v t at =+解得:235s h =由于s 1+s 2<h ,所以粒子在3t 0~4t 0时间内继续做匀速圆周运动,设速度大小为v 2,半径为R 2,有:210v v at =+22202mv qv B R =解得225h R π=由于s 1+s 2+R 2<h ,粒子恰好又完成一个周期的圆周运动。
高考物理二轮复习专题四电场和磁场带电粒子在组合场复合场中的运动训练.docx

1-4-10 带电粒子在组合场、复合场中的运动课时强化训练1.如图所示,从离子源发射出的正离子,经加速电压U 加速后进入相互垂直的电场(E 方向竖直向上)和磁场(B 方向垂直纸面向外)中,发现离子向上偏转。
要使此离子沿直线通过电磁场,需要( )A .增加E ,减小B B .增加E ,减小UC .适当增加UD .适当减小B[解析] 离子所受的电场力F =qE ,洛伦兹力F 洛=qvB ,qU =12mv 2,离子向上偏转,电场力大于洛伦兹力,故要使离子沿直线运动,可以适当增加U ,增加速度,洛伦兹力增大,C 正确;也可适当减小E 或增大B ,电场力减小或洛伦兹力增大,A 、B 、D 错误。
[答案] C2.(多选)质量为m ,带电量为q 的小物块,从倾角为θ的光滑绝缘斜面上由静止下滑,整个斜面置于方向水平向里的匀强磁场中,磁感应强度为B ,如图所示。
若带电小物块下滑后某时刻对斜面的作用力恰好为零,下面说法中正确的是( )A .小物块一定带正电荷B .小物块在斜面上运动时做匀加速直线运动C .小物块在斜面上运动时做加速度增大,而速度也增大的变加速直线运动D .小物块在斜面上下滑过程中,当小物块对斜面压力为零时的速率为mgcos θBq[解析] 小物块沿斜面下滑对斜面作用力为零时受力分析如图所示,小物块受到重力mg 和垂直于斜面向上的洛伦兹力F ,故小物块带负电荷,A 错误;小物块在斜面上运动时合力等于mg sin θ保持不变,做匀加速直线运动,B 正确,C 错误;小物块在斜面上下滑过程中,当小物块对斜面压力为零时有qvB =mg cos θ,则有v =mgcos θBq,D 正确。
[答案] BD3.(多选)在地面附近的空间中有水平方向的匀强电场和匀强磁场,已知磁场的方向垂直纸面向里,一个带电油滴沿着一条与竖直方向成α角的直线MN运动,如图所示。
由此可判断下列说法正确的是()A.如果油滴带正电,则油滴从M点运动到N点B.如果油滴带正电,则油滴从N点运动到M点C.如果电场方向水平向右,则油滴从N点运动到M点D.如果电场方向水平向左,则油滴从N点运动到M点[解析] 油滴在运动过程中受到重力、电场力及洛伦兹力的作用,因洛伦兹力的方向始终与速度方向垂直,大小随速度的改变而改变,而电场力与重力的合力是恒力,所以油滴做匀速直线运动;又因电场力一定在水平方向上,故洛伦兹力的方向是斜向上方的,因而当油滴带正电时,应该由M点向N点运动,故选项A正确,B错误。
高考物理试题库 专题3.23 复合场问题(基础篇)(原卷版)

(选修3-1)第三部分磁场专题3.23 复合场问题(基础篇)一.选择题1.(6分)(2019湖南师大附中三模)如图所示,一带电量为﹣q的小球,质量为m,以初速度v0从水平地面竖直向上射入水平方向的匀强磁场中、磁感应强度,方向垂直纸面向外。
图中b为轨迹最高点,重力加速度为g。
则小球从地面射出到第一次到达最高点过程中()A.小球到达最高点时速率为0 B.小球距射出点的最大高度差为C.小球从抛出到第一次到达最高点所用时间为D.最高点距射出点的水平位移为2.(6分)(2019湖南师大附中三模)如图所示,两根无限长通电直导线水平且平行放置,分別通有电流互I1和I2,且I1=2I2.一无限长光滑绝缘杆垂直于两导线水平放置,三者位于同一高度,一带正电的小球P 穿在绝缘杆上,小球P从靠近a的地方以某一速度向右运动,其对的弹力设为F.已知始終同定不动,通有电流I的无限长直导线在其周围产生的磁场的磁感应强度B=,其中k为常数,r为到长直导线的距离。
