四川省成都市高三数学10月月考试题理 (2)

合集下载

四川省成都市2024-2025学年高三上学期10月月考 数学含答案

四川省成都市2024-2025学年高三上学期10月月考 数学含答案

成都2024~2025学年度上期高2025届十月考试数学试卷(答案在最后)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的选项填涂在答题卡相应位置.1.已知集合{}1,2,4A =,2{|20}B x N x x =∈+-≤,则A B = A.{}2,1,0,1,2,4-- B.{}0,1,2,4 C.{}1,2,4D.{}12.2024年巴黎奥运会中国代表队获得金牌榜第一,奖牌榜第二的优异成绩.首金是中国组合黄雨婷和盛李豪在10米气步枪混合团体赛中获得,两人在决赛中14次射击环数如右图,则A.盛李豪的平均射击环数超过10.6B.黄雨婷射击环数的第80百分位数为10.65C.盛李豪射击环数的标准差小于黄雨婷射击环数的标准差D.黄雨婷射击环数的极差小于盛李豪射击环数的极差3.已知0.10.6a =,0.6log 0.3b =,0.6log 0.4c =,则a ,b ,c 的大小关系为A.b c a>> B.a b c>> C.c b a>> D.a c b>>4.已知实数a ,b ,c 满足a b c >>,且0a b c ++=,则下列说法正确的是A.22ab cb > B.222a c c a+≥ C.||||a b > D.0ab bc +>5.“函数2()ln(22)f x x ax =-+的值域为R”的一个充分不必要条件是A.[2,2]- B.(0,2⎤⎦C.(,2[2,)⎤-∞+∞⎦U D.[2,)+∞6.核燃料是重要的能量来源之一,在使用核燃料时,为了冷却熔化的核燃料,可以不断向反应堆注入水,但会产生大量放射性核元素污染的冷却水,称为核废水.核废水中含有一种放射性同位素氚,它有可能用辐射损伤细胞和组织,影响生物的繁殖和生态平衡.已知氚的半衰期约为12年,则氚含量变成初始量的110000大约需要经过()年.(lg 20.3010≈)A.155 B.159C.162D.1667.若函数()y f x =的图象如图1所示,则如图2对应的函数可能是A.(12)y f x =-B.1(1)2y f x =-C.(12)y f x =-- D.1(1)2y f x =--8.已知函数11,0,()2221,0.x x x f x x ⎧+>⎪=⎨⎪-≤⎩,则方程()(3)2f x f x +-=的所有根之和为A.0B.3C.6D.9二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求。

成都七中2021届高三理科数学10月月考(有答案)

成都七中2021届高三理科数学10月月考(有答案)

0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0
0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
19.(本题 12 分) 如图,在四棱锥 P ABCD 中,四边形 ABCD 是直角梯形, AB AD, AB / /CD, PC 底面ABCD , AB 2AD 2CD 4, PC 2a, E 是 PB
(Ⅱ)设点 P(2, 3) ,若直线 l 与曲线 C 交于 A , B 两点,求| PA | | PB | 的值.
23.(本题 10 分)选修 4-5:不等式选讲
(Ⅰ)求函数
的最大值 .
(Ⅱ)若实数 , , 满足 取等条件.
,证明:
,并说明
试卷第 4 页,总 4 页
f
x
ax2
ex
,其中 a
bx 1
0
,bR
,e
为自然对数
的底数. 1 若 b 1, x 0, ,①若函数 f x 单调递增,求实数 a 的取值范围;
②若对任意 x 0 , f x 1 恒成立,求实数 f
x 存在两个极值点 x1 , x2 ,求证:1
3 2a
π 6
x
R
②y f x 是以 2π 为最小正周期的周期函数;
③y
f
x
的图象关于点
π 6
,
0
对称;
试卷第 1 页,总 4 页
15. 已知集合a,b,c 0,1,2,有下列三个关系① a 2 ;② b 2 ;③ c 0 ,若
三个关系中有且只有一个正确的,则 a 2b 3c _______________.

【精选】四川省成都市高三数学10月月考试题理

【精选】四川省成都市高三数学10月月考试题理

四川省成都市2018届高三数学10月月考试题理(考试用时:120分全卷满分:150分)注意事项:1.答题时,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.选做题的作答:先把所做题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5.考试结束后,请将答题卡上交;第Ι卷(选择题部分,共60分)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合,集合,全集,则( )A. B. C. D.2.是虚数单位,复数,则的共轭复数是()A. B. C. D.3.已知等比数列的各项都为正数, 且成等差数列,则的值是()A. B. C. D.4.已知随机变量,若,则的值为()A. B. C. D.5.一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB.4πC.2π+4D.3π+46.已知函数f(x)=|lnx|﹣1,g(x)=﹣x2+2x+3,用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)},则函数h(x)的零点个数为()A.1 B.2 C.3 D.47.在中,,是角A,B,C,成等差数列的()A.充要条件 B.必要不充分条件C.充分不必要条件 D.既不充分也必要条件8.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为( )A.0.3B.0.5C.0.6D.0.99.若函数f(x)=(a,b,c,d∈R)的图象如图所示,则a:b:c:d=()A.1:6:5:8 B.1:6:5:(﹣8)C.1:(﹣6):5:8 D.1:(﹣6):5:(﹣8)10.若函数上不是单调函数,则实数k的取值范围()A.B.不存在这样的实数kC. D.11.如右图所示的程序框图输出的结果是()A.6B.C.5D.12.已知函数,若函数在区间上有4个不同的零点,则实数的取值范围是()A . B .C.D .第Ⅱ卷(非选择题部分,共90分)本卷包括必考题和选考题两部分。

四川成都龙泉第一中学2022届高三上学期10月月考理数试题 Word版含答案

四川成都龙泉第一中学2022届高三上学期10月月考理数试题 Word版含答案

成都市龙泉一中高2021级十月月考试题 数 学(理科)(考试时间:120分钟 满分150分) 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( )A .1B .2C .1或2D .1-2.“1x >”是“11x<”的( )A .充要条件B .必要而不充分条件C .充分而不必要条件D .既不充分也不必要条件3.甲、乙、丙3人安排到7个试验室预备试验,若每个试验室最多安排2人,则不同安排方案共有 ( )A .336B .306C . 258D .2964.执行右边的程序框图,若0.8p =,则输出的n =( )A .3B .4C .5D .65.若某一几何体的正视图与侧视图均为边长是1的正方形,且其体积为12,则该几何体的俯视图可以是( )6.将函数f (x )=3sin x -cos x 的图象向左平移m 个单位(m >0),若所得图象对应的函数为偶函数,则m 的最小值是 ( )A.3π B .23πC .πD .43π 7.(1-x )8开放式中不含x 4项的系数的和为( )A .-1B .0C .1D .28.给出下列命题: ①函数()12xf x =-的定义域是(-3, 0);②在区间(0,1)中随机地取出两个数,则两数之和小于1的概率是12; ③假如数据x 1、x 2、…、x n 的平均值为x ,方差为S 2,则3x 1+5、3x 2+5、…、3x n +5 的方差为9S 2; ④直线ax -y +2a =0与圆x 2+y 2=9相交; 其中真命题个数是 ( )A .1B .2C .3D .49.已知点M 是⊿ABC 的重心,若A =60°,3AB AC ⋅=,则AM 的最小值为 ( )A 3B 2C 26D .2 10.已知正项数列{a n }的前n 项的乘积T n =⎝ ⎛⎭⎪⎫14n n62-(n ∈N *),b n =log 2a n ,则数列{b n }的前n 项和S n 中的最大值是( ) A .S 6B .S 5C .S 4D .S 311.函数)(x f 是定义在R 上的偶函数,且满足(2)()f x f x +=.当[0,1]x ∈时,()2f x x =.若在区间[2,3]-上方程2()0ax a f x +-=恰有四个不相等的实数根,则实数a 的取值范围是( )A .22(,)53 B .)54,32( C . )2,32( D .)2,1(12. 我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知1F 、2F 是一对相关曲开头 10n S ==,S p <?是输入p结束输出n12n S S =+否1n n =+线的焦点,P 是它们在第一象限的交点,当6021=∠PF F 时,这一对相关曲线中双曲线的离心率是( )A .2 B.2 C.332 D.3 第Ⅱ卷二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题卷中的指定位置)13.某校高三有1000个同学,高二有1200个同学,高一有1500个同学,现按班级分层抽样,调查同学的视力状况,若高一抽取了75人,则全校共抽取了 人.14.设{a n }为等差数列,公差d =-2,S n 为其前n 项和,若S 10=S 11,则a 1的值为_______.15.设变量x ,y 满足约束条件:02323x x y x y ≥⎧⎪+≤⎨⎪+≥⎩则222x z y =+的最大值为_______. 16.已知函数f (x )=(13)x-log 2x ,正实数a 、b 、c 成公差为正数的等差数列,且满足f (a )f (b )f (c )<0,若实数d 是方程f (x )=0的一个解,那么下列四个推断: ①d <a ;②d >b ;③d <c ;④d >c 中有可能成立的是________.三、解答题:(本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.请将答题的过程写在答题卷...中指定的位置) 17. (本小题满分10分) 已知函数f (x )=32sin2x -12(cos 2x -sin 2x )-1. (1)求函数f (x )的最小值和最小正周期;(2)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且c =7,f (C )=0,若向量m =(1,sin A )与向量n =(3,sin B )共线,求a ,b 的值.18.(本小题满分10分)某分公司有甲、乙、丙三个项目向总公司申报,总公司有Ⅰ、Ⅱ、Ⅲ三个部门进行评估审批,已知这三个部门的审批通过率分别为12、23、23.只要有两个部门通过就能立项,立项的每个项目能获得总公司100万元的投资. (1)求甲项目能立项的概率;(2)设该分公司这次申报的三个项目获得的总投资额为X ,求X 的概率分布列及数学期望. 19. (本小题满分13分)如图所示,已知四棱锥P -ABCD 的底面是菱形,∠BCD =60°,AB =PB =PD =2,PC =3,AC 与BD 交于O 点,E ,H 分别为PA ,OC 的中点.(1)求证:PC ∥平面BDE ; (2)求证:PH ⊥平面ABCD ;(3)求直线CE 与平面PAB 所成角的正弦值.20.(本小题满分13分)如图所示,在直角梯形ABCD 中,|AD |=3,|AB |=4,|BC |=3,曲线段DE 上任一点到A 、B 两点的距离之和都相等.(1)建立适当的直角坐标系,求曲线段DE 的方程;(2)过C 能否作一条直线与曲线段DE 相交,且所得弦以C 为中点,假如能,求该弦所在的直线的方程;若不能,说明理由.21.(本小题满分14分)已知函数f (x )=ln x -ax ,a ∈R .(1)若在x =1处取极值.求实数a 的值;(2)在(1)的条件下:求函数f (x )的单调递减区间,并证明2ln(!)(1)n n n <- (其中n !=1×2×3×…×n ,n ∈N 且n ≥2);(3)若关于x 的方程f (x )=0有两个不同的解,求实数a 的取值范围.四.选考题(从下列两道解答题中任选一道作答,作答时,请注明题号;若多做,则按首做题计入总分,满分10分. 请将答题的过程写在答题卷...中指定..的位置) 22.(本小题满分10分)选修4─4:坐标系与参数方程选讲.如图,在极坐标系中,圆C 的圆心坐标为(1,0),半径为1.(1)求圆C 的极坐标方程;(2)若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos π6,y =t sin π6(t 为参数),试推断直线l 与圆C 的位置关系.23.(本小题满分10分)选修4─5:不等式证明选讲.已知函数f (x )=|2x +1|-|x |. (1)求不等式f (x )>0的解集;(2)若存在x 0∈R ,使得f (x 0)≤m 成立,求实数m 的取值范围.成都市龙泉一中高三其次次数学(理科)月考试题答案 一、选择题:本大题共12小题,每小题5分。