下列说法正确的是()A.两导线之间某位置的磁场最弱B.小球沿杆方向做减速运动C.F先减小后增大再减小D.F先水平向里后水平向外3.(2019·福建省三明市上学期期末)如图所示为一个质量为m、带电荷量为+q的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度大小为B、方向垂直纸面向里的匀强磁场中.现给圆环向右初速度v0,在以后的运动过程中,圆环运动的v-t图象可能是下图中的()4. (多选)(2018·湖北省黄冈中学模拟)如图所示,下端封闭、上端开口、高h=5 m、内壁光滑的细玻璃管竖直放置,管底有质量m=10 g、电荷量的绝对值|q|=0.2 C的小球,整个装置以v=5 m/s的速度沿垂直于磁场方向进入磁感应强度大小为B=0.2 T、方向垂直纸面向内的匀强磁场,由于外力的作用,玻璃管在磁场中的速度保持不变,最终小球从上端管口飞出.g取10 m/s2.下列说法中正确的是()A.小球带负电B.小球在竖直方向做匀加速直线运动C.小球在玻璃管中的运动时间小于1 s D.小球机械能的增加量为1 J二.计算题匀强磁场,其方向与电场方向垂直,磁感应强度大小B=0.5 T.有一带正电的小球,质量m=1×10-6 kg,电荷量q=2×10-6C,正以速度v在图示的竖直面内做匀速直线运动,当经过P点时撤掉磁场(不考虑磁场消失引起的电磁感应现象),取g=10 m/s2,求:(1)小球做匀速直线运动的速度v的大小和方向;(2)从撤掉磁场到小球再次穿过P点所在的这条电场线经历的时间t.2.(19分)(2019湖北黄冈三模)如图所示,空间存在着方向竖直向上的匀强电场和方向垂直于纸面向内、磁感应强度大小为B的匀强磁场,带电荷量为+q、质量为m的小球Q静置在光滑绝缘的水平高台边缘,另一质量为m、不带电的绝缘小球P以水平初速度v0向Q运动,,两小球P、Q可视为质点,正碰过程中没有机械能损失且电荷量不发生转移。
高中物理专题:电场磁场与复合场

电场、磁场及复合场【典型例题】1.空间存在相互垂直的匀强电场E 和匀强磁场B ,其方向如图所示.一带电粒子+q 以初速度v 0垂直于电场和磁场射入,则粒子在场中的运动情况可能是 ( ) A .沿初速度方向做匀速运动B .在纸平面内沿逆时针方向做匀速圆周运动C .在纸平面内做轨迹向下弯曲的匀变速曲线运动D .初始一段在纸平面内做轨迹向下(向上)弯曲的非匀变速曲线运动2.如图所示空间存在着竖直向上的匀强电场和垂直纸面向外的匀强磁场,一带电液滴从静止开始自A 沿曲线ACB 运动到B 点时,速度为零,C 是轨迹的最低点,以下说法中正确的是 ( ) A .液滴带负电 B .滴在C 点动能最大 C .若液滴所受空气阻力不计,则机械能守恒 D .液滴在C 点机械能最大 3.如图所示,一个带正电的滑环套在水平且足够长的粗糙绝缘杆上,整个装置处在与杆垂直的水平方向的匀强磁场中,现给滑环以水平向右的瞬时冲量,使滑环获得向右的初速,滑环在杆上的运动情况可能是 ( ) A .始终作匀速运动 B .先作加速运动,后作匀速运动 C .先作减速运动,后作匀速运动 D .先作减速运动,最后静止在杆上4.如图所示,质量为m 、带电量为+q 的带电粒子,以初速度v 0垂直进入相互正交的匀强电场E 和匀强磁场B 中,从P 点离开该区域,此时侧向位移为s (重力不计),则 ( ) A .粒子在P 点所受的磁场力可能比电场力大 B .粒子的加速度为(qE – q v 0B )/mC .