2024-2025学年四川省成都市树德中学高三上学期10月月考数学试题及答案

2024-2025学年四川省成都市树德中学高三上学期10月月考数学试题及答案

1.已知集合2,0,则A .{}2x x ≤B .{}4x x ≤C .{}04x x <≤D .{}02x x <≤2.设()1,2a =- ,()4,b k = ,若a b ⊥,则a b +=A .5B .C .20D .253.设甲:{}n a 为等比数列;乙:{}1n n a a +⋅为等比数列,则A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件4.已知tan 3α=-,则3sin sin sin 2()ααπα-=+A .34-B .34C .310D .310-5.已知关于x 的不等式2230ax x a -+<在(]0,2上有解,则实数a 的取值范围是A .47(,)-∞B .33(-,)∞C .(]0,-∞D .()0,-∞6.已知抛物线E :24y x =的焦点为F ,以F 为圆心的圆与E 交于,A B 两点,与E 的准线交于,C D两点,若CD =,则AB =A .3B .4C .6D .87.在同一平面直角坐标系内,函数()y f x =及其导函数()y f x ='的图象如图所示,已知两图象有且仅有一个公共点,其坐标为()0,1,则A .函数()e x y f x =⋅的最大值为1B .函数()e xy f x =⋅的最小值为1C .函数()e x f x y =的最大值为1D .函数()exf x y =的最小值为18.已知函数()2ln2x f x x+=-,设()()()220.3log 0.32ln 2,,a f b f c f ===,则,,a b c 的大小关系是A .a c b>>B .a b c >>C .b c a >>D .c b a>>二.多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.小明上学有时坐公交车,有时骑自行车,他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到,坐公交车平均用时10min ,样本方差为9;骑自行车平均用时15min ,样本方差为1.已知坐公交车所花时间X 与骑自行车所花时间Y 都服从正态分布,用样本均值和样本方差估计,X Y 分布中的参数,并利用信息技术工具画出X 和Y 的分布密度曲线如图所示.若小明每天需在早上8点之前到校,否则就迟到,则下列判断正确的是A .()2103,X NB .若小明早上7:50之后出发,并选择坐公交车,则有60%以上的可能性会迟到C .若小明早上7:42出发,则应选择骑自行车D .若小明早上7:47出发,则应选择坐公交车10.已知函数()y f x =是定义在R 上的偶函数,对于任意x R ∈,都有()()()42f x f x f +=+成立.当[)0,2x ∈时,()21x f x =-,下列结论中正确的有A .()20f =B .函数()y f x =在()2,4上单调递增C .直线4x =是函数()y f x =的一条对称轴D .关于x 的方程()2log 2f x x =+共有4个不等实根11.我国著名科幻作家刘慈欣的小说《三体Ⅱ·黑暗森林》中的“水滴”是三体文明使用新型材料-强互作用力(SIM )材料所制成的宇宙探测器,其外形与水滴相似,某科研小组研发的新材料水滴角测试结果如图所示(水滴角可看作液、固、气三相交点处气—液两相界面的切线与液—固两相交线所成的角),圆法和椭圆法是测量水滴角的常用方法,即将水滴轴截面看成圆或者椭圆(长轴平行于液—固两者的相交线,椭圆的短半轴长小于圆的半径)的一部分,设图中用圆法和椭圆法测量所得水滴角分别为1θ,2θ,则下列结论中正确的有附:椭圆()222210x y a b a b+=>>上一点()00,x y 处的切线方程为00221x x y y a b +=.A .圆法中圆的半径为52B .12tan 3θ=C .12θθ>D .12θθ<三.填空题:本题共3小题,每小题5分,共15分.12.“十一”期间人民群众出游热情高涨,某地为保障景区的安全有序,将增派6名警力去,A B 两个景区执勤.要求A 景区至少增派3名警力,B 景区至少增派2名警力,则不同的分配方法的种数为.13.已知圆台的下底面半径为6,上底面半径为3,其侧面积等于上、下底面积之和,则圆台的高为.14.已知函数()()()()123(0)f x a x x x x x x a =--->,设曲线()y f x =在点()(),i i x f x 处切线的斜率为()1,2,3i k i =,若123,,x x x 均不相等,且22k =-,则134k k +的最小值为.四.解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且满足)2222sin bc A a c b =+-.(1)求B 的大小;(2)若3b =,ABC ∆,求ABC ∆的周长.16.(15分)已知椭圆2222:1(0)x y C a b a b +=>>经过点,(E P 为椭圆C 的右顶点,O 为坐标原点,OPE ∆的面(1)求椭圆C 的标准方程;(2)过点(1,0)D -作直线l 与椭圆C 交于,A B ,A 关于原点O 的对称点为C ,若||||BA BC =,求直线AB 的斜率.17.(15分)如图,在四棱锥Q ABCD -中,四边形ABCD 为直角梯形,//CD AB ,BC AB ⊥,平面QAD ⊥平面ABCD ,QA QD =,点M 是AD 的中点.(1)证明:QM BD ⊥.(2)点N 是CQ 的中点,22AD AB CD ===,当直线MN 与平面QBC 时,求QM 的长度.18.(17分)已知函数()22ln f x x x a x =-+,()a ∈R .(1)若1a =,求函数()f x 在点()()1,1f 处的切线;(2)若对任意的()12,0,x x ∈+∞,12x x ≠,有()()()1221120x x x f x x f x ⎡⎤-⋅->⎣⎦恒成立,求实数a 的取值范围.19.(17分)2023年10月11日,中国科学技术大学潘建伟团队成功构建255个光子的量子计算机原型机“九章三号”,求解高斯玻色取样数学问题比目前全球最快的超级计算机快一亿亿倍.相较传统计算机的经典比特只能处于0态或1态,量子计算机的量子比特(qubit )可同时处于0与1的叠加态,故每个量子比特处于0态或1态是基于概率进行计算的.现假设某台量子计算机以每个粒子的自旋状态作为量子比特,且自旋状态只有上旋与下旋两种状态,其中下旋表示“0”,上旋表示“1”,粒子间的自旋状态相互独立.现将两个初始状态均为叠加态的粒子输入第一道逻辑门后,粒子自旋状态等可能的变为上旋或下旋,再输入第二道逻辑门后,粒子的自旋状态有p 的概率发生改变,记通过第二道逻辑门后的两个粒子中上旋粒子的个数为X .(1)已知13p =,求两个粒子通过第二道逻辑门后上旋粒子个数为2的概率;(2)若一条信息有()*1,n n n >∈N 种可能的情况且各种情况互斥,记这些情况发生的概率分别为1p ,2p ,…,n p ,则称()()()12n H f p f p f p =++⋅⋅⋅+(其中()2log f x x x =-)为这条信息的信息熵.试求两个粒子通过第二道逻辑门后上旋粒子个数为X 的信息熵H ;(3)将一个下旋粒子输入第二道逻辑门,当粒子输出后变为上旋粒子时则停止输入,否则重复输入第二道逻辑门直至其变为上旋粒子,设停止输入时该粒子通过第二道逻辑门的次数为Y (1,2,3,,,)Y n = ,证明:当n 无限增大时,Y 的数学期望趋近于一个常数.参考公式:01q <<时,lim 0nn q →+∞=,lim 0n n nq →+∞=.树德中学高2022级高三上学期10月阶段性测试数学试题参考答案一.单选题:1-8CAACB DCC 二.多选题:9-11ACD AC AD 三.填空题12-14354181.【答案】C 【详解】由2log 1x ≤,则22log log 2x ≤,所以02x <≤,所以{}{}2log 102A x x x x =≤=<≤,{}04A B x x ⋃=<≤故选:C2.【答案】A 【详解】()1,2a =- ,()4,b k = ,若a b ⊥ ,则有1420a b k ⋅=-⨯+=,解得2k =,则有()()()1,24,23,4a b =-+=+ ,得5a b += .故选:A 3.【答案】A 【详解】充分性:若{}n a 为等比数列,设其公比为q ,则12111n n n n n n a a a a a a q ++--⋅⋅==,所以{}1n n a a +⋅为等比数列,公比为2q ,满足充分性.必要性:若{}1n n a a +⋅为等比数列,公比为2-,则112n n n n a a a a +-⋅=-⋅,即112n n aa +-=-,假设{}n a 为等比数列,此时1212n n a q a +-==-无解,故不满足必要性.所以甲是乙的充分不必要条件.故选:A 4.【答案】C 【详解】因为tan 3α=-,则33sin sin sin sin cos sin 2ααααπαα--=⎛⎫+ ⎪⎝⎭()2222sin 1sin sin cos tan 3cos cos sin 1tan 10ααααααααα---====++.故选:C.5.【答案】B 【详解】当(]0,2x ∈时,由2230ax x a -+<可得22233x a x x x<=++,由基本不等式可得23x x≤+,当且仅当x =3a <.故选:B.6.【答案】D 【详解】由抛物线方程知:12p=,()1,0F ∴,不妨设点A 在第一象限,如图所示,直线CD 与x 轴交于点E ,由CD =,则2ED EF ==,圆的半径()222125r +=,所以5AF =,由抛物线的定义可得:52A px +=,所以4A x =,又因为点A 在抛物线上,所以()4,4A ,248AB ∴=⨯=.故选:D.7.【答案】C 【详解】AB 选项,由题意可知,两个函数图像都在x 轴上方,任何一个为导函数,则另外一个函数应该单调递增,判断可知,虚线部分为()y f x '=,实线部分为()y f x =,故()()()()()0e e e x x xy f x f x f x f x ='''=⋅+⋅+>⋅恒成立,故()e xy f x =⋅在R 上单调递增,则A ,B 显然错误,对于C ,D ,()2()e ()e ()()e e x xxx f x f x f x f x y ''--'==,由图像可知(,0)x ∈-∞,e ()()0x f x f x y '-=>'恒成立,故()e xf x y =单调递增,当(0,)x ∈+∞,()()0e xf x f x y '-'=<,()ex f x y =单调递减,所以函数()e xf x y =在0x =处取得极大值,也为最大值,()010ef =,C 正确,D 错误.故选:C8.【答案】C 【详解】解:函数()2ln2x f x x+=-,由202x x+>-,即(2)(2)0x x +-<,2x <解得()2,2x ∈-显然()()f x f x -=,∴()f x 为偶函数,∴当()0,2x ∈时,()2ln2xf x x+=-在()0,2x ∈单增,()f x ∴在()20,-上为减函数,在()0,2上为增函数()220.30.301=∈,,322222103log 0.3log 0.3log log 232=-=>=所以22103log 0.3log ,232⎛⎫=∈ ⎪⎝⎭3232ln 2ln 4ln 2e =<=,32ln 212⎛⎫∈ ⎪⎝⎭,∴b c a >>.故选:C .二.多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.【答案】ACD 【详解】由题意知,()2~10,3X N ,()2~15,1Y N ,A 正确。