粒子在P 点的速率为mqsE v 220D .粒子在P 点的动能为m v 02/2 – qsE5.如图所示,质量为m ,电量为q 的正电物体,在磁感强度为B 、方向垂直纸面向里的匀强磁场中,沿动摩擦因数为μ的水平面向左运动,物体运动初速度为v ,则 ( )A .物体的运动由v 减小到零所用的时间等于m v /μ(mg+qvB ) B .物体的运动由v 减小到零所用的时间小于m v /μ(mg+qvB )C .若另加一个电场强度为μ(mg+q v B )/q 、方向水平向左的匀强电场,物体做匀速运动D .若另加一个电场强度为(mg+q v B )/q 、方向竖直向上的匀强电场,物体做匀速运动 6.如图所示,磁感强度为B 的匀强磁场,在竖直平面内匀速平移时,质量为m ,带电– q 的小球,用线悬挂着,静止在悬线与竖直方向成30°角的位置,则磁场的最小移动速度为 .7.如图所示,质量为1g 的小环带4×10—4C 正电,套在长直的绝缘杆上,两者间的动摩擦因数μ = 0.2,将杆放入都是水平的互相垂直的匀强电场和匀强磁场中,杆所在的竖直平面与磁场垂直,杆与电场夹角为37°,若E = 10N/C,B = 0。
电场、磁场及复合场大题 高考复习

专题五 电场、磁场及复合场1.如图所示,空间分布着方向平行于纸面且与场区边界垂直的有界匀强电场,电场强度为E ,场区宽度为L ,在紧靠电场右侧的圆形区域内,分布着垂直于纸面向外的匀强磁场,磁感应强度B 未知,圆形磁场区域半径为r 。
一质量为m ,电荷量为q 的带正电的粒子从A 点由静止释放后,在M 点离开电场,并沿半径方向射入磁场区域,然后从N 点射出,O 为圆心,120MON ∠=,粒子重力可忽略不计。
求:(1)粒子在电场中加速的时间;(2)匀强磁场的磁感应强度B 的大小。
2.如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心O 在区域中心.一质量为m 、带电荷量为q (q >0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动.已知磁感应强度大小B 随时间t 的变化关系如图乙所示,其中002T =.m qB π设小球在运动过程中电荷量保持不变,对原磁场的影响可忽略。
(1)在t =0到t =T 0这段时间内,小球不受细管侧壁的作用力,求小球的速度大小v 0;(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等.试求t =T 0到t =1.5T 0这段时间内:①细管内涡旋电场的场强大小E ;②电场力对小球做的功W 。
3.如图,直线MN 上方有平行于纸面且与MN 成45°的有界匀强电场,电场强度大小未知;MN 下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B 。
今从MN 上的O 点向磁场中射入一个速度大小为v 、方向与MN 成45°角的带正电粒子,该粒子在磁场中运动时的轨道半径为R 。
若该粒子从O 点出发记为第一次经过直线MN ,而第五次经过直线MN 时恰好又通过O 点。
不计粒子的重力。
求:(1)电场强度的大小;(2)该粒子再次从O 点进入磁场后,运动轨道的半径;(3)该粒子从O 点出发到再次回到O 点所需的时间。
高考物理二轮复习专题四电磁场类问题电磁复合场练习

专题四电磁场类问题(电、磁、复合场)一、单选题1.如图所示,平行板电容器充电后形成一个匀强电场,大小保持不变。