四川省成都市第七中学2024-2025学年高三上学期10月月考数学试题(含答案)

四川省成都市第七中学2024-2025学年高三上学期10月月考数学试题(含答案)

2024-2025学年度高三上期数学10月阶段性测试(考试时间:120分钟;满分150分)第Ⅰ卷(选择题,共58分)一、单项选择题:本题共8小题,每小题5分,共40分.1.已知集合,则( )A .B .C .D .2.已知复数满足,则( )A .B .C .D .3.已知向量满足,且,则( )A .B .C .D .4.如图为函数在上的图象,则的解析式只可能是( )A .B .C .D .5.已知为奇函数,则曲线在点处的切线方程为( )A .B .C .D .6.在体积为12的三棱锥中,,平面平面,若点都在球的表面上,则球的表面积为( )A .B .C .D .7.若,则的最大值为( )ABCD8.设,则( ){{},21x A x y B y y ====+A B = (]0,1(]1,2[]1,2[]0,2z 23i z z +=+3iz+=12i+12i-2i+2i-,a b 222a b a b -=-= 1b = a b ⋅=1414-1212-()y f x =[]6,6-()f x ())ln cos f x x x=+())lnsin f x x x=+())ln cos f x x x=-())ln sin f x x x=-()()cos f x x a x =+()y f x =()()π,πf ππ0x y +-=ππ0x y -+=π0x y -+=0x y +=A BCD -,AC AD BC BD ⊥⊥ACD ⊥ππ,,34BCD ACD BCD ∠=∠=,,,A B C D O O 12π16π32π48π()()sin cos2sin αβααβ+=-()tan αβ+202420230.2024log 2023,log 2022,log 0.2023a b c ===A .B .C .D .二、多项选择题:本题共3小题,每小题6分,共18分.9.设等比数列的公比为,其前项和为,前项积为,并满足条件:,下列结论正确的是( )A .B .C .是数列中的最大值D .数列无最大值10.透明的盒子中装有大小和质地都相同的编号分别为的4个小球,从中任意摸出两个球.设事件“摸出的两个球的编号之和小于5”,事件“摸出的两个球的编号都大于2”,事件“摸出的两个球中有编号为3的球”,则( )A .事件与事件是互斥事件B .事件与事件是对立事件C .事件与事件是相互独立事件D .事件与事件是互斥事件11.已知,其中,则的取值可以是( )A .eB .C .D .第Ⅱ卷(非选择题,共92分)三、填空题:本题共3小题,每小题5分,共15分,第14题第一个空3分,第二个空2分.12.若,则______.13.设是数列的前n 项和,点在直线上,则数列的前项和为______.14.已知点是轴上的动点,且满足的外心在轴上的射影为,则点的轨迹方程为______,的最小值为______.四、解答题:本题共5小题,共77分.15.(13分)设的内角的对边分别为,且,边上的两条中线相交于点.c a b <<b c a <<b a c <<a b c<<{}n a q n n S n n T 2024120242025202511,1,01a a a a a ->><-20242025S S <202420261a a <2024T {}n T {}n T 1,2,3,41A =2A =3A =1A 2A 1A 3A 1A 3A 23A A 13A A 6ln ,6e n m m a n a =+=+e nm ≠e nm +2e23e24e1sin 3α=-()cos π2α-=n S {}n a ()()*,n n a n ∈N 2y x =1n S ⎧⎫⎨⎬⎩⎭n ()()2,0,1,4,A B M N 、y 4,MN AMN =△P y Q P PQ PB +ABC △,,A B C ,,a b c ()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-,BC AC ,AD BE P(1)求;(2)若,求的面积.16.(15分)如图,在三棱锥中,是以为斜边的等腰直角三角形,是边长为2的正三角形,为的中点,为上一点,且平面平面.(1)求证:平面;(2)若平面平面,求平面与平面夹角的余弦值.17.(15分)为研究“眼睛近视是否与长时间看电子产品有关”的问题,对某班同学的近视情况和看电子产品的时间进行了统计,得到如下的列联表:每天看电子产品的时间近视情况超过一小时一小时内合计近视10人5人15人不近视10人25人35人合计20人30人50人附表:0.10.050.010.0050.0012.7063.8416.6357.87910.828.(1)根据小概率值的独立性检验,判断眼睛近视是否与长时间看电子产品有关;(2)在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是多少?(3)以频率估计概率,在该班所在学校随机抽取2人,记其中近视的人数为,每天看电子产品超过一小时的人数为,求的值.BAC ∠2,cos AD BE DPE ==∠=ABC △D ABC -ABC △AB ABD △E AD F DC BEF ⊥ABD AD ⊥BEF ABC ⊥ABD BEF BCD αx α()()()()22()n ad bc a b c d a c b d χ-=++++0.05α=2χX Y ()P X Y =18.(17分)已知函数.(1)求曲线在处的切线方程;(2)讨论函数的单调性;(3)设函数.证明:存在实数,使得曲线关于直线对称.19.(17分)已知椭圆的对称中心在坐标原点,以坐标轴为对称轴,且经过点和.(1)求椭圆的标准方程;(2)过点作不与坐标轴平行的直线交曲线于两点,过点分别向轴作垂线,垂足分别为点,,直线与直线相交于点.①求证:点在定直线上;②求面积的最大值.2024-2025学年度高三上期数学10月阶段性测试(参考答案)一、单项选择题:BAACDDDC8.【解】由对数函数的性质知,,所以;当时,,所以,取,则,所以,即,综上,.二、多项选择题:ABC ACD CD .11.【解】令,则,()()ln 1f x x =+()y f x =3x =()()()F x ax f x a =-∈R ()()1111g x x f f x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭m ()y g x =x m =C )⎛- ⎝C ()2,0M l C ,A B ,A B xDE AE BD P P PAB △0.20240.2024log 0.2023log 0.20241c =>=2024202420242023202320230log 1log 2023log 20241,0log 1log 2022log 20231=<<==<<=1,01,01c a b ><<<<2n >()()ln 1ln ln 10n n n +>>->()()()()222ln 1ln 1ln 1ln 1(ln )(ln )2n n n n n n ++-⎡⎤+⋅--<-⎢⎥⎣⎦()()()2222222222ln 1ln 11ln (ln )(ln )(ln )(ln )(ln )0222n n n n n n n n n ⎡⎤-+-⎡⎤⎛⎫=-=-<-=-=⎢⎥ ⎪⎢⎢⎥⎝⎭⎣⎦⎣⎦2023n =2lg2022lg2024(lg2023)0⋅-<220232024lg2022lg2023lg2022lg2024(lg2023)log 2022log 20230lg2023lg2024lg2023lg2024b a ⋅--=-=-=<⋅b a <b ac <<()6ln f x x x =-()661xf x x x-=-='故当时,单调递增,当时,单调递减,,又,不妨设,解法一:记,设,则在上恒成立,所以在上单调递减,所以,则,又因为,且在上单调递减,所以,则,所以.解法二:由,两式相减,可得,令,则;令,则,令,则在上恒成立,所以在上单调递增,因为在上恒成立,所以在上单调递增,则,即,所以.解法三:,两式相减得,,可得,三、填空题: ;3()0,6x ∈()()0,f x f x '>()6,x ∈+∞()()0,f x f x '<()()6ln ,66lne e ,e n n n m m a n a f m f =+==+∴= e n m ≠06e n m <<<12,e nx m x ==()()()()12,0,6g x f x f x x =--∈()()()()2662(6)1201212x x x g x f x f x x x x x ---=---=-=<--'''()0,6()g x ()0,6()()()()()1260,0,6g x f x f x g x =-->=∈()()()11212f x f x f x ->=()1212,6,x x -∈+∞()f x ()6,+∞1212x x -<1212x x +>e 12n m +>6ln ,66lne e nnm m a n a =+==+e 6ln e n nm m =-e (1)n t t m=>()()61ln 6ln 6ln 6ln 1,,e ,e 111n n t t t t tt m t m mt m t t t +=-===∴+=---()()()1ln 21,1g t t t t t =+-->()11ln 2ln 1t g t t t t t+=+-=+-'1ln 1(1)y t t t =+->221110t y t t t-=-=>'()1,+∞()g t '()1,+∞()()10g t g ''>=()1,+∞()g t ()1,+∞()()10g t g >=()1ln 21t t t +>-()61ln e 121n t tm t ++=>-6ln ,66lne e nnm m a n a =+==+ e 6lne ln n n mm-=-212121ln ln 2x x x xx x -+<<-e 12n m +>79-1n n +24y x =14.【解】设点,则根据点是的外心,,而,则,所以从而得到点的轨迹为,焦点为由抛物线的定义可知,因为,即,当点在线段上时等号成立.四、解答题:15.【解】(1)因为,所以由正弦定理得,由余弦定理得,又,所以.(2)因为是边上的两条中线与的交点,所以点是的重心.又,所以在中,由余弦定理,所以,又,所以,所以,所以的面积为.()0,M t ()0,4)N t -P AMN V (),2P x t -22||PM PA =2224(2)(2)x x t +=-+-2(2),24t x y t -==-P 24y x =()1,0F 1PF PQ =+4,14PF PB BF PF PB PQ PB +≥=+=++≥3PQ PB +≥P BF ()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-222b c a bc +-=2221cos 22b c a BAC bc +-∠==0πBAC <∠<π3BAC ∠=P ,BC AC AD BE P ABC △2,AD BE APB DPE ==∠=∠ABP △22222cos c AB PA PB PA PB APB==+-⋅∠22442433⎛⎫=+-⨯= ⎪⎝⎭2c =π2,3BE BAC =∠=2AE BE ==24b AE ==ABC △1π42sin 23⨯⨯⨯=16.【解】(1)是边长为的正三角形,为的中点,则.且平面平面,平面平面平面,则平面.(2)由于底面为等腰直角三角形,是边长为2正三角形,可取中点,连接,则.且平面平面,且平面平面,则平面.因此两两垂直,可以建立空间直角坐标系.是边长为2的正三角形,则可求得高.底面为等腰直角三角形,求得.可以得到关键点的坐标由第(1)问知道平面的法向量可取.设平面的法向量为,且,则,则,解得.则.则平面与平面17.【解】(1)零假设为:学生患近视与长时间使用电子产品无关.计算可得,,根据小概率值的独立性检验,推断不成立,即患近视与长时间使用电子产品的习惯有关.(2)每天看电子产品超过一小时的人数为,ABD △2E AD BE AD ⊥BEF ⊥ABD BEF ,ABD BE AD =⊂ABD AD ⊥BEF ABC △ABD △AB O OD ,OD AB OC AB ⊥⊥ABC ⊥ABD ABC ABD AB =OD ⊥ABC ,,OC OA OD O xyz -ABD △OD =ABC △1OC OA OB ===()()()(0,1,0,0,1,0,1,0,0,A B C D -BEF (0,AD =-BCD (),,m x y z = ()(1,1,0,BC CD ==- 0m BC m CD ⎧⋅=⎪⎨⋅=⎪⎩x y x +=⎧⎪⎨-+=⎪⎩)m = cos ,m AD m AD m AD ⋅〈〉===⋅ BEF BCD 0H 220.0550(1025105)4006.349 3.8411535203063x χ⨯⨯-⨯==≈>=⨯⨯⨯0.05α=2χ0H ξ则,所以在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是.(3)依题意,,事件包含两种情况:①其中一人每天看电子产品超过一小时且近视,另一人既不近视,每天看电子产品也没超过一小时;②其中一人每天看电子产品超过一小时且不近视,另一人近视且每天看电子产品没超过一小时,于是,所以.18.【解】(1)切点为.因为,所以切线的斜率为,所以曲线在处的切线方程为,化简得;(2)由题意可知,则的定义域为,当时,,则在上单调递减;当时,令,即,解得,若;若,则在上单调递减,在上单调递增.综上所述,当时,在上单调递减;当时,在上单调递减,在上单调递增;()()()21310510331515C C C 45512069223C C 45591P P P ξξξ⨯+≥==+==+==6991()()1111110,22245525P X Y P X Y ===⨯====⨯=1X Y ==()1122111161C C 2551025P X Y ===⨯⨯+⨯⨯=()()()()1165301242525100P X Y P X Y P X Y P X Y ====+==+===++=()3,ln4()11f x x '=+()134k f ='=()y f x =3x =()1ln434y x -=-48ln230x y -+-=()()ln 1F x ax x =-+()F x ()1,-+∞()()11,1,,11ax a F x a x x x +-=-=∈-'+∞++0a ≤()101F x a x '=-<+()F x ()1,-+∞0a >()0F x '=10ax a +-=11x a=-()11111,01a ax a x F x a a x '-+--<≤=-=≤+()111,01ax a x F x a x +--'>=>+()F x 11,1a ⎛⎤-- ⎥⎝⎦11,a ⎛⎫-+∞ ⎪⎝⎭0a ≤()F x ()1,-+∞0a >()F x 11,1a ⎛⎤-- ⎥⎝⎦11,a ⎛⎫-+∞ ⎪⎝⎭(3)证明:函数,函数的定义域为.若存在,使得曲线关于直线对称,则关于直线对称,所以由.可知曲线关于直线对称.19.【解】(1)设椭圆的方程为,代入已知点的坐标,得:,解得,所以椭圆的标准方程为.(2)如图:①设直线的方程为,并记点,由消去,得,易知,则.由条件,,直线的方程为,直线的方程为()()111ln 1ln 2g x x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭()g x ()(),10,-∞-+∞ m ()y g x =x m =()(),10,-∞-+∞ x m =12m =-()()111ln 1ln 211g x x x x ⎛⎫⎛⎫--=-+-+ ⎪ ⎪----⎝⎭⎝⎭21121lnln ln ln 111x x x x x x x x x x +++=--=-+++()()()11211211lnln ln 1ln ln 1x x x x x x x g x x x x x x+++++=+--=+-=+()y g x =12x =-C 221(0,0,)mx ny m n m n +=>>≠312413m n m n +=⎧⎪⎨+=⎪⎩1612m n ⎧=⎪⎪⎨⎪=⎪⎩C 22162x y +=l ()20x my m =+≠()()()112200,,,,,A x y B x y P x y 222,162x my x y =+⎧⎪⎨+=⎪⎩x ()223420m y my ++-=()()222Δ16832410m m m =++=+>12122242,33m y y y y m m --+==++()()12,0,,0D x E x AE ()1212y y x x x x =--BD,联立解得,所以点在定直线上.②,而,所以,则令,则,所以,当且仅当时,等号成立,所以.()2121y y x x x x =--()()2112211212012121222223my y my y x y x y my y x y y y y y y ++++====++++P 3x =0212121121111312222PAB S AD x x y x y my y my y =⋅-=⋅-=⋅-=-△121212my y y y =+()121212my y y y =+1211211224PABy y S y y y +=-=-==△t =1t >2122PAB t S t t t==≤=++△t =PAB △。