让不计重力的相同带电粒子a、b,以不同初速度先、后垂直电场射入,a、b分别落到负极板的中央和边缘,则( )A.b粒子加速度较大B.b粒子的电势能变化量较大C.若仅使a粒子初动能增大到原来的2倍,则恰能打在负极板的边缘D.若仅使a粒子初速度增大到原来的2倍,则恰能打在负极板的边缘2.如图甲所示,两平行正对的金属板A、B间加有如图乙所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P处。
若在t0时刻释放该粒子,粒子会时而向A板运动,时而向B板运动,并最终打在A板上。
则t0可能属于的时间段是( )A.0<t0<T4B.T2<t0<3T4C.3T4<t0<T D.T<t0<9T83.如图所示,在圆形区域内存在垂直纸面向外的匀强磁场,ab是圆的直径。
一带电粒子从a点射入磁场,速度大小为v、方向与ab成30°角时,恰好从b点飞出磁场,且粒子在磁场中运动的时间为t;若同一带电粒子从a点沿ab方向射入磁场,也经时间t飞出磁场,则其速度大小为( )A.12v B.23vC.32v D.32v4.自行车速度计利用霍尔效应传感器获知自行车的运动速率。
如图甲所示,自行车前轮上安装一块磁铁,轮子每转一圈,这块磁铁就靠近霍尔传感器一次,传感器会输出一个脉冲电压。
图乙为霍尔元件的工作原理图,当磁场靠近霍尔元件时,导体内定向运动的自由电荷在磁场力作用下偏转,最终使导体在与磁场、电流方向都垂直的方向上出现电势差,即为霍尔电势差。
下列说法正确的是( )A.根据单位时间内的脉冲数和自行车车轮的半径即可获知车速大小B.自行车的车速越大,霍尔电势差越高C.图乙中霍尔元件的电流I是由正电荷定向移动形成的D.如果长时间不更换传感器的电源,霍尔电势差将增大5.科研人员常用磁场来约束运动的带电粒子,如图所示,粒子源位于纸面内一边长为a的正方形中心O处,可以沿纸面向各个方向发射速度不同的粒子,粒子质量为m、电荷量为q、最大速度为v,忽略粒子重力及粒子间相互作用,要使粒子均不能射出正方形区域,可在此区域加一垂直纸面的匀强磁场,则磁感应强度B的最小值为( )A.2mvqaB.22mvqaC.4mvqaD.42mvqa二、多选题6.如图所示,两个等量异号点电荷M、N分别固定在A、B两点,F为AB连线中垂线上某一点,O为AB连线的中点,且AO=OF,E和φ分别表示F处的场强大小和电势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电场、磁场、复合场专题训练
1、如图所示,某区域电场线左右对称分布,M 、N 为对称线上的两点。
下列说法正确的是
A . M 点电势一定高于N 点电势
B . M 点好强一定大于N 点场强
C . 正电荷在M 点的电势能大重量N 点的电势能
D . 将电子从M 点移动到N 点,电场力做正功
2、如图所示的匀强电场E 的区域内,由A 、B 、C 、D 、A '、B '、C '、
D '作为顶点构成一正方体空间,电场方向与面ABCD 垂直。
下列说法正确的是
A .AD 两点间电势差U AD 与A A '两点间电势差U AA 相等
B .带正电的粒子从A 点沿路径A →D →D '移到D '点,电场力做正功
C .带负电的粒子从A 点沿路径A →
D →D '移到D '点,电势能减小 D .带电的粒子从A 点移到C '点,沿对角线A C '与沿路径A →B →B '→C '电场力做功相同
3、一带电粒子以垂直于磁场方向的初速飞入匀强磁场后做圆周运动,磁场方向
和运动轨迹如图所示,则可能的是
A .粒子带正电,沿顺时针方向运动,
B .粒子带正电,沿逆时针方向运动,
C .粒子带负电,沿顺时针方向运动,
D .粒子带负电,沿逆时针方向运动。
4、粒子甲的质量与电荷量分别是粒子乙的4倍与2倍,两粒子均带正电。
让它们在匀强磁场中同一点以大小相等、方向相反的速度开始运动。
已知磁场方向垂直纸面向里。