四川省成都市第十二中学2022-2023学年高三上学期10月月考理科数学试题

四川省成都市第十二中学2022-2023学年高三上学期10月月考理科数学试题

四川省成都市第十二中学2022-2023学年高三上学期10
月月考理科数学试题
学校:___________姓名:___________班级:___________考号:___________
15.已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则
22
1
()k f k ==å______
16.在
ABC V 中,内角A B C ,,所对的三边分别为a b c ,,
,且2c b =,若ABC V 的面积为1,则BC 的最小值是__________.
三、解答题
17.某校所在省市高考采用新高考模式,学生按“312++”模式选科参加高考:“3”为全国统一高考的语文数学外语、、3门必考科目;“1”由考生在物理历史、2门中选考1门科目;“2”由考生在思想政治地理化学生物学、、、4门中选考2门科目.
(1)为摸清该校本届考生的选科意愿,从本届750位学生中随机抽样调查了100位学生,得到如下部分数据分布:。

(优辅资源)四川省成都市高三10月月考数学(理)试题 Word版含答案

(优辅资源)四川省成都市高三10月月考数学(理)试题 Word版含答案

高2014级第五期10月阶段性考试数学试题(理)一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集U =Z ,集合{}1,6A =,{}2,0,1,6AB =,那么=⋂B AC U )(( )A .∅B .{}3,4,5C .{}2,0D .{}1,6 2. 复数iiZ 212+-=(i 为虚数单位)所对应复平面内的点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知b a ,是平面α内的两条不同直线,直线l 在平面α外,则b l a l ⊥⊥,是α⊥l 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件 D . 既不充分也不必要条件4.若[x]表示不超过x 的最大整数,如[2.6]2,[ 2.6]3=-=-,执行如图所示的程序框图,记输出的值为0S ,则103log S =( )A. -1B. 0C. 1D. 25. 函数)2)(2sin(3)(πϕϕ<+=x x f 的图像向左平移6π个单位后关于原点对称, 则ϕ等于( )A.6π B. 6π- C.3π D.3π-6. 若等差数列{}n a 的公差0d ≠, 前n 项和为n S , 若*n N ∀∈, 都有10n S S ≤, 则( ) A. *n N ∀∈,1n n a a -< B. 9100a a ⋅> C. 217S S > D. 190S ≥7.某公司庆祝活动需从甲、乙、丙等5名志愿者中选2名担任翻译,2名担任向导,还有1名机动人员,为来参加活动的外事人员提供服务,并且翻译和向导都必须有一人选自甲、乙、丙,则不同的选法有 ( ) A .20B .22C .24D .368. 已知点P 在直线320x y +-=上, 点Q 在直线360x y ++=上, 线段PQ 的中点为00(,)M x y , 且002y x <+, 则y x 的取值范围是( ) A.1[,0)3- B. 1(,0)3- C. 1(,)3-+∞ D. 1(,)(0,)3-∞-+∞9.已知某几何体的三视图如图所示, 三视图是边长为1的等腰直角三角形和 边长为1的正方形, 则该几何体的体积为( )A.16 B. 13 C. 12 D. 2310. 已知函数||1211()()21log (1)x f x x =-++, 则使得()(21)f x f x >-成立的x 的取值范围是( )A. 1(,1)3B. 1(,)(1,)3-∞+∞C. 1(,1)3-1(0,)(1,)3+∞D. ()1,11,(1,)3⎛⎫-∞--+∞ ⎪⎝⎭11. 设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率, P 是椭圆和双曲线的一个公共点, 且满足1212||||PF PF F F +=, =( )A.2B. 2C.D. 112.在锐角ABC ∆中, ,,A B C 所对边分别为,,a b c , 且22b a ac -=, 则11tan tan A B-的取值范围为( )A. (1,)+∞B.C.D.二. 填空题(每小题5分,共20分)13.二项式5(1)ax -(0)a >的展开式的第四项的系数为40-, 则a 的值为 .14. 已知正数y x ,满足0=-+xy y x ,则y x 23+的最小值为 .正视侧视俯视15.过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,, 当直线12l l ,关于y x =对称时,它们之间的夹角为__________.16. 已知函数2()244f x x tx t =---, 21()(2)g x t x=-+, 两个函数图象的公切线恰为3条, 则实数t 的取值范围为 .三. 解答题(共70分)17. (12分)已知数列{}n a 的前n 项和n S 满足,132-=n n a S 其中*∈N n (1)求数列{}n a 的通项公式;(2)设,32nn b a nn n +=求数列{}n b 的前n 项的和n T 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高2014级第五期10月阶段性考试数学试题(理)
一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知全集,集合,,那么( )
A. B. C. D.
2. 复数(为虚数单位)所对应复平面内的点在( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
3.已知是平面内的两条不同直线,直线在平面外,则是的()
A.充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
4.若表示不超过的最大整数,如,执行如图所示的程序
框图,记输出的值为,则( )
A. -1
B. 0
C. 1
D. 2
5. 函数的图像向左平移个单位后关于原点对称,
则等于()
A. B. C. D.
6. 若等差数列的公差, 前项和为, 若, 都有, 则( )
A. ,
B.
C.
D.
7.某公司庆祝活动需从甲、乙、丙等5名志愿者中选2名担任翻译,2名担任向导,还有1名机动人员,为来参加活动的外事人员提供服务,并且翻译和向导都必须有一人选自甲、乙、丙,则不同的选法有()
A. B. C. D.
8.已知点在直线上, 点在直线上, 线段的中点为
, 且, 则的取值范围是( )
A. B. C. D.
9. 已知某几何体的三视图如图所示, 三视图是边长为1的等腰直角三角形和 边长为1的正方形, 则该几何体的体积为( ) A. B. C.
D.
10. 已知函数, 则使得成立的的取值范围是
( ) A.
B.
C. D.
11. 设分别为具有公共焦点
的椭圆和双曲线的离心率,
是椭圆和双曲线的一个公共
点, 且满足
, 则
( )
A. B. C. D. 1
12.在锐角中, 所对边分别为, 且, 则的取值范
围为( ) A. B.
C.
D.
二. 填空题(每小题5分,共20分) 13.二项式的展开式的第四项的系数为
, 则的值为 .
14. 已知正数
满足
,则
的最小值为 . 正视
侧视
俯视
15.过直线上的一点作圆的两条切线,当直线关于对称时,它们之间的夹角为__________.
16.
已知函数, , 两个函数图象的公切线恰为3条, 则实数的取值范围为.
三. 解答题(共70分)
17. (12分)已知数列的前项和满足其中
(1)求数列的通项公式;
(2)设求数列的前项的和。