以下四个图中,能正确表示两粒子运动轨迹的是
5、如图所示,均强磁场的方向垂直纸面向里,一带电微粒从磁场边界d 点垂直与磁场方向射入,沿曲线dpa 打到屏MN 上的a 点,通过pa 段用时为t 。
若该微粒经过p 点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN 上。
两个微粒所受重力均忽略。
新微粒运动的
A .轨迹为pb ,至屏幕的时间将小于t
B .轨迹为pc ,至屏幕的时间将大于
t
⨯
⨯
⨯ ⨯
C .轨迹为pb ,至屏幕的时间将等于t
D .轨迹为pa ,至屏幕的时间将大于t
6、如图所示,长方形abcd 长ad=0.6m ,宽ab=0.3m ,0、e 分别是ad 、bc 的中点,以ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度B=0.25T 。
一群
不计重力、质量m=3×10—7kg 、电荷量q=+2×10—
3C 的带电粒子以速度v =5×102m /s 沿垂直ad 方向且垂直于磁场射人磁场区域
A .从Od 边射入的粒子,出射点全部分布在Oa 边
B .从aO 边射入的粒子,出射点全部分布在Ob 边
C .从Od 边射入的粒子,出射点分布在Oa 边和ab 边
D .从aO 边射入的粒子,出射点分布在ab 边和be 边
7、如图所示,在x 轴上方存在着垂直于纸面向里、磁感应强度为B 的匀强磁场,一个不计重力的带电粒子从坐标原点O 处以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x 轴正方向成120°角,若粒子穿过y 轴正半轴后在磁场中到x 轴的最大距离为a ,则该粒子的比荷和所带电荷的正负是
A.aB
v
23,正电荷 B. aB
v
2,正电荷 C.
aB
v
23,负电荷 D.
aB
v
2,负电荷
8、图中为一“滤速器”装置示意图。
a 、b 为水平放置的平行金属板,一束具有各种不同速率的电子沿水平方向经小孔O 进入a 、b 两板之间。
为了选取具有某种特定速率的电子,可在a 、b 间加上电压,并沿垂直于纸面的方向加一匀强磁场,使所选 电子仍能够沿水平直线OO'运动,由O'射出。
不计重力作用。
可能达到上述目的的办法是 A .使a 板电势高于b 板,磁场方向垂直纸面向里
B .使a 板电势低于b 板,磁场方向垂直纸面向里
C .使a 板电势高于b 板,磁场方向垂直纸面向外
D .使a 板电势低于b 板,磁场方向垂直纸面向外
9、如图所示,真空中相距d =5cm 的两块平行金属板A 、B 与电源连接(图中未画出),其中B 板接地(电势为零),A 板电势变化的规律如图所示。
将一个质量m=2.0×1027
kg ,电
量q =+1.6×10-19 C 的带电粒子从紧临B 板处释放,不计重力。
求 (1)在t =0时刻释放该带电粒子,释放瞬间粒子加速度的大小;
(2)若A 板电势变化周期T =1.0×10-5 s ,在t =0时将带电粒子从紧临B 板处无初速释放,粒子达到A 板时动量的大小; (3)A 板电势变化频率多大时,在t =
4T 到t =2
T
时间内从紧临B板处无初速释放该带电粒子,粒子不能到达A板。
10、在互相垂直的匀强磁场和匀强电场中固定放置一光滑的绝缘斜面,其倾角为θ,斜面足够长,磁场的磁感强度为B,方向垂直纸面向外,电场方向竖直向上,如图所示。
一质量为m、带电量为q的小球静止放在斜面的最高点A,小球对斜面的压力正好为零,在释放小球的同时,将电场方向迅速改为竖直向下,场强大小不变,设B、θ、m、q为已知,求:
(1)试分析小球沿斜面下滑的速度v为多大时,小球对斜面的正压力再次
为零?