18. (12分)为了解人们对于国家颁布的“房产新政策”的热度,现在某市进行调查,随机抽调了50人,他们年龄的频数分布及支持“房产新政策”人数如下表:
年龄
频数 5 10 15 10 5 5
支持“房
产新政
策”
4 5 12 8 2 1
(1) 由以上统计数据填下面2乘2列联表, 并问是否有99%的把握认为以45岁为分界点对“房产新政策”的支持度有差异;
年龄不低于45岁的人数年龄低于45岁的人数合计支持
不支持
合计
持“房产新政策”人数为,求随机变量的分布列及数学期望.
附表:
0.050 0.010 0.001
3.841 6.635 10.828
19. (12分)在如图所示的几何体中, 四边形为正方形, 平
面, .
(1) 求与平面所成角的正弦值;
(2)在棱上是否存在一点, 使得平面平面?
如果存在, 求的值; 如果不存在, 说明理由.
20. (12分)已知椭圆的中心在原点, 焦点在轴上, 离心率为, 椭圆上的点到右焦点的最大距离为3.
(1) 求椭圆的标准方程;
(2) 斜率存在的直线与椭圆交于两点, 并且满足, 求直线在轴上截距的取值范围.
21. (12分)设函数, 其中, 和是实数, 曲线恒与轴相切于坐标原点.
(1) 求常数的值;
(2)当时,讨论函数的单调性;
(3)当时关于的不等式恒成立, 求实数的取值范围.
选做题:请在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
22.(本小题满分10分)选修4-1:几何证明选讲
如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.
(1)证明:直线AB与O相切;
(2)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.
23.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系中,以为原点,轴为极轴,单位长度不变,建立极坐标系,直线的的极坐标方程为:,曲线C的参数方程为:.
(1)写出直线和曲线的普通方程;
(2)若直线和曲线相交于两点,定点,求线段和的值.
24.(本小题满分10分)选修4-5:不等式选讲
已知不等式的解集与关于的不等式的解集相同.
(1)求实数的值;
(2)求函数的最大值.
高2014级第五期10月阶段性考试数学试题参考答案(理)
1.C
2.C.
3. B.
4.A.
5. D.
6.D
7. C.
8.D.
9.A. 10.D 11.A. 12.B 13. 3 14. 15. 16.
17.解: (1) , ①
当时, , ,
当时, , ②
①②, 得, 即. 又,
对都成立, 所以是等比数列, .
(2) ,
,, 即.
18. 解: (1) 2乘2列联表
年龄不低于45岁的
人数年龄低于45岁的人

合计
支持32 不支持18 合计10 40 50
.
所以没有99%的把握认为以45岁为分界点对“房产新政策”支持度有差异。

(2) 所有可能取值有,
,
,
,
所以的期望是.
19. 解(1)如图, 建立空间直角坐标系, 则, ,
, , . 所以,
, . 设平面的法向量为
. 则, 令, 则,
所以. 设与平面所成的角为, 则
. 所以与平面所成角的正弦值是.
(2) 假设点存在, 连接, 可设, 则,
. 设平面的法向量为, 则
, 令, 则, 所以. 因为平面平面, 所以, 即, 所以, 点. 所以.
20. 解: (1) 设椭圆的方程为, 半焦距为.
依题意, 由椭圆上的点到右焦点的最大距离3, 得, 解得,
所以, 所以椭圆的标准方程是.
(2) 设直线的方程为, 由, 得,
化简得.
设, , 则.
若成立, 等价于,
所以, 即,
则,
, 化简得.
将代入中, ,
解得. 又由,
从而或.
所以实数的取值范围是.
21. (1) 对求导得: , 根据条件知, 所以
.
(2)
设则, , .
单减, 单增, 单减.
(3) 由(1)得, ,
.
①当时, 由于, 所以, 于是在上单
调递增, 从而, 因此在上单调递增, 即, 而且仅有; ②当时, 由, 有, 于是在上单调递减, 即, 而且仅有; ③当时, 令
, 当时, , 于是在上单调递减, 从而, 因此在上单调递减, 即,而且仅有,综上可知, 所求实数的取值范围是.
22:(Ⅰ)设是
的中点,连结,因为
,所以
,.在中,
,即
到直线的距离等于⊙O半径,所以直线
与⊙
相切.
(Ⅱ)因为,所以
不是
四点所在圆的圆心,设是
四点所在圆的圆心,作直线

由已知得在线段
的垂直平分线上,又在线段的垂直平分线上,所以

同理可证,,所以

23.(1) (2),
24. 解: (1)
(2)由柯西不等式得:
.当且仅当时等号成立,即时,.所以函数的最大值为.。

相关文档
最新文档