(2)小球在斜面上滑行的最大距离为多大?
(3)小球从释放到离开斜面一共历时多长?
11、如图是测量带电粒子质量的仪器工作原理示意图,设法使某有机化合物的气态分子导入图中所示的容器A中,使它受到电子轰击,失去一个电子变成正一价的分子离子,分子离
子从狭缝S
1以很小的速度进入电压为U的加速电场区(初速不计),加速后,再通过狭缝
S
2、S
3
射入磁感应强度为B的匀强,方向垂直于磁场区的分界面,最后分子离子打到感光
片上,形成垂直于狭缝S
3的细线。
若测得细线到狭缝S
3
的距离为d,导出分子离子的质量
m的表达式。
12、如图所示,M 、N 为两块带等量异种电荷的平行金属板,S 1、S 2为板上正对的小孔,N 板右侧有两个宽度均为d 的匀强磁场区域,磁感应强度大小均为B ,方向分别垂直于纸面向外和向里,磁场区域右侧有一个荧光屏,取屏上与S 1、S 2共线的O 点为原点,向上为正方向建立x 轴.M 板左侧电子枪发射出的热电子经小孔S 1进入两板间,电子的质量为m ,电荷量为e ,初速度可以忽略.
(1)当两板间电势差为U 0时,求从小孔S 2射出的电子的速度v 0
(2)求两金属板间电势差U 在什么范围内,电子不能穿过磁场区域而打到荧光屏上. (3)若电子能够穿过磁场区域而打到荧光屏上,图上定性地画出电子运动的轨迹. (4)求电子打到荧光屏上的位置坐标x 和金属板间电势差U 的函数关系.
9、解:
(1)电场强度d
U E =
带电粒子所受电场力
ma F d
Uq
qE F ==
=, 29/100.4s m dm
Uq a ⨯==
(2)粒子在0~2T 时间内走过的距离为m T a 2
2100.5)2
(21-⨯=
故带电粒子在t=
2
T
时,恰好到达A 板 根据动量定理,此时粒子动量
s m kg Ft p /100.423⋅⨯==-
(3)带电粒子在4T t =
~t=2T 向A 板做匀加速运动,在2T t =~t=4
3T 向A 板做匀减速运动,速度减为零后将返回。
粒子向A 板运动可能的最大位移2216
1
)4(212aT T a s =⨯= 要求粒子不能到达A 板,有s <d 由f =
T
1
,电势变化频率应满足 4102516⨯=>
d
a
f Hz
10、解: (1)2cos mg v qB θ
=
(2)2
cos ()sin mg s qB
θθ=
(3)m
t Cot qB
θ=
11、解:
以m 、q 表示离子的质量、电量,以v 表示离子从狭缝射出时的速度,由动能定理可得:
12
mv 2
=qU ()1 离子射入磁场后,在洛伦兹力作用下做匀速圆周运动,由牛顿第二定律可得:
qvB=m 2
v R
()2
式中R 为圆的半径,d 为感光片上的细黑线到狭缝S 3的距离 d=2R (3)
联立(1)(2)(3)解得:m=22
8qB d U
12、解:
(1)根据动能定理,得2
0012
eU mv =
由此可解得0v =(2)欲使电子不能穿过磁场区域而打到荧光屏上,应有mv
r eB
=
d < 而2
12
eU mv =由此即可解得222d eB U m <
(3)电子穿过磁场区域而打到荧光屏上时运动的轨迹如图所示
(4)若电子在磁场区域做圆周运动的轨道半径为r ,穿过磁场区域打到荧光屏上的位
置坐标为x ,则由(3)中的轨迹图可得2x r =-注意到mv r eB
=
和212
eU mv =
所以,电子打到荧光屏上的位置坐标x 和金属板间电势差U 的函数关系为
2x eB
= (222d eB U m ≥
)。